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Abstract
We present a novel application of hypothesis ranking (HR)
for the task of domain detection in a multi-domain, multi-
turn dialog system. Alternate, domain dependent, semantic
frames from a spoken language understanding (SLU) analy-
sis are ranked using a gradient boosted decision trees (GBDT)
ranker to determine the most likely domain. The ranker, trained
using Lambda Rank, makes use of a range of signals derived
from the SLU and previous turn context to improve domain de-
tection. On a multi-turn corpus we show that this approach of-
fers accuracy improvements of 3.2% absolute (25.6% relative)
compared to relying solely on upfront non-contextual SLU do-
main models and 2.9% (24.5% relative) improvement even with
contextual SLU domain models. We also show that HR can be
trained to be robust to changes in the SLU.
Index Terms: dialogue systems, natural language understand-
ing, hypothesis ranking, re-ranking, contextual domain classifi-
cation, lambda rank, gradient boosted decision trees

1. Introduction
Natural language interaction, both spoken and typed, is becom-
ing an important user interface approach in a wide variety of
scenarios. Many of these scenarios require that spoken lan-
guage understanding (SLU) can deal with a wide range of tasks
and topics. As such, a commonly used architecture first classi-
fies the user’s utterance into one of the supported domains (or
as an unsupported domain), this is followed by domain depen-
dent intent and slot analysis (i.e. intent classification and entity
extraction). In such an architecture, although domain classifi-
cation is potentially less complex than other semantic analysis,
any errors made by the domain classifier are significantly more
noticeable as they tend to lead to incorrect system actions or
responses.

This paper presents the use of ranking, post SLU analysis,
which improves domain classification accuracy. The approach
tested allows for the easy addition of both linguistic and non-
linguistic signals, e.g. context, which can further improve over-
all accuracy. In this formulation, SLU domain, intent and slot
analysis is run for all domains. The output of each domain is
treated as providing one SLU hypothesis and the set of hypothe-
ses are ranked together.

1.1. Related Literature

Approaches based on re-ranking a set of candidate hypotheses
have been considered in various aspects of natural language pro-
cessing. Roark et al., [1] apply max-entropy rankers for sen-
tence boundary detection on n-best lists. Shen et al., [2] re-
rank n-best lists for machine translation of sentences by two
techniques, using a variant of the perceptron algorithm and then

pairwise ranking by applying classification algorithms. Collins
and Koo [3] re-rank the output of a probabilistic parser using
a boosting algorithm and providing it with additional features
of the parse tree to determine the best sentence parse. Chen et
al. [4] improve the accuracy of slot tagging of n-grams by gen-
erating multiple possible tags for each n-gram and then using
a technique similar to RankBoost. Nguyen et al., [5] use re-
ranking algorithms for named entity recognition by using the
n-best from a CRF and then pairwise classification for ranking.

Various approaches have also been presented for re-ranking
for SLU. Morbini et al., [6] present a technique for re-scoring
hypotheses by considering the n-best from three different
speech recognition engines. Each hypothesis is then classi-
fied using a maximum entropy classifier for its category (in-
tent within a domain). The 1-best from the intent classifier for
each member of the n-best is then re-scored using perceptron
algorithm with unigram, bigram and trigram features to choose
the best hypothesis. Basili et al., [7] also use SVM-based re-
ranking of the n-best output from the ASR for the more specific
purpose of spoken command understanding. In our work, the 1-
best output from a single speech recognition engine is processed
through SLU models to generate n-best list with domain, intent
and slots which is then re-ranked. Ng and Lua [8] use a trans-
ferable belief model to rank the n-best dialog inputs and choose
the highest ranked input. Dinarelli et al., [9] use a similar high-
level idea of re-ranking the n-best models from SLU. In their
work, the n-best list from the SLU models is pair-wise ranked
using SVM kernels which is then followed by a meta-classifier
that is used to determine the best output by considering the best
results from baseline and re-ranked models. In our work, the n-
best list is passed through a GBDT with additional features that
also represent information across hypotheses as well as previous
turns to include contextual information. None of the previous
works, cited in this section, exploit contextual features span-
ning multiple turns to re-rank hypotheses and improve accuracy
for domain classification. The approach presented in this paper
demonstrates the benefits of using additional features from this
type of information.

