
Online Set Cover with Set Requests∗

Kshipra Bhawalkar1, Sreenivas Gollapudi2, and Debmalya Panigrahi3

1 Google Inc.,
Mountain View, CA
kshipra@google.com

2 Microsoft Research Search Labs,
Mountain View, CA
sreenig@microsoft.com

3 Duke University
Durham, NC
debmalya@cs.duke.edu

Abstract
We consider a generic online allocation problem that generalizes the classical online set cover framework
by considering requests comprising a set of elements rather than a single element. This problem has
multiple applications in cloud computing, crowd sourcing, facility planning, etc. Formally, it is an online
covering problem where each online step comprises an offline covering problem. In addition, the covering
sets are capacitated, leading to packing constraints. We give a randomized algorithm for this problem that
has a nearly tight competitive ratio in both objectives: overall cost and maximum capacity violation. Our
main technical tool is an online algorithm for packing/covering LPs with nested constraints, which may
be of interest in other applications as well.

1998 ACM Subject Classification F.2.2 Non-numerical Algorithms and Problems

Keywords and phrases Online Algorithms, Set Cover

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In recent years, significant research has been conducted in online allocation problems (see [1] and [8]
for a comprehensive discussion on online algorithms), often motivated by inherently online modern
applications such as internet advertising, crowd sourcing, scheduling in the cloud, etc. We continue
this research effort in this paper by considering a generic allocation problem that is motivated by
various real-world applications and generalizes the well-studied online set cover framework. In the
online set cover problem [2], a collection of subsets (of given costs) of a universe of elements are
given offline and elements from the universe arrive online. At any time, the algorithm must maintain
a monotonically increasing (over time) collection of subsets of minimum cost that cover all the
elements that have arrived thus far. In the capacitated version, every set also has a given capacity
which represents the maximum number of elements it can cover. In this paper, we consider a natural
generalization of this problem, where instead of a single new element, a subset of elements arrives in
each online step. Note that this generalization is meaningful only in the capacitated situation since the
elements arriving in the same online step use up only one unit of capacity of the covering sets. In the
uncapacitated (i.e., infinite capacity) scenario, the elements arriving in a single step can be thought of
as arriving sequentially.

∗ Part of this work was done when all the authors were at Microsoft Research.

© Kshipra Bhawalkar, Sreenivas Gollapudi, and Debmalya Panigrahi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Online Set Cover with Set Requests

To formally describe our problem, we need to introduce some notation and terminology. Departing
from the usual set cover notation, we think of every element as a resource and every covering set as a
facility that provides some subset of resources. This ties the notation to natural applications of the
problem and helps us distinguish between the request sets (that arrive online) and the covering sets
(that are offline and called facilities now). Let U be the set of n different resources (such as goods and
services) and S = {S1, S2, . . . , Sm} be a set of facilities, each of which can provide some subset
Sj ⊆ U of resources. Each facility Sj also has an associated cost cj and capacity tj . The above are
given offline. There are k requests that arrive online. In each online step, a request Ri ⊆ U arrives,
and has to be satisfied by assigning a subset of facilities to it that can cumulatively provide all the
resources requested, i.e. by using a subset of facilities Ti ⊆ S such that Ri ⊆ ∪T∈Ti

T . The capacity
of a facility is the maximum number of requests it can serve, and the ratio of the number of requests
served by a facility to its capacity is called its congestion. The goal is to minimize the sum of costs of
the facilities purchased by the algorithm. We call this the COVER-SETREQ problem. Our focus, in
this paper, will be to design an online algorithm for the COVER-SETREQ problem.

Our work was motivated by various applications of the above general framework in emerging
domains. We give a couple of motivating examples below:

Distributed Computing: In distributed computing environments such as cloud computing and
crowd sourcing, each computing unit (e.g., a human or a server) provides a subset of computing
resources and has a maximum capacity. The goal is to minimize cost while allocating each
arriving task to a subset of computing units that have adequate resources to solve it.
Facility Planning: The goal is to minimize the cost of facilities (each of which can provide a
subset of services and has a maximum capacity) to serve service requests that grow over time as
new customers are added.
Subscription Markets. In addition to traditional products, the internet has emerged as the
principal medium for the sale of services based on information and data management including
access to data sets and computing resources (see, e.g., [7, 13, 14]). Examples include the
Windows Azure Marketplace1, Amazon Web Services2, etc. These services are typically sold as
subscriptions comprising one or more resources that come as a bundle with an usage limit. The
consumer objective is to satisfy their data/computing needs which arrive over time at minimum
cost by buying an optimal set of subscriptions.

Our main result is a polynomial-time online algorithm for the COVER-SETREQ problem. To state
its competitive ratio, let us use an equivalent (up to a constant factor in the competitive ratio, by a
standard doubling search approach) description of the COVER-SETREQ problem, where in addition
to the input described above, a cost bound C is given offline with the guarantee that there exists
a feasible solution, i.e. a solution that does not use more than the capacity of any facility and has
total cost at most C. Then, an online algorithm for the COVER-SETREQ problem is said to have a
bi-criteria competitive ratio of (α, β) if its total cost is at most αC and for every facility, the number
of requests that it is used to satisfy is at most β times its capacity (i.e., its congestion is at most β).
Our main theorem obtains poly-logarithmic factors for both α and β.

I Theorem 1. There is a randomized online algorithm for the COVER-SETREQ problem that
has a competitive ratio of (α, β) where α = O(log(mn) log(kmn)) and β = O(logn(logm +
log logn) log(kmn)).

