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Abstract
In this paper we propose a set of class-based features that

are generated in an unsupservised fashion to improve slot tag-
ging with Conditional Random Fields (CRFs). The feature gen-
eration is based on the idea behind shrinkage based language
models, where shrinking the sum of parameter magnitudes in
an exponential model tends to improve performance. We use
these features with CRFs and show that they consistently im-
prove the slot tagging performance against baselines on several
natural language understanding tasks. Since the proposed fea-
tures are generated in an unsupervised manner without signifi-
cant computational overhead, the improvements in performance
comes for free and we expect that the same features may result
in gains in other tagging tasks.
Index Terms: shrinkage based features, CRFs, exponential
models, slot tagging

1. Introduction
Recent releases of digital personal assistants such as Siri,
Google Now and Dragon Go in smart phones made Spoken
Language Understanding (SLU) more important than ever in
completing routine tasks (e.g. finding a restaurant, checking
weather, checking flight status, setting up a meeting in calen-
dar) using voice in our daily lives. Most of these tasks involve
extracting information from the spoken query. The information
could be at the sentence level (e.g. domain detection, user intent
detection) or at the word/phrase level (e.g. semantic concepts,
entities). The latter combined with the former provides a granu-
lar understanding of the user’s goal and also allows formulating
queries to fetch information from the knowledge back-end for
these applications.

Despite continuous research over the past two decades,
semantic information extraction in the form of slot filling in
SLU is still a challenging problem. Even though representation
learning methods such as deep learning are starting to receive
attention [3, 4, 14, 9], Conditional Random Fields (CRFs) [2]
have been the most widely used technique for slot filling. CRFs
benefit from the flexibility to use overlapping, non-independent
features to model many natural language tasks. This can reduce
the need for labeled data by taking advantage of domain knowl-
edge in the form of dictionaries, part-of-speech tags, syntactic
parsing, and capitalization patterns. Given the great flexibility
of these models to use a wide variety of features, two important
questions remain 1) what features to use, 2) whether the runtime
computational requirements justify the accuracy gains with the
extra features given the system handles potentially millions of
queries every day. It is also important to know whether the ex-
tra features require hand-labeling of the data, which could be an
expensive task and that the performance gains may not justify
generating such annotations.

Until recently there has not been a principled approach to

determine if a given feature (e.g. lexical, syntactic, semantic)
provides gains in accuracy for exponential models without actu-
ally building and evaluating the models. In [6] [7] it was empir-
ically shown that for maximum entropy based language models,
which are specific instances of exponential models, the perfor-
mance could be predicted for features of the same kind (e.g. lex-
ical n–grams) under certain assumptions. In a later study [1], it
was shown that automatically derived class based features could
shrink the model size and lead to performance gains. One of the
key outcome of the study was that the features are derived in an
unsupervised fashion and thus making them potentially applica-
ble to other tasks (beyond language modeling) and languages.

This paper takes an empirical approach to transfer the find-
ings of [1, 6, 7, 11, 16] to the slot filling task in SLU. We pro-
pose a set of automatically generated feature sets for slot tag-
ging using CRF modeling. We use (hard and soft) word clus-
tering to induce class based features. We consider two word
clustering techniques for hard clustering: Brown clustering and
spectral clustering and their combination for soft clustering.

This paper is organized as follows: Section 2 provides a
formulation of conditional random fields. Section 3 describes
the empirical basis of the shrinkage based features. Section 4
introduces the shrinkage based features for slot filling. Section
5 presents experimental results followed by conclusions in Sec-
tion 6.

2. Conditional Random Fields
Conditional Random Fields (CRFs) [2] are discriminative undi-
rected probabilistic graphical models trained to maximize the
conditional probability of labels on output nodes given the
observations on the input nodes. If the output nodes of the
graphical model are linked by edges in a linear chain, CRFs
make a first-order Markov independence assumption, and thus
can be understood as conditionally-trained finite state machines
(FSMs). Unlike ordinary classifiers, which predict a label for
a single sample without considering the neighboring samples, a
CRF can take (label) context into account and models sequences
of labels. For example, a linear chain CRF predicts sequences
of slots for sequences of input samples (i.e. words). Assuming
that n = 1 is the length of the observation sequence, a linear-
chain CRF can be written as:

pλ(y | x) =
1

Zλ(x)
exp

(
n∑
j=1

m∑
i=1

λifi (yj−1, yj , x, j)

