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Abstract—High functional complexity is leading us towards
new architectures for sensing systems. Multi-tiered design is one
among the many emerging alternatives. Such architectures bring
new opportunities for effective system-level power management.
For instance, varying one/more tier-level parameters can provide
substantial end-to-end energy scaling. In this paper, we review
an existing approach that shows how one such parameter,
namely data compression, can help us scale energy at the cost
of algorithmic accuracy. The methodology is driven by a case
study of inferring the onset of seizure events directly from
compressively-sensed electroencephalograms. Results from an
integrated circuit implementation have shown tier-level com-
putational energy scaling in the range 1.2-214 µJ depending
on the amount of compression (2-24×) and inference accuracy
(sensitivity, latency, and specificity of 91-96%, 4.7-5.3 sec., and
0.17-0.30 false-alarms/hr., respectively). The projections we make
in this paper show that for similar systems, compressive sensing,
through this approach, has the potential to prolong battery lives
of all tiers by up to 5×.

I. Introduction

Sensing systems are starting to monitor increasingly complex
physical entities, such as the human body and the brain.
They serve the purpose of not only enabling offline analytics
but also providing real-time feedback to control tools [1].
A key characteristic of such systems is that they aggregate
enormous amounts of data through continuous sensing. Thus,
it is important that these systems distill and present only
informative instances of data to the applications they drive.

In a typical sensing system, sensors that collect data are
placed close to natural phenomena since they then provide
richer- and higher-quality signals. However, this placement
often imposes strict storage and energy constraints [2]. Thus,
sensing nodes themselves can support little to no computation.
A more effective way of handling the sensed data is thus to
offload it to another device whose storage- and processing-
energy constraints are somewhat relaxed. This device is also
a part of the sensing system. Custom or general-purpose
processing platforms such as smartphones are typical options.
If the end-goal of the system is to support offline analytics,
we can either store the data on these second-tier devices or
relay it to a cloud server or remote base station. However,
if the end-goal is to provide real-time feedback, we need to
compute on either the device itself or at the base station.
These devices typically employ long-haul radio links such as
a cellular network (or even WiFi) to communicate with the
base station. The latter option thus entails huge overheads in
latency and energy consumption. The device is also energy
constrained (but not as severely as the sensors), which make
even the former option less feasible. The middle ground is
where we compute partially on the device just enough to select
informative data instances, which are then relayed to a base
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Fig. 1. In a multi-tiered seizure-detection system, data selection reduces
energy consumption of the processing tier by about 2×..

station for further analysis. This trade-off leads to a multi-
tiered architecture for the sensing system that is shown in
Fig. 1. There arise three distinct tiers. The first (sensing) tier
is the most energy constrained. The second (processing) tier
has a somewhat higher energy budget than the first but is still
energy constrained. The third (storage) tier is faced with the
least (or no) energy constraint.

Impact of data on energy consumption. To explore this
aspect, we consider a representative sensing system that ac-
quires electroencephalogram (EEG) signals from a head-worn
device and processes them on a custom-computing platform.
The end goal in this system is to detect seizure events in real
time. Since only the first two tiers are energy constrained, we
do not consider the third tier in the rest of the discussion.

Fig. 1 shows the energy consumption of each tier. We
compare two cases: one where all data is relayed by the
processing tier to the storage tier and the other where the
processing tier only transmits selected data instances to the
base station. This system uses bluetooth low energy (BLE)
[3] and WiFi [4] for communication. We observe that the data
rates are higher on the second link (between the processing
and storage tiers) in the former case leading to higher energy
consumption of the processing tier. Clearly, the amount of
data that moves between tiers has a significant impact on

energy consumption. Thus, reduction of data on all links has
the potential to reduce the overall system energy. In emerging
systems, the processing tier already performs data selection
that helps reduce data on the link between the processing
and storage tiers [5]. Reducing data between the sensing and
processing tiers can further reduce the energy consumption.
One promising approach that can help us achieve this reduction
is data compression [6]. In this paper, we review existing work
that exploits data compression to reduce system energy.