We note that this theorem is nearly tight since there are logarithmic lower bounds for both α and β:
(1) there is a (randomized) lower bound of Ω(logm logn) [2, 12] for the competitive ratio of the

1 http://datamarket.azure.com
2 http://aws.amazon.com

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 3

online set cover problem, which holds for the cost objective of the COVER-SETREQ problem, and (2)
there is a lower bound of O(logm) [3] for the online restricted assignment problem, which holds for
the congestion objective of the COVER-SETREQ problem.

We remark that some applications motivate a version of the COVER-SETREQ problem with soft
capacities, i.e. where multiple copies of a facility can be used in the solution. Clearly, our algorithm
has a poly-logarithmic competitive ratio for this problem as well. However, this problem can be
solved using an alternative (simpler) technique:

linearize the cost of all copies of a facility other than its first copy by losing a factor of 2 (see Jain
and Vazirani [11])
reduce the mixed LP to a covering LP of exponential size (but with an efficient separation oracle)
by eliminating precedence packing constraints
obtain a fractional solution to the covering problem using a standard template given by Buchbinder
and Naor [9] (see also Gupta and Nagarajan [10])
obtain an integer solution using our randomized rounding procedure.

The details of these steps appear in the appendix. The second step fails for the COVER-SETREQ

problem, i.e., when we have hard capacities.

Our Techniques. First, we define an LP for the COVER-SETREQ problem (in Figure 1). Let xj
denote whether facility Sj is opened and yij indicate whether facility Sj is used to serve request
Ri.We enforce that each resource in every request is served (i.e.

∑
j:u∈Sj

yij ≥ 1) and to ensure a
bounded integrality gap, that yij ≤ 2xj (the factor 2 is for technical reasons). In addition, the total cost
is bounded (

∑
j∈[m] cj ≤ C) and the congestion on every facility Sj is bounded (

∑
i∈[n] yij ≤ xjtj).

∑
j:j∈[m] cjxj ≤ C (1)∑
j:u∈Sj

yij ≥ 1 ∀u ∈ Ri,∀i ∈ [k] (2)

yij ≤ 2xj ∀i ∈ [k],∀j ∈ [m] (3)∑
i:i∈[k] yij ≤ xjtj ∀j ∈ [m] (4)

0 ≤ yij ≤ 1 ∀i ∈ [k],∀j ∈ [m] (5)

0 ≤ xj ≤ 1 ∀j ∈ [m] (6)

Figure 1 Linear program for the COVER-SETREQ problem

As mentioned earlier, we will obtain a fractional solution to this LP (which will violate some of
the constraints) using combinatorial techniques and then round this fractional solution online. This
recipe was suggested originally by Alon et al. [2] for the online set cover problem and has since been
used extensively for online algorithms (see the survey by Buchbinder and Naor [9] for more details).
The online rounding algorithm is the easier of the two steps and (somewhat delicately) combines
rounding techniques for the online [5] and offline [16] set cover problems.

Obtaining a fractional algorithm turns out to be much more challenging. Since the COVER-
SETREQ problem is represented by a mixed packing covering LP, following Azar et al. [5], for each
request, we use a sequence of multiplicative updates on a prefix of facilities with xj < 1 ordered
by a carefully chosen function that represents the derivative of the overall potential of the solution.
However, unlike in [5], since requests contain multiple resources, the prefix is not unique, rather it
depends on the resource being considered. Moreover, it is not immediate as to how we can compare
between two facilities, one with many resources but higher cost and another with fewer resources but
lower cost. To complicate matters further, at any stage of the multiplicative weights update process,
different resources are at various stages of being served: some have been completely served, some

4 Online Set Cover with Set Requests

only partially served, while others have not been served at all. The resources that have been fully
served should cease to influence the ordering since the facilities providing these resources are no
longer contributing to serving these resources.

Since each online step is an offline set cover problem, we inherit its greedy property and order
facilities by the potential increase per resource that each facility provides (call it the scaled cost). To
address the issue of some resources having already been completely served, we make these prefix
orderings dynamic: once a resource has been completely served, it is not included in defining scaled
costs thereafter. Moreover, since each resource only appears in some of the facilities, we introduce
the notion of a resource specific prefix ordering, which is a subsequence of the overall prefix ordering.

For the fully open facilities (i.e., xj = 1), we need to ensure that the maximum congestion is
small. For this purpose, we follow a technique introduced by Aspnes et al [3] (see also [6, 4]) for
online load balancing, where a greedy algorithm on an exponential potential function of the machine
loads is used. Our main technical contribution is a procedure that co-ordinates between the greedy
selection of facilities in prefixes, multiplicative weight updates on these multiple prefixes, and greedy
assignment of requests to facilities according to an exponential potential function of their congestion
for fully open facilities.

Roadmap. The next section presents the online algorithm, whose competitive ratio is derived in
two parts: the analysis of the fractional solution is in section 3 and the analysis of the randomized
rounding procedure to convert the fractional solution into an integer one is in section 4. In the
appendix, we present a simpler algorithm for the soft-capacitated version of the COVER-SETREQ

problem (section A).

2 Description of the Algorithm

The algorithm has three phases: (a) an offline pre-processing phase, (b) an online phase that produces
a fractional solution, and (c) an online rounding phase that produces an integer solution from the
fractional solution. The last two phases are interleaved. Recall that we are given a bound on the cost
C and the number of requests k in advance. Let OPT denote a solution that has congestion at most 1
on every facility and total cost at most C.