)
(1)

where j denotes the position in the input observation sequence
x = {x1, . . . , xm} and y = {y1, . . . , ym} is the output se-
quence. fi(.) are often binary valued (but can be real-valued as
well) feature functions, which depend both on the input obser-
vation sequence and output label sequence. Model parameters
(λi) are learned weights associated with feature fi(.) and they



are independent of the position j. Zλ(x) is the normalization
term to make sure the expression is a probability:

Zλ(x) =
∑
y∈Y

exp

(
n∑
j=1

m∑
i=1

λifi (yj−1, yj , x, j)

)
(2)

where summation over Y , the set of all possible label se-
quences, makes the probabilities sum to one. Within the exp(.)
function, we sum over j = 1, . . . , n word positions in the se-
quence. Given such a model the most likely label sequence for
an input sequence x is,

y∗ = arg max
y

PΛ (y | x) (3)

where λi ∈ Λ, i = 1 . . .m. This expression can be efficiently
computed using the Viterbi algorithm. Being from the same ex-
ponential family of model CRFs share many of the properties
of standard maximum entropy models, including their convex
likelihood function, which guarantees that the learning proce-
dure converges to the global maximum. Traditional maximum
entropy learning algorithms, such as GIS and IIS [8], can be
used to train CRFs. However it is widely known that a stochas-
tic gradient descent (SGD) converges much faster compared to
GIS or IIS [13], so we use SGD for learning the model parame-
ters.

3. The Empirical Basis for Shrinkage Based
Exponential Models

Shrinkage based language models are class-based exponential
n-gram models that achieved significant gains over word-based
n-gram models on a number of speech recognition and machine
translation tasks [1, 11, 12]. The basic premise of shrinkage-
based exponential language models lies in shrinking the model
size of the word n-gram models. Assuming that training and
test data are drawn from the same distribution, it was shown
empirically [1, 6] that many types of shrinkage based exponen-
tial language models obey the following rule:

log PPtest ≈ log PPtrain +
γ

D

∑
i

|λ̃i| (4)

where PPtest and PPtrain denote test and training set perplexity;
D is the number of words in the training data; λ̃i are regularized
(i.e., smoothed) estimates of the model parameters; and γ is a
constant independent of domain, # utterances in training data,
and model type [6].

The above relationship suggests that test set performance
can be improved if we shrink

∑
i |λ̃i| (i.e., model size) while

maintaining the training set performance. There are various
ways to shrink the model size such as through regularization
during model training. In fact such techniques are widely used
in training exponential models. Another empirical observation
described in [6, 7] suggests alternative ways to shrink the model
size, and it may complement the regularization during model
training. We observe that when building an exponential model
such as language model or a general classification model [16],
whenever back-off features are added, the model performance
improves. For example, adding bigram features to a model
trained with trigram only features, or adding unigram features to
a model trained with bigram only features improves the model
performance. It was shown in [6, 7] that these back-off features
shrink the model size, which is the second term in Eqn. 4. Note
that adding bigram features to a model trained with trigram only

F-1gr cj , wj , cjwj
Feature SetA (F-A) cj , cj−1cj , wj−1cj , wj , cjwj , wj−1wj
Feature SetB (F-B) cj , cj−1cj , wj−1cj , wj , wj−1cjwj , cjwj
Feature SetC (F-C) cj , cj−1cj , wj , cjwj , wj−1wj
Feature SetD (F-D) cj , cj−1cj , wj , cjwj , wj−1wjcj
Feature SetE (F-E) cj , cj+1, cjwj , wj+1, wj+1cj+1

Table 1: Different sets of shrinkage-based features. Note that
2gr features include the 1gr features as a subset (Feature set A
through E).

features increases the number of model parameters (i.e. λ′s) but
sum of the absolute values of them decreases effectively shrink-
ing the overall model size. When bigram features are added to
trigram features and a new model is trained with both feature
sets, the absolute values of the model parameters correspond-
ing to trigram features shrink even though the model has more
parameters to learn (i.e. bigram+trigram). Since the shrinkage
in absolute value of trigram model parameters is larger than the
absolute values of the new parameters learned for the bigram
features and there is a net reduction (i.e. shrinkage) in the model
size. In the experiments, we will show analysis of shrinkage on
model performance.

The empirical observations given above and the relationship
in Eqn. 4 helps to explain why we get improvements when we
add bigram features to trigram features or when we add unigram
features to both bigram and trigram features. Given these ob-
servations a set of class based exponential language models are
proposed in [1, 6, 11] with the goal of shrinking the model size
while maintaining the training set performance. These language
models lead to significant improvements in test set performance
over the state-of-the-art language models. In the experiments,
we will show analysis of shrinkage on model performance.