Energy scalability. Reduction in energy consumption is
not always free. It comes at the cost of one or more of the
system-level parameters. For instance, selecting data instances
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to transmit from the processing tier to the storage tier allows
us to save energy at the cost of information content. At each
tier, voltage/frequency scaling allows us to trade energy for
performance [7], while techniques like approximate computing
allow us to trade energy for accuracy [8]. There are also
approaches that employ selective sensor/power gating to save
energy at the cost of data quality [9], [10]. Thus, from an
applicaiton point of view, energy reduction may not always
be desirable. In fact, it is more powerful if we have knobs

that provide us control over the system energy consumption.
Thus, depending on application needs, a designer can invoke
low/high energy modes of operation thereby scaling the system
energy consumption up or down at whim.

Scalability through data compression. Data compression
provides us with a specific knob (i.e., amount of compression)
that allows us to save communication energy between all
tiers at the cost of some extra computation (required for the
compression process). In certain cases, there is also an energy
cost for decompression, which may be necessary to perform
prior to data-selection in the processing tier. Compressive
sensing is an interesting data-compression technique that does
not require a lot of energy to compress the data, thus it
is ideally suited to be used in the sensing tier [11]–[13].
This technique is applicable to a broad range of signals and
allows us to compress data by large amounts [14]. However,
it raises with two major issues: (1) the data get altered in the
compressed domain due to the random projections involved
and (2) the data reconstruction energy is very high [15]. Thus,
after data compression in the sensing tier, if we want to
perform computations for data selection in the processing tier
(e.g., to reduce the communication energy of the processing
tier), we would need to reconstruct the signal. However, the
high energy overheads for reconstruction can rapidly eclipse
the gains provided by compressive sensing.

Recent work has shown that through new linear transforma-
tions, the processing tier can extract useful features directly
from compressively-sensed data [16]. Further, such features
can also be used effectively in machine-learning algorithms
to perform data selection. Thus, using this approach, data
are compressed in the sensing tier and remain compressed
throughout. In fact, these transformations enable us to achieve
energy scaling at the cost of not only some extra computation
(required for compression) but also at the cost of some loss in
data-selection accuracy. The energy savings come not only be-
cause the decompression energy overheads are eliminated but
also since the number of data samples that need be analyzed
by the processing tier get reduced (i.e., by an amount equal to
the compression factor, ξ). In this paper, we review this work
along with an IC implementation that demonstrates a processor
that takes advantage of the potential energy scalability through
various circuit-design techniques [17]–[19]. Thus, the IC that
we discuss illustrates a new approach to system-level power
management.

II. Background

In this section, we present background on the BLE commu-
nication protocol, compressive sensing, and seizure detection
using EEG signals. We also describe transformations that
allow direct analysis of compressively-sensed EEG.
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Fig. 2. BLE communication entails multiple CEs. Each CE comprises nine
states and is able to handle a payload of up to 37 bytes.

A. Bluetooth Low-energy Radio Protocol

BLE is a 2.4 GHz, industrial sensing and medical (ISM)
band radio protocol that uses Gaussian frequency shift keying
(GFSK) modulation across 40 channels, spaced at 2 MHz [3].
The protocol allows periodic receiption/transmission of data
packets to achieve an over the air data rate of up to 1 Mbps.
A BLE packet breakdown is shown in Fig. 2. It comprises
a 1 byte preamble, 4 byte sync word, 1 byte protocol data
unit (PDU) header, 1 byte PDU length, 0-37 byte payload
and 3 byte cyclic redundancy check (CRC) code. Further, a
connection event (CE) is defined as an event during which one
BLE packet is transmitted/received. To transmit/receive more
than 37 bytes of data, multiple CEs are established between a
BLE receiver and transmitter (see Fig. 2). A CE comprises the
following nine states: (1) wake-up: radio wakes from sleep, (2)
pre-processing: radio prepares to send or receive data, (3) pre-
Rx: radio turns on in preparation of reception/transmission, (4)
Rx: radio receiver listens for packets, (5) Rx-to-Tx transition:
receiver stops, and radio prepares to transmit a packet, (6) Tx:
radio transmits a packet, (7) post-processing: radio processes
the received packet and sets up the sleep timer in preparation
for the next CE, (8) pre-sleep: radio prepares to go into sleep
mode, and (9) sleep: radio goes into sleep mode.