The offline pre-processing phase. First, we discard all facilities Sj with cj > C from S. Clearly,
none of these facilities were being used by OPT. From now on, m will denote the size of S after this
step. Next, we divide the cost of each facility by C

m . After this scaling, the total cost of OPT is at most
m. For any facility Sj ∈ S, if cj < 1

k , we increase cj to 1
k . After this transformation, the total cost of

OPT is at most
(
1 + 1

k

)
m < 2m.

Let x(i)
j denote the value of variable xj at the end of the updates for request Ri. Note that the

non-decreasing property of xj requires that x(i)
j ≥ x

(i−1)
j . We say that facility Sj is fully open

if xj = 1, and partially open otherwise. We initialize xj to x(0)
j = 1

m for all facilities Sj ∈ S.
Therefore, initially, all facilities are partially open.

Online updates to the fractional solution. Suppose a new request Ri arrives online. Any resource
u ∈ Ri is said to be satisfied if

∑
j:u∈Sj

yij ≥ 1. Clearly, Ri is satisfied when all resources in Ri are

satisfied. We start by setting x(i)
j = x

(i−1)
j (required by monotonicity of the fractional solution). We

increase the value of x(i)
j on selected facilities Sj in small increments over multiple rounds and make

corresponding increments in yij . Each round, in turn, consists of multiple iterations.
Let Ri denote the set of resources in Ri that are not yet satisfied at the beginning of the round, i.e.,

Ri = {u ∈ Ri :
∑
j:u∈Sj

yij < 1}. The increments in the values of x(i)
j and yij in any particular

round are based on defining a sequence of facilities containing u (called the prefix for u and denoted

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 5

Pi(u)) for each individual resource u ∈ Ri. For some of the resources u ∈ Ri, we will also define
an additional facility in S \Pi(u) as the boundary facility for u, and denote the index of this facility
by pi(u). Let P̂i(u) = Pi(u) ∪ Spi(u); we call this the closed prefix of u.

To describe the update rule of the fractional variables and the construction of the prefixes, we need
some additional notation. For every facility Sj , we partition requests into those that arrive before Sj
is fully open (denote this set R0(j)) and those that arrive after (denote this set R1(j)). For the request
that was being served when the facility became fully open, we consider the part of the request that
arrived while xj < 1 in R0(j) and the rest of the request in R1(j). The virtual congestion (denoted
L̃j) of a facility Sj is defined as

L̃j =
{

xj if xj < 1
1 +

∑
i:Ri∈R1(j)

yij

tj
if xj = 1.

Now, we define a function (A is a constant that we will fix later)

ψj =
{ cj

tj
if xj < 1

cjA
L̃j (A−1)
tj

if xj = 1.

The updates for all facilities in prefix Pi(u) and the boundary facility Spi(u) are collectively
called an iteration for resource u, and the iterations for all resources in Ri constitute a round for
request Ri. The update rule for a round is given in Algorithm 1, where N is a discretization parameter
that we set to kmn2. One important point to note is that if a partially open facility Sj belongs to kj
closed prefixes, then the value of x(i)

j increases in multiplicative update steps kj times in a single
round.

Algorithm 1 A Single Round of the Fractional Algorithm

Ri = {u ∈ Ri :
∑
j:u∈Sj

yij < 1}.
Create closed prefixes P̂i(u) simultaneously for all resources u ∈ Ri.
For every facility Sj : initialize ∆xj = ∆yij = 0.
For every resource u ∈ Ri: for every partially open facility Sj ∈ P̂i(u), we increase ∆xj by
x

(i)
j

cjN
(sequentially, in arbitrary order over the closed prefixes P̂i(u) for all resources u ∈ Ri).

For every facility Sj : if Sj is partially open, we set

∆yij = min
(

(∆xj)tj , 2(x(i)
j + ∆xj)− yij

)
; if Sj is fully open, we set ∆yij = 1

ψjN
.

For every facility Sj : increase x(i)
j by ∆xj and yij by ∆yij .

Definition of the prefixes: We initialize the prefix Pi(u) to the empty sequence for every resource
u ∈ Ri. The prefixes are populated in a sequence of steps, where in each step, we add a carefully
selected facility to some of the prefixes. To describe a step, we need some additional notation. Let
Ri denote the set of resources in Ri whose prefix has not been fully defined yet. Clearly, Ri equals
Ri at the beginning of a round. Further, let S(i) denote the collection of facilities in S that overlap
Ri and have not been used in a previous step (i.e. is not part of any prefix currently). Initially,
S(i) = {Sj ∈ S : Sj ∩Ri 6= ∅}.

For any facility Sj ∈ S(i), let its scaled cost be φj = ψj

|Sj∩Ri|
.

In each step, the algorithm performs the following operations:
1. Find facility Sj ∈ S(i) that has the least value of φj ; let us denote its index by j∗.
2. Remove Sj∗ from S(i).

6 Online Set Cover with Set Requests

3. Let x(u) =
∑
j:Sj∈Pi(u) x

(i)
j + x

(i)
j∗ . For each resource u ∈ Sj∗ ∩Ri, if x(u) < 1, then we add

Sj∗ to the prefix Pi(u). Otherwise, if x(u) ≥ 1, then we define Sj∗ as the boundary facility for
resource u, i.e., pi(u) = j∗ and remove u from Ri.

4. Re-define S(i) (sinceRi might have changed) and re-compute φj for all facilities Sj ∈ S(i) (even
if a facility continues to be in S(i), its scaled cost might have changed since Ri has changed).