4. Shrinkage Based Features for CRF
In this study we are leveraging the same empirical evidence
to propose class based features for CRFs, which belong to the
same exponential family of models. We propose several feature
sets described in Table 1. We use CRFs for slot filling task. In
the baseline setup, we consider 1-gram and 2-gram word fea-
tures within a window of 5 words (±2 words) around the cur-
rent word as binary feature functions. The features are in gen-
eral joint lexical and class based features composed of 1grams
and 2grams. In the table wj is the jth word in the sentence and
cj is its corresponding class. Word classes can be generated
through supervised or unsupervised techniques. Each word can
be assigned to a single class (i.e. hard word classing) or mul-
tiple classes (soft classing) [11]. The two hard word clustering
techniques we use for assigning word classes to the words are:

4.1. Brown Clustering

Brown hierarchical word clustering algorithm [5] partitions the
vocabulary into a pre-defined number of classes to maximize the
bigram mutual information between words and classes [5]. The
algorithm first assigns each of the most frequent words to their
own class and the remaining words to the final class. Then, the
exchange algorithm is performed where individual words are
moved to another class if this improves the class bigram mutual
information, until no more such moves are possible. In this
paper, we use the C++ implementation of Brown clustering 1.

1https://github.com/percyliang/brown-cluster



4.2. Spectral Clustering

We also form word classes using spectral clustering [17] of
word embeddings. A word embedding is a continuous repre-
sentation of a word. In this work, we use off the shelf word em-
beddings described in [18, 19] on large amounts of newswire
data (which, for our study, is completely out of domain data).
The embeddings are derived for 268K words and each word is
represented by a 50 dimensional vector of continuous values.

In order to use these word embeddings in our shrinkage
based CRF framework, we generated word classes out of these
continuous word representations. Although K-means clustering
seems an obvious choice for forming clustering, we however
used spectral clustering [17], mainly because of spectral clus-
tering’s superiority over K-means in forming clusters of non-
spherical shapes. We follow the procedure described in [17] to
form spectral clustering of 268K words. However, instead of
using a fully connected affinity graph, which would have a pro-
hibitively large number of edges (6.7 × 1010), we use K near-
est neighbors (symmetric version, with K=5) and obtain spec-
tral decomposition of the resulting sparse graph (which contains
about 5× 105 edges maximum) using sparse Eigen solvers.

4.3. Soft Clustering

The soft clustering is often desired, as it encodes uncertainties
on data-to-cluster assignments. A single observation may often
belong to more than one cluster, e.g., a document with multi-
ple themes may belong to different topics. In this paper, we
approach soft clustering by using the features from Brown and
spectral clustering. Specifically, we assume that a words and
thus the n-gram features may belong to more than one cluster
indicated by different clustering algorithms. Thus, each word in
the training data is assigned to two separate clusters, one from
Brown clusters and one spectral clustering. The features gener-
ated separately and combined during model training and testing.

5. Experimental Results
5.1. Data

The slot filling experiments are run on three tasks covering en-
tertainment search scenarios: 1) movie domain, 2) music do-
main, 3) games domain. The statistics about the datasets used
in this paper are given in Table 2.

Tag Count Train # Utterances Test # Utterances
Movie 33 32147 10695
Music 20 7513 2499
Games 17 7523 2500

Table 2: Data Set Descriptions.

5.2. CRF Model Performance with Shrinkage Features

We trained the CRF models using the feature sets shown in Ta-
ble 1 for cluster sizes starting from 50 up to 500 with 50 incre-
ments on each domain data. We measured the performance of
the models on the test data using the F-score. We present the
results and analysis of the effects of using different clustering
methods and features sets separately below.

5.2.1. Cluster Size vs. Clustering Technique

Here, we investigate whether the cluster size and clustering
methods has effect on the model performance. Fig. 1 shows
the results where we build separate CRF models using Brown,
Spectral and soft clustering (Brown+spectral) with the defined

Figure 1: Slot tagging performance for (top) Movies, (middle)
Games, and (bottom) Music domain test sets for different clus-
ter sizes of clustering features. Each line on each chart indi-
cates the average model F-scores of the feature sets when (∼)
Baseline-1 with unigram features, (doted-∼) Baseline-2 with
unigram+bigram features, (∼) Brown, (∼) Spectral, and (∼)
Soft clustering are used.

features sets for a set of fixed cluster sizes. Specifically, we take
cluster-ids as features (as shown in Table 1) for each feature
type and build a separate model for each feature combination
per cluster size. Because of space limitations, we cannot show
results from each features set combination using each cluster-
ing model per domain. Instead, In Fig. 1, we show the average
F-scores on test sets predicted from the CRF models trained
with different feature sets, but using the same cluster size for all
the feature sets. Each chart compares Brown, Spectral and Soft
word clustering results for each domain. The baseline models
use word unigram (1gr) and unigram+bigram (1gr+2gr) features
without any clustering features to compare with the clustering
based (class) features.