B. Compressive Sensing

Compressive sensing is a technique that allows us to multiply
an N-sample signal by an M × N projection matrixΦ to create
an M-sample signal (with M ≪ N, ξ = N/M) [14]. Further,
a Φ whose elements are set to ±1 randomly with uniform
probability allows us to recover the N samples from the M

samples with high probability [20]. Such a choice for Φ en-
ables low-energy compression, applicable to a broad range of
signals; this has recently been exploited in biomedical sensing
systems [13]. However, reconstruction is energy intensive [15],
which has typically limited the functionality of the processing
tier to relaying raw compressed data to the storage tier [13].

C. Seizure Detection using EEG Sampled at Nyquist Rate

Fig. 3 (top panel) shows a multi-tiered sensing system for
seizure detection that we consider in this paper. The Nyquist-
domain algorithm is based on [21]. Fig. 3 (a) shows the
computations involved in the processing tier. A two-second
epoch from one EEG channel is processed using eight band-
pass finite-impulse-response filters (BPFs) with passbands of
0-3 Hz, . . ., 21-24 Hz. The spectral energy from each filter is
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Fig. 3. A multi-tiered sensing system for seizure detection. Random
projections in the sensing tier enable data compression. The processing
tier involves feature extraction and classification using an SVM. To enable
compressed-domain detection, BPFs Hij are transformed to the CD-BPFs Ĥij.

then represented by summing the squared value of the output
samples to form a feature vector (FV), which is then used for
classification by an support-vector machine (SVM) classifier.

In [21], the detector has been validated on 558 hrs. of EEG
(corresponding to 148 seizures) from 21 patients in the CHB-
MIT database [22]. For every patient, up to 18 channels were
processed using eight BPFs per channel, leading to an FV
of length 144. The performance of the detector was char-
acterized using the metrics of specificity, sensitivity, and la-
tency. Latency refers to the delay between an expert-identified
electrographic onset and the seizure onset recognized by the
detector. The detector achieved an average latency, sensitivity,
and specificity of 4.59 sec., 96.03%, and 0.1471 false alarms
per hour, respectively. We next describe the transformations
proposed in [17] that allow us to perform seizure-detection
directly with compressively-sensed EEG.

D. Seizure Detection using Compressively-sensed EEG

Fig. 3 (top panel) shows the use of random projections
in the sensing stage to achieve data compression [i.e., to
obtain the compressively-sensed signal x̂j (= Φxj)]. Recall
that compression saves communication energy between the
sensing and processing tiers. Fig. 3 (b) shows the computations
that must be performed in the processing tier to enable
seizure detection without signal reconstruction. The key aspect
that distinguishes the compressed-domain algorithm from the
Nyquist domain [Fig. 3 (a)] is the use of compressed-domain

band-pass filters (CD-BPFs) in place of the BPFs. We next
describe, how to obtain the CD-BPFs from the BPFs.

In the Nyquist domain, the computations performed by
the ith BPF on every epoch of the jth EEG channel to
compute the filtered signal fij can be formulated as a matrix
multiplication, namely of an input signal xj by a matrix Hij

[Fig. 3 (a)]. An FV is then derived using the inner product
fT
ij
fij. Given this feature-extraction process, the authors in [17]

demonstrate how to derive corresponding CD-BPF matrices
Ĥij such that the resulting compressed-domain inner products

f̂T
ij
f̂ij are approximately equal to the corresponding Nyquist-

domain FVs [i.e., fT
ij
fij].

The approach that the authors follow aims to construct a
matrix Ĥij that operates on x̂j (= Φxj) to obtain a projection

f̂ij (= Θfij), where Θ is an auxiliary matrix of dimension-
ality N/ν × N/ξ, with ν ≥ ξ. By invoking the Johnson-
Lindenstrauss (JL) guarantees [23], they demonstrate that the

resulting inner product, f̂T
ij
f̂ij, forms a good estimate of fT

ij
fij

if: (1) Θ = ĤΦH−1 and Ĥij = S−1VT (exact solution), or

(2) Θ = (ΦH−1)TĤ and each row of Ĥ is derived from the
normal distribution N(0,Σ) (approximate solution). In these
solutions, Σ = VS−2VT; S and V are diagonal and unitary
matrices, respectively, obtained from the following singular
value decomposition (SVD): (ΦH−1)T = USVT. Further, in
both cases, the CD-BPFs Ĥij are of dimensionality N/ν×N/ξ,
with ν ≥ ξ.