Note that it might so happen that for a resource u ∈ Ri, even after including all facilities containing
u in the prefix Pi(u),

∑
j:Sj∈Pi(u) x

(i)
j < 1. In this case, the boundary facility for u is undefined,

and its closed prefix is identical to its prefix.

Online Randomized Rounding. There are two decisions that the integer algorithm must make on
receiving a new request Ri. First, it needs to decide which set of facilities it wants to open. Since
decisions are irrevocable in the online model, the open facilities form a monotonically growing set
over time. Next, the algorithm must decide which of the open facilities it will use to satisfy request Ri.
As we describe below, both these decisions are made by the integer algorithm based on the fractional
solution that it maintains using the algorithm given above.

To simplify the analysis later, we will consider two copies of each facility: a blue copy and a
red copy. Note that this is without loss of generality, up to a constant factor loss in the competitive
ratio for both the cost and the congestion. First, we define a randomized process that controls the
opening of blue copies of facilities in the integer algorithm. Let So(i) denote the set of facilities
whose blue copies are open after request Ri has been satisfied, and X(i)

j be an indicator random

variable whose value is 1 if facility i ∈ So(i) and 0 otherwise. Let x(i)
j be the value of variable xj in

the fractional solution after request Ri has been completely assigned (fractionally). For a parameter
α = Θ(log(kmn)), the integer algorithm maintains the following invariant for every facility Sj and
request Ri:

P[X(i)
j = 1] = min(α · x(i)

j , 1), (7)

using the rule for opening facilities in Algorithm 2. Next, we need to use the open facilities to satisfy
request Ri. Let Yij be the indicator variable for facility Sj being used to serve request Ri. Define

zij =


0 if X(i)

j = 0
yij

2x(i)
j

if X(i)
j = 1 and x(i)

j < 1
α

α · yij otherwise.

The assignment rule for request Ri is given in Algorithm 2.

Algorithm 2 Satisfying a Single Request Ri in the Integer Algorithm
Opening Facilities:

For every facility Sj whose blue copy is not already open, open it with probability

min
(
α(x(i)

j
−x(i−1)

j
)

1−α·x(i−1)
j

, 1
)

. (Eqn. 7 is satisfied by this rule using conditional probabilities.)

Satisfying Request Ri:
For every open facility Sj , we set Yij = 1 independently with probability zij .
For every resource u ∈ Ri such that no facility containing u was selected in the previous step, set
Yij = 1 for the red copy of any facility Sj such that u ∈ Sj , after opening the facility if necessary.

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 7

3 Analysis of the Fractional Algorithm

We note that the fractional solution maintains the invariant
∑
Ri∈R0(j)

yij

tj
≤ xj for every facility Sj .

This invariant ensures that the actual congestion of any facility is always at most its virtual congestion
(denoted L̃j ; see section 2 for its formal definition). Therefore, it suffices to bound the total cost and
the maximum virtual congestion on the facilities. For this purpose, we design a potential function that
combines these two objectives: γj = cjxjA

L̃j/xj for some A ∈ (1, 2) that we will fix later. Note
that we can rewrite the potential function as

γj =
{

Acjxj if xj < 1
cjA

L̃j if xj = 1.

The potential function is continuous and monotonically non-decreasing. We define the overall
potential Γ =

∑
j:Sj∈S γj .

The next lemma bounds the potential function at the end of the pre-processing step.

I Lemma 2. At the end of the pre-processing step, Γ ≤ m.

Proof. There are m partially open facilities, the cost of each of which is at most m. Since we
initialize x(0)

j = 1/m for all the m facilities, the lemma follows. J

Next we will bound the increase in potential due to online updates to the fractional solution.
Recall that for any request Ri, there are several rounds, each comprising multiple iterations, one for
every resource in Ri. Our general plan is the following: we will first bound the increase in potential
in a single iteration and then bound the total number of iterations performed by the algorithm (overall,
for all requests and for all rounds corresponding to a request).

Increase in potential in a single iteration. First, note that a facility Sj might belong to multiple
closed prefixes in a single round. Therefore, the value of xj for partially open facilities Sj and that of
L̃j for fully open facilities changes from one iteration to another in the same round. To reconcile this
inconsistency, we bound the increase of these variables in a single round in the next lemma.

I Lemma 3. For any partially open facility Sj , the value of x(i)
j can increase by a multiplicative

factor of at most e in a single round. Similarly, for any fully open facility Sj , the value of AL̃j can
increase by a multiplicative factor of at most 2 in a single round.

Proof. First, consider a partially open facility Sj . Since there are at most n iterations in a round, the
multiplicative factor by which the value of x(i)

j increases in a single round is at most(
1 + 1

Ncj

)n
≤
(

1 + k

N

)n
≤ e,

where the first inequality follows from the fact that cj ≥ 1
k for all facilities Sj and the second

inequality holds since N ≥ nk.
Next, consider a fully open facility Sj with virtual congestion L̃j at the beginning of the round.

The multiplicative factor by which AL̃j increases in a single round is at most

A
∆yij

tj − 1 = (1 + (A− 1))
∆yij

tj − 1 ≤ 2(A− 1)∆yij
tj
≤ 2(A− 1)n
cjAL̃j (A− 1)N

≤ 2nk
AN

≤ 2,

where the first inequality uses the fact that for any y ≥ x ≥ 0,(
1 + 1

x

)1/y
≤ ex/y ≤ 1 + 2x

y
(8)

8 Online Set Cover with Set Requests

(we call this local linearization); the second inequality holds since virtual congestion, and therefore
ψj , is non-decreasing and there are at most n iterations in a round; the third inequality uses cj ≥ 1

k

for all facilities Sj and L̃j ≥ 1 for any fully open facility Sj ; and the last inequality follows from
N ≥ nk. J

The next lemma bounds the increase in potential of the fractional solution in a single iteration.