1.2. Lambda Rank Gradient Boosted Decision Trees

Gradient boosted decision trees (GBDT) were introduced by
Friedman [10] as a part of a “general gradient descent ‘boost-
ing’ paradigm ... developed for additive expansions based on
any fitting criterion”, roughly speaking refining regression tree
models through the addition of new trees that move the output
error in the direction of steepest gradient decent.

Burges et al., [11] proposed Lambda Rank as an approach to
ranking for information retrieval that allows optimisation with
non-smooth cost functions; where “the derivatives of the cost
with respect to the model parameters are either zero, or are un-



defined.” Originally applied to neural network models, Lambda
Rank was later applied to GBDT with great success as Lamb-
daMART [12] in the Yahoo! Learning to Rank Challenge.

In this paper, LambdaMART is applied to sets of hypothe-
ses (semantic frames plus knowledge results in this application)
to generate a score for each hypothesis which indicates its rel-
ative merit (or ranking). LambdaMART learns a model which
attempts to reproduce the (unobserved) non-linear function that
maps a vector of features that are extracted from each hypothe-
sis to the hypothesis’s score such that the model ranks the best
hypothesis the highest.

2. Re-ranking SLU Semantic Frames
The experimental system architecture is shown in Figure 1.
Spoken utterances are interpreted by an automatic speech recog-
niser (ASR) who’s normalised output is interpreted by the sta-
tistical spoken language understanding (SLU). Typed input is
directly fed to the SLU, bypassing the ASR. For training and
testing in this paper, the corpus of utterances are represented as
text strings and are fed directly to the SLU component. Within
this paper only 1-best ASR input to SLU is considered.
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Figure 1: Schematic diagram of the experimental spoken dialog
system where (a) is a domain only contextual signal, (b) is the
domain, intent and entities contextual signals, (R1) is selected
result of turn 1, (R2) is selected result of turn 2.

The SLU model is a multi-domain statistical model which
follows the domain-intent-slot design outlined in the introduc-
tion. It is modular at the domain level, allowing for easy ad-
dition of new domains. Support vector machine (SVM) mod-
els [13], one per domain, make a binary classification of the
utterance with respect to their respective domains. A domain
score per domain classification is generated by applying a sig-
moid function to the output of the SVM, where the output
is the distance of the classified example from the SVM deci-
sion boundary (with positive examples having a positive out-
put and negative examples a negative output). The output’s
range is normalised using an affine transform before input to
the sigmoid function. After domain classification, intents are
then determined using a multi-class SVM intent model, one per
domain. Finally entities (slots) are tagged using conditional
random fields (CRFs) sequence taggers [14]. The SLU mod-
els’ input features include n-grams (unigram, bigram, trigram),
gazetteers/list of entities and regular expressions.

As shown by Xu and Sarikaya [15], having access to the

previous turn’s selected domain improves SLU domain predic-
tion accuracy in multi-turn, multi-domain applications. In the
SLU used in this work this is implemented using a secondary
set of contextual domain models (one per domain) which in ad-
dition to the above features have access to the previous turn’s
domain as selected by the system. When enabled, the output do-
main score of the contextual and non-contextual domain models
are mixed through a weighted sum, where the weights are de-
termined using a validation set. The output of an SLU, with
such contextual information, can be considered a competitive
baseline for our approach.

One variation with the standard domain-intent-slot ap-
proach is that in these experiments all of the models for all of
the domains are run in parallel as opposed to gating the running
of the intent and slot models based on the domain prediction.
This has an obvious computational overhead which has to be
traded off against the additional information provided. The ex-
ploration of this trade-off lies outside the scope of this paper.
We only demonstrate the gain in accuracy by having the alter-
nate hypotheses available for re-ranking.