Algorithmic Performance. Fig. 4 shows that for the ex-
act solution, performance very close to the Nyquist-domain
seizure detector is retained up to large values of ξ. Fig. 5 shows
that in the case of the approximate solution, for any given
value of ξ, the performance begins to degrade gradually as we
increase ν. Note that the multiple local minima shown in the
contour plots occur since performance metrics are dependent
on one another; attempting to optimize one metric results in
a degradation in others. Ideally, it is preferred to optimize
all metrics simultaneously, which is achieved by the exact
solution.

III. Energy Scaling through Compressed-domain Processing

In this section, we present circuits for compressive sensing
and CD-BPF computation that help achieve energy scalability
in the sensing and processing tiers, respectively. The measure-
ment results are from an IC that was prototyped in a 0.13µm

=
= =

Fig. 4. Figure reproduced from [19]: Performance of the compressed-domain seizure detection algorithm using the exact solution (shown over 558 Hrs. of
EEG data from 21 patients) is maintained up to large ξ.
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Fig. 6. Compressive sensing using random projections. The energy of the
sensing tier scales linearly with the compression factor ξ.

CMOS process from IBM. The circuits and measurement
results were previously presented in [18] and [19]. 18 channels
of Nyquist EEG signals were sampled at a rate of 256 Hz, and
eight CD-BPFs were derived corresponding to eight Nyquist-
domain BPFs, each of order k = 64 (based on the filter
specifications required for seizure detection).

A. Scalability in the Sensing Tier through Random Projections

Fig. 6 shows the compressive-sensing front-end (CPF) module
that was integrated on the IC. It comprises two computational
blocks: a pseudo-random number generator (PRNG) and the
projection logic. A sequence of ±1 values were obtained
using a PRNG based on a 16 bit Fibonacci linear feed-
back shift register with the characteristic polynomial x16 +
x14 + x10 + x5 + 1. Based on the sequence of values, each
compressively-sensed signal sample was computed serially
as x̂i = x1 ± x2 ± . . . ± xN. This process was repeated N/ξ

times to provide the compressively-sensed signal x̂. Some
other potential implementations of the CPF are proposed in
[13] and [12]. To achieve higher compression factors (larger
ξ values), the number of random projections [and thus, the
number of multiply-accummulate (MAC) operations] in the
CPF decrease linearly with ξ. Thus, depending on the amount
of compression, we can achieve energy scalability in the
sensing tier.

Fig. 7 shows the scaling in the energy of the CPF imple-
mented in [19]. The CPF was operated at its minimum energy
point of 0.48 V [24] and it permits EEG compression by a
factor of ξ = 2-24×, consuming 7.3-85 pJ of energy.

B. Scalability in the Processing Tier through SRAM Rationing

An important consequence of the algorithmic construction
proposed in [17] is that the CD-BPF matrices Ĥi (which are of
dimensionality N

ξ
× N
ξ
and N

ν
× N
ξ
for the exact and approximate

solution, respectively) do not retain the regularity of Hi. Even
thoughHi are of dimensionality N × N, as shown in Fig. 8, the
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Fig. 7. Compression by 2-24× enables CPF energy scaling by an order of
magnitude.

rows of Hi are simply selected to implement convolution, and
thus are shifted versions of the impulse response of the same
FIR filter. As a result, very few unique filter coefficients are
required, and many of the coefficients are zero, as determined
by the FIR-filter order k. However, in deriving Ĥi, the shifted
impulse responses and zero entries are disrupted. As shown in
Fig. 8, the number of multiplications required thus no longer
depends on the filter order, but rather (1) quadratically on the
compression factor ξ for the exact solution and (2) linearly

on both ξ and ν for the approximate solution. This scaling
helps reduce the number of multiplications required in the
processing tier.

Due to the disruption in regularity, the Ĥi matrices need

Fig. 8. Figure reproduced from [19]: CD-BPF matrices Ĥi, derived using Hi

and Φ, disrupt the regularity and zeros in Hi. The complexity of the CD-BPFs
thus scales (a) quadratically with ξ for the exact solution and (b) linearly with
ξ and ν for the approximate solution.
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tier.