I Lemma 4. The increase in potential in a single iteration for any resource u ∈ Ri is at most 10A
N .

Proof. Note that the increase in potential in an iteration can be attributed to two possible sources:
increase in cost for partially open facilities in the closed prefix P̂i(u) and increase in virtual congestion
of the boundary facility Spi(u).

First, we bound the increase in cost. Recall that at the beginning of the round,

∑
j:Sj∈P̂i(u)

x
(i)
j =

 ∑
j:Sj∈Pi(u)

x
(i)
j

+ x
(i)
pi(u) ≤ 1 + 1 = 2.

However, the value of x(i)
j increases over the various iterations in the round, and therefore, it is

possible that
∑
j:Sj∈P̂i(u) x

(i)
j > 2 at the beginning of the iteration for resource u. Nevertheless, by

Lemma 3, we can claim that
∑
j:Sj∈P̂i(u) x

(i)
j ≤ 2e < 6.

The increase in potential due to increments in x(i)
j for all partially open facilities Sj ∈ P̂i(u) is

A
∑

j:Sj∈P̂i(u)

cjx
(i)
j

Ncj
= A

N

∑
j:Sj∈P̂i(u)

x
(i)
j <

6A
N
,

where the inequality follows from the observation above.
Next, we consider the increase in potential due to the increase in virtual congestion of facility

Spi(u), if it is fully open. If the virtual congestion before the iteration was L̃pi(u), then the increase in
potential is

cpi(u)A
L̃pi(u)

(
A

∆yipi(u)
tpi(u) − 1

)
≤ 2

ψpi(u)tpi(u)

(A− 1) ·
2(A− 1)∆yipi(u)

tpi(u)
= 4
N

<
4A
N
,

where the first inequality uses local linearization (see Eqn. 8) and Lemma 3. J

Total number of iterations. Recall that OPT is a a feasible integer solution with cost at most C and
congestion at most 1 on each facility. Let OPT(Ri) denote the facilities used by OPT to satisfy request
Ri. An iteration for resource u ∈ Ri is in one of the following two categories:
1. At least one facility in OPT(Ri) is in the prefix Pi(u).
2. No facility in OPT(Ri) is in the prefix Pi(u).

The number of iteration of the first category is bounded by the next lemma.

I Lemma 5. The total number of iterations of the first category is O(Nm logm).

Proof. Let Sj∗ be a facility in OPT. The number of iterations where Sj∗ is in the prefix is
O(Ncj∗ logm) since:

xj∗ is initialized to 1
m in the pre-processing phase.

xj∗ < 1 before the last round where xj∗ increases. Therefore, by Lemma 3, xj∗ < e at the end of
the round.

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 9

xj∗ increases by a multiplicative factor of
(

1 + 1
Ncj∗

)
in every iteration where it belongs to the

prefix.
The lemma follows by summing over all facilities Sj∗ ∈ OPT. J

Now, we focus on iterations of the second category. We partition rounds into ones where Ri
changes (we call these dynamic rounds) and ones where Ri does not change (we call these static
rounds). The number of iterations in dynamic rounds is bounded by the next lemma.

I Lemma 6. The total number of iterations in dynamic rounds is O(N).

Proof. Since Ri changes, i.e., loses a resource in any dynamic round, a single request Ri can have
at most |Ri| ≤ n dynamic rounds. Since there are at most n iterations in each round and at most k
requests overall, the lemma follows from N > kn2. J

Now, we focus on counting the number of iterations of the second category in static rounds. Recall
that for any partially open facility Sj , we set yij = min(2x(i)

j , tj(x(i)
j − x

(i−1)
j)) at the end of the

round. Let T be the collection of partially open facilities such that yij = 2x(i)
j and T = S \ T be

all the remaining facilities. The next lemma lower bounds the contribution of facilities in T in any
iteration of the second category in a static round.

I Lemma 7. For any static round and any iteration of the second category for resource u ∈ Ri, it
holds that∑

j:Sj∈T∩P̂i(u)

x
(i)
j ≥ 1/2.

Proof. Suppose for some resource u,
∑
j:Sj∈T∩P̂i(u) x

(i)
j < 1/2. Note that since the iteration for

u is of the second category, the boundary facility must be defined and
∑
j∈P̂i(u) x

(i)
j ≥ 1. We

conclude that
∑
j∈T∩P̂i(u) x

(i)
j ≥ 1/2. For every facility Sj ∈ T , yij = 2x(i)

j . However, in that case,∑
j∈T∩P̂i(u) yij ≥ 1 and the resource u is satisfied at the end of this round. In other words, the round

is dynamic, which is a contradiction. J

For a resource u, we refer to
∑
j:u∈Sj

yij as its coverage. We will show in the next lemma that
the increase in coverage on resources in Ri, averaged over the iterations of the second category in a
static round, is large. Before stating the lemma, we need to introduce some notation. For any facility
Sj , let us partition Ri ∩ Sj as follows: Uj contains resources that have Sj in their prefix, Vj contains
resources that have Sj as the boundary facility, and Wj contains the rest of the resources. Note that
prefixes of resources in Wj are filled first, followed by those in Vj , and finally those in Uj .

Now, consider a facility Sj∗ ∈ OPT(Ri). Let B be the set of resources in Sj∗ ∩ Ri that have
iterations of the second category; let b = |B|.