The output of the SLU is a set of semantic frames (SFs), one
per domain, which contain intent and slot information, and as-
sociated scores. For each semantic frame relevant knowledge,
e.g. database hits, is fetched and appended. We refer to these
assemblies of SFs and knowledge results as dialogue hypothe-
ses. Features are then extracted from these dialogue hypotheses
which are used as input to the hypotheses ranker (HR). The pol-
icy then acts with respect to the ranked list of hypotheses.

The implementation of LambdaMART used in these exper-
iments is very efficient at selecting informative features and we
exploit this by extracting close to 1,000 features for HR train-
ing and allowing LambdaMART to determine which features to
include in the resulting models. In these experiments, the HR
models typically learn to use on the order of 100 features. It is
worth noting that of the approximately 1,000 extracted features,
none contain any word-based features (such as those used by
the SLU, e.g. no n-grams features are available to HR). HR in-
put features include features that span the complete hypotheses
list, e.g. does a specific slot tagging type occur anywhere in any
of the hypotheses, as well as hypothesis specific features such
as domain and intent scores, many indicator features, e.g. the
presence of domains, intents and slot-types, presence of canon-
icalised entities, and coverage of tagged slots (as percentage of
utterance). Contextual HR features include whether the hypoth-
esis’s domain matches the top ranked domain from the previ-
ous turn, how many slots are in common with the previous top
ranked hypothesis, as well as the complete list of previous turn’s
domains’ scores. Some of these features are not available in
the first pass through the SLU, on which basis we expect post-
SLU ranking to provide benefit. Many of these features will
be unique to a particular utterance and/or domains, hence the
feature vector of any individual hypothesis is extremely sparse.

Within the context of this paper, features are not generated
from the knowledge results, which is a subject of our future
work. We consider only the improvement in domain accuracy
that can be gained by applying ranking to the SFs’ features, i.e.
testing the hypothesis that accuracy improvements can be ob-
tained by ranking dialogue hypotheses based solely on current
and previous turn SLU SFs. The accuracy is measured by com-
paring the domain of the top ranked hypothesis output by HR
and the top scoring domain as output by the SLU against hu-
man annotation of the utterance’s domain.



2.1. Data Sets

The internal data sets used for training, validation and testing
mostly comprise utterances collected from real users and crowd
workers. It was human annotated for domain, intent and slots.

When drawing training data from the above sources, we en-
sured there was no overlap between the SLU and HR training
sets (to avoid HR becoming overly reliant on the SLU’s judge-
ments). The SLU was trained on roughly 70% of the available
data. The HR training examples were run through the SLU and
feature extraction stages resulting in a set of training examples
with input features required by the HR model and with human
annotated domain labels as the supervisory signal. For HR a
GBDT model was trained using Lambda Rank, as described in
Section 1.2. Training and testing of HR was carried out on two
versions of the SLU; with and without the optional contextual
domain classification models.

In adding the contextual signals to the training and test data
there exist two possible sources for populating the previous turn
features. These are (a) using the domain, intent and slot from
the system’s previous turn’s output, i.e. the system’s prediction,
or (b) using the (assumed) more accurate domain, intent and
slot for the previous turn as tagged by the human annotators.
Contextual data was duplicated to include both versions.

The data sets used for training and testing SLU and HR
span 8 distinct domains with multiple intents per domain. The
data is split into two distinct types; (a) first-turn-only – where
no follow up turn was collected, (b) multi-turn-possible – where
subsequent turns could be collected. The HR training set consist
of 52,000 first-turn-only sessions and 6,000 multi-turn-possible
sessions. In the latter 49% of sessions have two or more turns,
22% have three or more turns, 11% four or more turns. The test
set used has a higher proportion of multi-turn-possible sessions
consisting of 9,600 first-turn-only sessions and 4,200 multi-
turn-possible sessions. The latter having 50% of session which
have two or more turns, 23% three or more turns, 13% four or
more turns. Across all the multi-turn-possible data, both train-
ing and test sets, it is observed that a domain transition occurs
around 27% of the time, i.e., the user switches domain between
any two turns of a particular multi-turn session.