Fig. 10. Figure reproduced from [19]: Summary of energy components
contributing to total SRAM energy (the ξ = 4×, ν = 8× case is shown for
illustration).

a larger number of distinct coefficients to be stored, po-
tentially increasing the memory requirements. The authors
use a scalable SRAM bank to do the power management.
Multiple subarrays of SRAM memory enable fine-grained
power-gating as well as reduced bit-line and word-line access
energy. The filter coefficients were represented using 8 bits
of precision and the total bank size in their implementation
was 32kB, which was partitioned into four subarrays of 8kB
each. Fig. 9 shows the circuits used in the compressed-domain
feature extractor (CD-FE). The CD-FE includes a CD-BPF and
energy-accumulator block. The coefficients for the CD-BPF
are pulled from SRAM.

SRAM Energy Analysis. The SRAM energy per access
(Esram

acc ) was reduced by choosing four smaller-sized subarrays
(each of size 8 kB) [25]. The detector processed an EEG
epoch every TEPOCH = 2 sec. However, the optimal operating
frequency (and supply voltage Vdd,opt) for the CD-FE logic was
determined by minimizing the overall CD-FE energy, while
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Fig. 11. Figure reproduced from [19]: Nsub scales with ξ and ν, affecting
the SRAM leakage energy.

ensuring a minimum throughput that allowed the active CD-
FE computations to be completed in TCD−FE (< 2) seconds
for each value of ξ and ν. For the remainder of the epoch
(i.e., TEPOCH −TCD−FE ), the logic and SRAMs were placed in
low-energy idle modes.

Fig. 10 summarizes the SRAM operating modes and en-
ergies [25]. The total SRAM energy was the sum of the
active-mode (ESRAM

act ) and idle-mode (ESRAM
idl

) energies for
each subarray (numbering Nsub) that was enabled; under the
assumption that the SRAMs cannot by fully power-gated in
order to ensure data retention, ESRAM

idl
was not zero. During the

active mode, the SRAM operated at the minimum operational
supply voltage (Vsram,min) of 0.7 V for reads and writes; at this
voltage, it operated at 920 kHz; this was sufficient performance
for all design points (ξ, ν) of the CD-FE. This allowed the
SRAM voltage to remain at 0.7 V . During the idle mode,
the SRAM operated at its minimum data-retention voltage
(Vsram,drv) of 0.42 V .
In the active mode, while set to a supply voltage of

Vsram,min, ESRAM
act comprised active-switching (ESRAM

act,swi
) and

leakage (ESRAM
act,lkg

) energies for a period of TCD−FE . In the

idle mode, while set to a supply voltage of Vsram,drv, E
SRAM
idl

comprised only the leakage energy (ESRAM
idl,lkg

) for the duration

(TEPOCH−TCD−FE ). Thus, the SRAM energy components were
represented as follows:

ESRAM
lkg = ESRAM

act,lkg + ESRAM
idl,lkg

= NsubTCD−FE {IVsram,min
Vsram,min}

+ Nsub(TEPOCH − TCD−FE ){IVsram,drv
Vsram,drv} (1)

ESRAM
act,swi = Esram

acc × #accesses. (2)

The duration of the active mode (TCD−FE ) in Eq. (1)
depended on ξ, ν, and the optimum logic voltage Vdd,opt. For
smaller (larger) values of ξ and ν, there were more (fewer)
coefficients in Ĥi and TCD−FE (the active CD-FE time) was
higher (lower). For instance, TCD−FE was 0.26 sec. for ξ = 4×
and ν = 8×, as shown in Fig. 10(b). It increased to 0.52
sec. at ξ = ν = 4× and reduced to 0.13 sec. at ξ = 4× and
ν = 16×. Further, the number of active subarrays (Nsub) was
also a function of ξ and ν; Fig.11 shows this dependence.
Eqs. (1) and (2) also show that although ESRAM

act,swi
remained

invariant to changing values of Vdd, it was impacted by ξ
and ν (since #accesses changes with ξ and ν). Note that in
Eq. (2), Esram

acc denotes the active-switching energy per access,
which remained invariant to changing values of Vdd, ξ, and
ν. Similar to ESRAM

act,swi
, the SRAM leakage energy ESRAM

lkg
also

scaled substantially with ξ and ν. Consequently, the optimal
logic voltage Vdd,opt, which minimized the SRAM and logic
CD-FE energy, varied (in the range 0.44 − 0.5 V) with respect
to ξ and ν.