I Lemma 8. The total increase in coverage on resources of B in a single static round is at least
b·|Sj∗∩Ri|

2Nψj∗
.

Proof. Let u ∈ B and Du denote the set of resources of Sj∗ ∩Ri whose closed prefixes were filled
with or after P̂i(u). Clearly, Du ⊆ Ri for all steps of constructing the prefix till the step that filled
P̂i(u). Since Sj∗ was not inserted in Pi(u), therefore the scaled cost φj for every facility Sj in the
closed prefix of u satisfies

φj = ψj
|Uj ∪ Vj |

≤ ψj∗

|Du|
.

10 Online Set Cover with Set Requests

For any such facility Sj ∈ T ∩ P̂i(u), the total increase of yij is at least xj |Uj∪Vj |
Nψj

≥ xj |Du|
Nψj∗

.
Summing over all such facilities Sj and using Lemma 7, we can conclude that the total increase in
coverage on u is at least |Du|

2Nψj∗
.

Now, let us order the resources u ∈ B in which P̂i(u) got filled. For the first u in this order,
Du = Sj∗ ∩ Ri. Each subsequent Du loses precisely one resource, the one whose prefix was just
filled. For the last u in in the order, Du = Uj∗ ∪ {u}. Note that the iterations for resources in Uj∗ are
in the first category. Thus, B ⊆ Vj∗ ∪Wj∗ . Let |Uj∗ | = p and |Vj∗ ∪Wj∗ | = q. Then,

|Uj∗ ∪ Vj∗ ∪Wj∗ | = |Sj∗ ∩Ri| = p+ q.

Adding up the increases in coverage obtained from the above expression,

∑
u∈B

|Du|
2Nψj∗

=
p+q∑
i=p+1

i

2Nψj∗
≥ p(p+ q)

2Nψj∗
= b · |Sj∗ ∩Ri|

2Nψj∗
. J

We now consider two subcases:
(a) static rounds where Sj∗ is partially open, and
(b) static rounds where Sj∗ is fully open.

The advantage with subcase (a) is that the value of ψj∗ in the previous lemma depends only on the
facility Sj∗ and not on the state of the algorithm.

I Lemma 9. Let Sj∗ be a facility in OPT(Ri). Then, the number of iterations of the second category

in static rounds for resources in Sj∗ ∩Ri, where Sj∗ is partially open, is 2
(
cj∗

tj∗

)
N lnn.

Proof. Let zj∗ =
∑
u∈Sj∗∩Ri

max
(

1−
∑
j:u∈Sj

yij , 0
)
. By Lemma 8, the decrease in zj∗ in any

static round comprising b iterations is at least b·|Sj∗∩Ri|
2N(cj∗/tj∗) . Since zj∗ decreases from at most n to 0, it

follows that the total number of iterations is∫ 0

zj∗=n
2N · cj

∗

tj∗
· dzj

∗

zj∗
= 2N

(
cj∗

tj∗

)
lnn. J

The next corollary follows by summing over all requests Ri and facilities Sj∗ in OPT.

I Corollary 10. The total number of iterations of the second category for resources u in static
rounds for requests Ri such that there exists a partially open facility Sj∗ that is used to satisfy Ri in
OPT and contains u is at most O(Nm logn).

We are left with subcase (b), i.e., when facility Sj∗ is fully open. Let Lj∗ be the virtual congestion
on facility Sj∗ at the end of the algorithm. Then, at any intermediate stage of the algorithm when Sj∗
was fully open,

ψj∗ ≤
cj∗A

Lj∗ (A− 1)
tj∗

.

Using the same logic as Lemma 9, we obtain the next lemma.

I Lemma 11. Let Sj∗ be a facility in OPT(Ri). Then, the number of iterations of the second category

in static rounds for resources in Sj∗ ∩Ri, where Sj∗ is fully open, is 2
(
cj∗A

Lj∗ (A−1)
tj∗

)
N lnn.

Now, note that the congestion on Sj∗ in OPT is at most 1, i.e. the number of requests served by facility
Sj∗ is at most tj∗ . Therefore, we obtain the next corollary.

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 11

I Corollary 12. The total number of iterations of the second category for resources u in static
rounds for requests Ri such that there exists a fully open facility Sj∗ that is used to satisfy Ri in OPT

and contains u is at most 2N lnn(A− 1)
∑
j∗:Sj∗∈OPT cj∗A

Lj∗ .

Now, we add up all the bounds that we have obtained on the increase of the potential to obtain the
next lemma.

I Lemma 13. At the end of the algorithm, the final potential Γf = O(m log(mn)).

Proof. By summing up over the individual bounds on the number of iterations in the various
categories,

Γf = O(m log(mn)) + 20A(lnn)(A− 1)
∑

j:Sj∈OPT

cjA
Lj∗ ≤ O(m log(mn)) + 1

2Γf ,

by choosing A = 1 + 1
80 lnn . The lemma follows. J

The next corollary follows from the definition of the potential function Γ.

I Corollary 14. The total cost of the fractional solution is O(m log(mn)) and the maximum
congestion on a facility is O(logn(logm+ log logn)).

4 Analysis of Online Randomized Rounding

Recall that the fractional solution maintains the following invariant for any facility Sj and any request
Ri:

yij ≤ 2x(i)
j . (9)

First, we consider red copies of facilities.

I Lemma 15. The probability that the red copy of any facility is opened is at most e−Ω(α).