2.2. Results

Both SLU and SLU+HR were tested using the same held-out
test sets and percentage error rates computed by comparing the
selected domain with the human annotated one. Results across
all test sets are presented in Table 1. The two rows correspond
to the two modes of operation of the SLU; with and without
the additional contextual domain classification models. Within
each row the results for HR correspond to a model that was
trained against the matching SLU configuration.

SLU context Top SLU Top HR Gain Loss Net Gain
none 9.93 8.41 2.92 1.40 1.52

domain 9.45 7.20 2.88 0.63 2.25

Table 1: Percentage error rate on all test data. SLU context in-
dicates whether contextual SLU domain models were enabled.
HR results based on training with matching SLU model.

HR, based solely on the information available in the cur-
rent and previous turn SFs, is providing a net gain of 1.52% in
domain accuracy when the SLU is operating without contex-
tual domain models and a net gain of 2.25% when SLU is also
sensitive to domain context (previous turn domain). Breaking

down the net gain into the percentage of utterances that were
improved (Gain) and percentage of utterances where HR hurt
the domain classification (Loss) we can see that this slightly
surprising result is due to the reduction in HR errors when op-
erating with the contextual SLU. As expected the addition of
contextual SLU domain models reduce the SLU’s overall do-
main error rate and also reduce the number of examples which
HR can correct. (The relatively small improvement seen in the
SLU between the two conditions can be attributed to conser-
vative tuning of the contextual SLU, e.g. minimisation of the
number of errors introduced. Also, by design, SLU contextual
domain models have no impact on the first turn.)

2.3. Contextual Domain Tracking

The results presented in Table 1 are based on both first-turn-
only and multi-turn-possible test sets. Tables 2 and 3 present
results obtained exclusively on the multi-turn-possible test set,
i.e. where contextual influence is more likely to occur.

SLU context Top SLU Top HR Gain Loss Net Gain
none 12.58 9.37 4.29 1.08 3.22

domain 11.85 8.95 3.73 0.84 2.90

Table 2: Percentage error rate considering only multi-turn-
possible test set.

Turn SLU context Top SLU Top HR Gain Loss Net Gain

1 none 7.61 7.17 0.84 0.40 0.44
domain 7.61 6.95 0.96 0.30 0.66

2+ none 16.67 11.17 7.13 1.63 5.50
domain 15.33 10.59 6.00 1.27 4.73

Table 3: Percentage error rate considering only multi-turn-
possible test set. Reporting first turn and subsequent turns sep-
arately.

Focusing on the multi-turn-possible test set only, both the
SLU and HR models exhibit increased number of errors com-
pared to the results for all test sets, presented in Table 1. This
gives some indication of the increased difficulty in the task of
tracking the domain in multi-turn interactions where the domain
will not necessarily be explicitly expressed in any one turn and
may change between turns. Nevertheless HR shows greater net
gain on these examples with 3.22% improvement in the non-
contextual SLU condition and 2.9% gain in the contextual do-
main SLU condition.