Figs. 12(a) and (b) show the SRAM leakage energies in
the idle and active modes and Fig. 12(c) shows the SRAM
switching energy in the active mode, versus ξ and ν. We can
see from the figures that for smaller values of ξ and ν, since
the size of Ĥi is larger, TCD−FE is higher and the SRAM
active energy dominated the idle-mode energy. This is also
consistent with a higher value of Vdd,opt at these values of ξ
and ν, which enables the CD-FE computations to finish sooner.
In contrast, at larger values of ξ and ν, however, there were
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fewer coefficients in Ĥi and the SRAM spent most of the time
in the idle mode.

Figs. 13 (a) and (b) show the total processor energy for
the exact and approximate solutions, respectively. The SVM
classifier operated at the minimum energy point (0.48 V),
while the CD-FE logic was at Vdd,opt. From the figure, we
conclude that by using the methodology presented in [17], we
can achieve substantial energy scalability in the processing tier
with respect to both ξ and ν. Next, we explore The impact of
this energy scalability on the end-to-end energy of the multi-
tiered system.

IV. Scaling in System-level Energy

In this section, we present an analysis of the end-to-end
energy-scaling characteristics of the multi-tiered EEG sensing
system. For comparisons, we consider three system models.
First is Nyquist Analysis (NA), which is the usual approach
wherein EEG signals remain sampled at the Nyquist rate
through all three tiers. Second is reconstructed analysis (RA)
in which compressively-sensed EEG signals, transmitted from
the sensing tier to the processing tier, are first reconstructed
and then analyzed in the processing tier. In the event of a
seizure, the compressed epochs are relayed to the storage tier.
Third is compressed analysis (CA), which is the approach
described in the previous section where EEG signals remain
compressed through all three tiers. To simplify analysis, we
consider only the case of the exact solution (i.e., when ξ = ν).

To determine the compression energy (for CA and RA)
in the sensing tier, we use measurements from the previous

section. For computations in the processing tier, we use mea-
surements (for CA) and estimations (for RA and NA) based
on the IC implementation described in the previous section.
To estimate the communication energy, we assume BLE radio
links between all tiers. Further, we estimate communication
energy based on the following time and current values for the
various states of a CE for 1 byte of payload: (1) wake-up: 400
µs, 6.0 mA, (2) pre-processing: 340 µs 7.4 mA, (3) pre-Rx: 80
µs 11.0 mA, (4) Rx: 190µs, 17.5 mA, (5) Rx-to-Tx: 105 µs,
7.4 mA, (6) Tx: 115 µs, 17.5 mA, (7) post-processing: 1280
µs, 7.4 mA, (8) pre-sleep: 160 µs, 4.1 mA, and (9) sleep: 1
µA [26]. Given the above nine states, we estimate the energy
per CE (Etx−rx

CE
) of a BLE radio as follows:

Etx−rx
CE =



























8
∑

i=1
i,4,5,6

TiIi + BPDU (T4I4 + T6I6Itx) + T5I5Itx



























Vb

where, Ti and Ii, i ∈ [1, 9] are the time duration and current
consumption values, respectively, for state i, BPDU is the num-
ber of bytes in the PDU payload, Itx is an indicator variable
that is a 1 or 0 depending or whether the radio performs
data transmission or reception, and Vb is the voltage of the
battery that powers the radio. Given the above relationship, we
estimate the total power consumption of the radio as follows:

PBLE =
[

Etx−rx
CE NCE + I9Vb

(

Tepoch − TCENCE

)]

/Tepoch (3)

where Tepoch and TCE are the durations of an EEG epoch and
all CEs, respectively, NCE is the number of CEs per epoch.
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Fig. 14. When ξ varies in the range 2 − 24×, CA saves power by approximately an order of magnitude in both (a) computation and (b) communication. At
higher values of ξ, although RA saves communication energy, reconstruction is expensive leading to high costs in computational energy.

For NA, we assume Vb = 1.5 V and 2 sec. EEG epochs with
a sampling rate of 256 Hz and 8 bits per EEG sample. Thus,
for this case, NCE = 14 with 13 of them having BPDU = 37
and one with BPDU = 31. For both CA and RA, we assume
16 bits per EEG sample. Thus, NCE varies in the range 2 (one
with BPDU = 37 and the other with BPDU = 11) to 14 (13 with
BPDU = 37 and one with BPDU = 31), when ξ varies in the
range 2−24×. Given, these values, we use Eq. (3) to estimate
the power consumption for communication. Note that in all
system models, the sensing tier only transmits data while the
processing tier receives as well as transmits the EEG signals.
The transmission from the processing tier occurs only in the
event of a seizure. For our analysis, we assume an average
event occurence of 0.2 seizures/hr.