We observe that the feature sets perform similarly with
Brown and Spectral clustering, however both of them outper-
formed the two baselines. In each domain, we observe a slight
increase in performance as we use large number of clusters
(>250), however, we did not see a statistically significant im-
provement (based on Student t-test of p ≤ 0.01). Thus, our
analysis show that the tagging performance is not sensitive to
the cluster size. The best performance is observed with the Soft
clustering (significant for music and games using paired t-test,
p < 0.05), which combines each individual feature from Brown



Figure 2: Slot tagging performance for (top) Movies, (mid-
dle) Games, and (bottom) Music domain test sets for differ-
ent features sets. Each line on each chart indicates the average
model F-scores of features with different cluster sizes when (∼)
Baseline-1 with unigram features, (doted-∼) Baseline-2 with
unigram+bigram features, (∼) Brown, (∼) Spectral, and (∼)
Soft clustering are used.

and Spectral clusters.

5.2.2. Feature Sets vs. Clustering Technique

In the second set of analysis, our goal is to analyze the effects
of different word-class feature sets, and benchmark the perfor-
mance results against the baseline models trained using only
the unigram and unigram+bigram feature sets. The results are
shown in Figure 2. Again, we compare the models using fea-
tures from Brown, spectral and soft word clustering against the
two baselines. We observe that the best models are with the fea-
ture sets F-A, F-B, F-C and All (union of F-A, F-B, F-C, F-D
and F-E) in all domains (movies, games and music). Addition-
ally, even though F-1gr and Feature SetE (F-E) achieved lower
accuracy compared to other feature sets, they still outperformed
the baseline.

Across all three domains we observe that the shrinkage
based features consistently improve the performance over the
baselines. We also observe that features obtained from the soft
clustering (Brown+spectral) consistently outperform those ob-
tained with hard clustering with Brown or spectral. Even though
the performance of F-A to F-D are close to each other, F-B is
slightly better overall with soft clustering across the domains. If

we pick a single feature set, clustering technique and a cluster
size: setting the cluster size to 400 (c400) and using soft cluster-
ing, F-C improves the accuracy from 85.2/85.9% (1gr/2gr base-
lines) to 87.5% in the movie domain. With the same settings
the improvements in the music domain are from 81.3/81.4% to
83.3%, and in the games domain from 82.3/82.9% to 85.1%.
These are significant (using paired t-test, p < 0.05) and consis-
tent gains across different domains.

5.3. Shrinkage Effect with Word Clustering Features

Now that we showed the effect of using word-clustering fea-
tures, we want to turn our attention to the shrinkage effect of
these features on the models. Specifically, we measure the
model size (second term in Eqn. 4) of each model that we pre-
sented in section 5.1. Thus, for each model, we measure the
sum of absolute values of the predicted parameter weights and
compare against different cluster sizes, and features sets.

Figure 3: Model size, shrinkage, versus varying cluster sizes.
Each line on each chart indicates the model sizes using differ-
ent cluster sizes using baseline models as well as models with
Brown, Spectral, and Soft clustering features.

In Figure 3, we show the model size results for different
cluster size. Here we only show the results on the movies do-
main, although we observe the similar behavior on other do-
mains as well. The results show the correlation between the
shrinkage in the model size and performance improvement.
Overall, the proposed features have smaller model sizes com-
pared to the baseline models.

6. Conclusions
We applied a simple empirical rule for shrinking exponential
models to the conditional random fields. We proposed several
feature sets that shrink the model size to improve slot filling
tasks. These feature sets consistently improved the slot filling
accuracy across three tasks. It is well known that slot filling per-
formance can be improved using additional information com-
ing from dictionary, syntactic and/or semantic content of the
sentence or various external resources. However typically they
carry extra overhead either during training (e.g. manual label-
ing, dictionary acquisition) or decoding as those features should
also be computed during decoding. There are several nice prop-
erties of the proposed feature sets: 1) automatically generated
without any supervision, 2) almost no overhead during decod-
ing (e.g. does not require running a parser to generate features),
3) task independence. We believe that the proposed features
are also language independent and that they can achieve sim-
ilar gains for slot filling tasks in other language. As part of
our future work, we will apply the idea of shrinking model size
along with the corresponding feature sets to other syntactic and
semantic tagging tasks.
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