Table 3 breaks down these results further presenting per-
centage error rates separately for the first turn and all subsequent
turns in the multi-turn-possible data set. From this table it can
be seen that as expected the largest errors occur for the sub-
sequent turns (turn two or later in the dialogue); analysis pre-
sented by Xu and Sarikaya [15] indicate that in general domain
detection becomes harder for SLU in subsequent dialog turns.
As expected, the SLU with contextual domain models improve
over the non-contextual SLU but HR provides the most signifi-
cant net gains, e.g. 5.50% with non-contextual SLU and 4.73%
net gain with contextual SLU. This is in contrast to the first turn
the gains provided by HR which are somewhat limited, 0.44%
and 0.66% with the two versions of the SLU, indicating that the
SLU is well tuned to the overall task.
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3. Robustness to SLU Model Updates

A valid concern in architectures comprising multiple statistical
models feeding into another set of statistical models is the prob-
lem of model update. Technically, if models in upstream stages
are updated (in the pipeline discussed in this paper, this refers to
the SLU models), the downstream models (the HR model) also
requires retraining. However, in industrial environments, there
is a strong desire to stage updates to minimise the number of
changes performed at once.

To account for this concern, special care was taken in craft-
ing features that are stable across SLU model updates as well
as devising a good training strategy for the downstream models.
For example, a feature like the rank in the SLU n-best of a spe-
cific SF is more consistent across updates than the actual raw
score of the domain classification SVM models. Similarly, the
ratio of the SF domain score to the maximum SF domain score
across the entire n-best is another example of a stable feature
across SLU model updates. Related to this, if the HR model
is trained using samples that have been passed through more
than one SLU version, the dependence on SLU version specific
features decreases.

The GBDT training process provides us with a measure of
the information gain provided by each feature. We observe that
as the accuracy of the SLU models improves, the relative impor-
tance of the features used by the GBDT changes. For instance,
the SLU n-best rank gains a lot of weight as the SLU accuracy
increases. In a similar fashion, the feature that indicates if a SF
belongs to the same domain as the previous turn selected do-
main becomes more important in the HR models as the SLU
accuracy improves.

To illustrate the impact of this behaviour, we simulated dif-
ferent deployment strategies in a fictional production system
where only one set of models would be allowed to change at
one time (see Figure 2). For the “SLU then HR-x” strategies,
the updated SLU model is deployed before the retrained HR
model gets deployed. It is the other way around for “HR-x then
SLU” strategies. As the figure demonstrates, a lower error rate
with less variance across cycles can be achieved once the HR
model gets trained with multiple prior SLU versions (HR-m)
irrespective of the deployment order.

4. Discussion and Future Work
Though this paper focused on using SLU signals (both cur-
rent and previous turn) to enable ranking of the hypotheses, the
scope of signals that HR can use is much wider. Positioned
toward the end of the system pipeline, HR can make use of
signals from further upstream, such as ASR n-best and confi-
dence scores, and also knowledge result signals downstream of
the SLU, e.g. database hits. The latter allows for top-down sig-
nals (for example about the existence of an entity) as well as
bottom up signals derived from the speech signal to influence
the final ranking. This potential expansion in the source of in-
put signals also motivates our investigation into robustness with
asynchronous model updates.

In the evaluations presented in this work, the metric used
was the accuracy of the predicted domain in the top hypotheses.
Further extensions would be to consider the general goodness
of the ranking and also dialogue policies that act with respect to
the full ranked list. As mentioned in Section 1, there is a trade
off in running all the models to re-rank the alternate hypotheses
and the accuracy gains received that requires further analysis.
In general, nothing in the application of ranking specifically re-
quires the use of GBDT. We also plan to explore using other
approaches, e.g. RNN, in place of GBDT.

5. Conclusions
We presented a novel application of hypothesis ranking for the
task of domain detection in a multi-domain, multi-turn dialog
system. We show that accuracy improvements can be obtained
by ranking dialogue hypotheses based solely on SLU SF current
and previous turn information. On a multi-turn corpus we show
accuracy improvements of 3.2% absolute (25.6% relative) com-
pared to relying solely on upfront non-contextual SLU domain
models and 2.9% (24.5% relative) improvement even with con-
textual SLU domain models. The majority of this gain being
due to more accurate tracking of the domain in second and sub-
sequent turns in multi-turn sessions, e.g. 4.75% net gain with
the contextual SLU domain models. We also show that HR can
be trained to be robust to changes in the SLU models allowing
asynchronous model updating.
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