Fig. 14 (a) shows the estimated communication power for
both the sensing and processing tiers in NA, RA, and CA.
With increasing amounts of data compression (i.e., increasing
ξ), both RA and CA provide substantial energy scaling as
compared to NA. This is because both of these approaches
transmit/receive only compressively-sensed signals. Fig. 14 (b)
shows similar comparisons for computational energy. To de-
termine the computational energy in RA, we first estimate the
number of operations (OPs) required for signal reconstruction
using the Lightspeed toolbox [27]. We then assume values of
0.27 GOPs per second and 29 pW per OP for the processing
tier. These assumptions are based on circuits presented in [28]
and [29]. The figure shows that, unlike NA, CA and RA
both provide computational energy scaling. However, power
consumption increases with more compression in RA (≈ 2

orders of magnitude higher at ξ = 21×). This is due to
the complex signal reconstruction process, which incurs high
computational costs. Note that in RA, reconstruction has to be
performed on every EEG epoch. Thus, we conclude that CA
is the only approach that simultaneous saves energy in both
computation and communication depending on the amount of
compression.

Figs. 15 (a) and (b) show projections about battery life
for the sensing the processing tiers. We assume Lenmar 1.55
V, 180 mAh [30] and Xeno Lithium 3.6 V, 2400 mAh [31]
batteries for the two tiers, respectively. When ξ varies in the
range 2 − 24×, the CA system models allows us to prolong
battery recharge intervals to about 4 months for the sensing
tier and about 5 days for the processing tier. In the NA model,
the corresponding recharge intervals are about 2 weeks and 1
day, respectively.

V. Conclusions and FutureWork

Multi-tiered architectures provide new opportunities for de-
signing sensing systems that support energy scalability. Scal-
ability can be achieved at each tier separately using various
techniques like power/clock gating, voltage/frequency scaling,
etc. While such techniques are promising, they increase the
system complexity due to the required tier-level control. A
simpler approach is to build architectures where we modulate
a global system-level parameter, such as the amount of data
compression, to achieve energy scaling. Compressive sensing
is one technique of data compression that is ultra lightweight
and suitable for energy-constrained sensing systems. It exploits
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Fig. 15. When ξ varies in the range 2 − 24×, CA prolongs battery recharge times by up to 5× in both the (a) sensing and (b) processing tiers.



signal sparsity in a secondary basis to achieve very low-
energy compression. The random projections in compressive
sensing, however, affect the sensed signals, preventing the
use of Nyquist-domain algorithms for signal analysis. In this
paper, we reviewed an existing approach that allows us to
transform linear signal-processing computations so that they
can be applied directly to compressively-sensed signals. How-
ever, due to the JL approximations, this approach introduces
some processing error that increases with the amount of data
compression. However, this error can be very low (below 5%)
up to large compression factors (ξ = 15×). Using a previously
presented IC, we showed that if an application can tolerate
a small performance hit, we can achieve substantial energy
scaling in the end-to-end system energy (up to one order of
magnitude energy scaling when ξ varies in the range 2−24×).
These energy savings can potentially increase battery-recharge
times in all tiers by over 5×.
Although the projections made in this paper demonstrate

substantial benefits of processing data in the compressed do-
main, much needs to be done to generalize this methodology.
For instance, more work is required to develop new methods
that can enable non-linear computations on compressed data.
It is well known that the JL approximation improves with
high-dimensional data vectors. In the presented application,
the dimensionality of data vectors that were compressed at a
time was limited by the epoch length. New formulations that
can aggregate signals into high-dimensional vectors (perhaps
through orthogonal projections) can permit much higher com-
pression factors, while retaining the detection performance. At
an application level, an algorithm designer can take advantage
of the scaling characteristics in CA by designing intelligent
software. For instance, new two-stage algorithms can be
developed that take advantage of data compression to perform
coarse-grain signal detection in the first stage. In case of a
suspected event, a second-stage, that does not use as much
compression, can be engaged to resolve ambiguities. Dynamic
on-chip power management and high-speed voltage regulation
are other areas that need more attention.
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