Proof. We first consider the scenario where for a resource u, no facility Sj ∈ S(u) is opened in
the integer solution, i.e.,

∑
j:u∈Sj

X
(i)
j = 0. Since yij ≤ 2x(i)

j (Eqn. 9) and
∑
j:Sj∈S(u) yij ≥ 1,

it follows that
∑
j:u∈Sj

αx
(i)
j ≥ α

2 . Therefore, the probability that
∑
j:u∈Sj

X
(i)
j = 0 is at most∏

j:u∈Sj

(
1− αx(i)

j

)
= e−Ω(α) by Eqn. 7.

Next, consider the scenario where
∑
j:u∈Sj

X
(i)
j ≥ 1 but

∑
j:u∈Sj

Yij = 0, i.e., even though
facilities that contain resource u are open, none of them have been assigned to request Ri. Let Ai

and Bi respectively denote the set of facilities Sj with x(i)
j < 1

α and those with x(i)
j ≥ 1

α . Clearly,
all facilities in Bi are open in the integer solution and some subset of facilities in Ai is open. We
consider two subcases. First, suppose

∑
j:Sj∈Bi,u∈Sj

yij ≥ 1/2. Then,∑
j:Sj∈Bi,u∈Sj

=
∑

j:Sj∈Bi∩S(u)

αyij ≥
α

2 .

Therefore, the probability of
∑
j:u∈Sj

Yij = 0 is at most
∏
j:Sj∈Bi,u∈Sj

(1− zij) = e−Ω(α).
Finally, suppose

∑
j:Sj∈Bi,u∈Sj

yij < 1/2. Then,
∑
j:Sj∈Ai∩S(u) yij ≥ 1/2. In this case, we

first estimate the expectation and bound the probability of deviation of random variables zij . We have

E

 ∑
j:Sj∈Ai,u∈Sj

zij

 =
∑

j:Sj∈Ai,u∈Sj

(
yij

2x(i)
j

)
P
[
X

(i)
j = 1

]

=
∑

j:Sj∈Ai,u∈Sj

(
yij

2x(i)
j

)
αx

(i)
j =

∑
j:Sj∈Ai,u∈Sj

yijα

2 ≥
∑

j:Sj∈Ai,u∈Sj

α

4 .

12 Online Set Cover with Set Requests

Since yij ≤ 2x(i)
j , we can use Chernoff bounds (see, e.g., [15]) to claim that with probability

1− e−Ω(α),∑
j:Sj∈Ai∩S(u)

zij = Ω(α). (10)

On the other hand, if Eqn. 10 holds, then the probability of
∑
j:u∈Sj

Yij = 0 is∏
j:Sj∈Ai,u∈Sj

(1− zij) = e−Ω(α). J

We choose α = Θ(log(knm)) and use linearity of expectation over all requests and resources to
conclude that the red copies of the facilities can be ignored by incurring an additive O(1) loss in the
approximation ratio.

We will now bound the expected cost and congestion of the blue copies of facilities.

I Lemma 16. The expected total cost of blue copies of facilities in the integer solution is at most α
times the cost of the fractional solution.

Proof. The proof is an immediate consequence of Eqn. 7 using linearity of expectation. J

I Lemma 17. With probability 1− o(1), the congestion on every facility in the integer solution is
O(α) times their virtual congestion in the fractional solution.

Proof. We split the congestion on a facility Sj in the integer solution into its congestion from
requests in R0(j) (before Sj is fully open in the fractional solution) and R1(j) (after Sj is fully open
in the fractional solution). By linearity of expectation, the expected congestion due to requests in
R1(j) is at most α

∑
i:Ri∈R1(j)

yij

tj
.

On the other hand, the expected congestion due to requests in R0(j) is at most

∑
i:Ri∈R0(j)

yij

2x(i)
j tj

≤
∑

i:Ri∈R0(j)

x
(i)
j − x

(i−1)
j

2x(i)
j

≤
∫ 1

1/m

dw

w
= lnm = O(α),

where the last bound follows from the choice of α = Θ(log knm). J

Using standard techniques (bounding the maximum possible congestion if the above lemma fails, and
therefore obtaining a bound on its contribution to the expectation), we can convert the high probability
bound on the maximum congestion in the above lemma to the same bound (up to constants) on the
expectation of the maximum congestion.

5 Conclusion and Future Work

We have given an algorithm for a generic online covering problem where each individual request
comprises a set of elements. The competitive ratio of our algorithm is poly-logarithmic in the input
parameters. While such dependence on the number of elements and subsets in the set system is
matched by existing lower bounds, it is not clear whether our dependence on the number of requests
is necessary. We leave the resolution of this dependence as an open question. Our problem represents
a nesting of online and offline covering problems. An intriguing open problem is to obtain a formal
algorithmic framework for packing/covering LPs that are revealed online in stages where each stage
is an offline packing/covering LP.

Acknowledgement. We thank an anonymous reviewer for suggesting the alternative (and simpler)
technique for the COVER-SETREQ problem with soft capacities. D. Panigrahi is supported in part by
startup funds from Duke University.

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 13

References

1 Susanne Albers. Online algorithms: a survey. Math. Program., 97(1-2):3–26, 2003.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set cover
problem. SIAM J. Comput., 39(2):361–370, 2009.

3 James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM, 44(3):486–504, 1997.

4 Yossi Azar. On-line load balancing. In Online Algorithms, pages 178–195, 1996.

5 Yossi Azar, Umang Bhaskar, Lisa K. Fleischer, and Debmalya Panigrahi. Online mixed packing
and covering. In SODA, 2013.

6 Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assignments. J. Algo-
rithms, 18(2):221–237, 1995.

7 M. Balazinska, B. Howe, and D. Suciu. Data markets in the cloud: An opportunity for the database
community. PVLDB, 4(12):1482–1485, 2011.

8 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. 1998.

9 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-dual
approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263, 2009.

10 Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer programs online.
In ICALP (1), pages 436–448, 2012.

11 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296,
2001.

12 Simon Korman. On the use of randomization in the online set cover problem. M.S. thesis, Weizmann
Institute of Science, 2005.

13 Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and Dan Suciu. Query-
market demonstration: Pricing for online data markets. PVLDB, 5(12):1962–1965, 2012.

14 C. Li and G. Miklau. Pricing aggregate queries in a data marketplace. WebDB, 2012.

15 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1997.

16 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

Appendix

A A simpler algorithm for the COVER-SETREQ problem with soft
capacities

Here we describe a simpler algorithm for the COVER-SETREQ problem with soft capacities that
follows from previous work. The algorithm follows by reducing the linear program for the COVER-
SETREQ problem with soft capacities which has mixed packing and covering constraints to one with
just covering constraints. An online solution for covering program can be constructed using existing
techniques [9, 10].

Note that the integer programming formulation of the COVER-SETREQ problem with soft capaci-
ties is as follows:

14 Online Set Cover with Set Requests

(P1) Minimize
m∑
j=1

cjxj subject to

∑
j:u∈Sj

yij ≥ 1 ∀i ∈ [k], u ∈ Ri

yij ≤ xj ∀i ∈ [k], j ∈ [m]
k∑
i=1

yij ≤ xjtj ∀j ∈ [m]

yij ∈ {0, 1}, xj ∈ N ∀i ∈ [k], j ∈ [m]

First we will show that the same problem can be solved using the following formulation while
losing only a constant factor of 2 in the objective. This is based on an observation for Jain and
Vazirani [11] along with some further ideas to obtain a covering LP.

(P2) Minimize
m∑
j=1

cjxj +
k∑
i=1

m∑
j=1

cj
tj
· yij subject to

∑
j∈J

xj +
∑

j∈{j:u∈Sj}\J

yij ≥ 1 ∀i ∈ [k], u ∈ Ri, J ⊆ {j : u ∈ Sj}

yij ≥ 0, xj ≥ 0 ∀i ∈ [k], j ∈ [m]

I Lemma 18. The program (P2) is a linear relaxation of (P1) with a factor 2 loss in objective. In
particular,

OPT(P2) ≤ 2 · OPT(P1) where OPT(P) denotes the value of the optimal feasible solution.
Any feasible solution (x′, y′) of (P2) can be mapped to a solution of the program (P1) with the
same value of the objective provided it satisfies yij ≤ xj for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.

Proof. Consider the optimal feasible solution (x, y) of (P1). Define (x′, y′) as follows:

x′j = min{1, xj} ∀j ∈ [m]
y′ij = yij ∀j ∈ [m], i ∈ [k]

First we will show that y′ij ≤ x′j . Since (x, y) is an optimal feasible solution, yij ≤ 1. Then by the
definition of x′j , y

′
ij = yij ≤ min{1, xj} = x′j . It then follows that the first constraint in the LP (P2)

holds since yij satisfy the first inequality in the program (P1). Next we bound the objective. Trivially,∑m
j=1 cjx

′
j ≤

∑m
j=1 cjxj = OPT(P1). Finally,

m∑
j=1

k∑
i=1

cj
tj
y′ij =

m∑
j=1

cj

k∑
i=1

yij/tj ≤
m∑
j=1

cjxj = OPT(P2).

It then follows that

OPT(P1) ≤
m∑
j=1

cjx
′
j +

m∑
j=1

k∑
i=1

cj
tj
yij ≤ 2OPT(P1).

Next consider a feasible solution (x′, y′) of (P2) with yij ≤ xj for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.
Construct a solution (x, y) of (P1) as follows:

∀1 ≤ j ≤ m xj = x′j +
∑k
i=1

y′ij

tj

∀1 ≤ j ≤ m, 1 ≤ i ≤ k yij = y′ij

K. Bhawalkar, S. Gollapudi, and D. Panigrahi 15

The first constraint of (P1) is obviously true. Since y′ij ≤ x′j , it follows that yij ≤ x′j ≤ xj . Moreover,

k∑
i=1

yij/tj =
k∑
i=1

y′ij/tj ≤ xj .

Finally,

m∑
j=1

cjxj =
m∑
j=1

cj

(
x′j +

k∑
i=1

y′ij

)
=

m∑
j=1

cjx
′
j +

m∑
j=1

n∑
k=1

cj
tj
xj . J

Finally note that the requirement y′ij ≤ x′j on a solution (x′, y′) of the program (P2) is without
loss of generality. Any solution that violates this constraint can be fixed by lowering the value of y′ij
to x′j . This still maintains all of the constraints while lowering the objective value.

We have thus obtained a covering linear program, any solution to which can be mapped to a
feasible solution of the original IP with only a factor 2 loss in the objective. It is possible to construct
a solution to program (P2) in an online manner using the techniques of Buchbinder and Naor [9]. (See
also Gupta and Nagarajan [10].) The resulting solution can then be rounded using our randomized
rounding procedure.

	Introduction
	Description of the Algorithm
	Analysis of the Fractional Algorithm
	Analysis of Online Randomized Rounding
	Conclusion and Future Work
	A simpler algorithm for the Cover-SetReq problem with soft capacities

