
Computing Classic Closeness Centrality, at Scale

Edith Cohen
Microsoft Research

editco@microsoft.com

Daniel Delling
Microsoft Research

dadellin@microsoft.com

Thomas Pajor
Microsoft Research

tpajor@microsoft.com
Renato F. Werneck

Microsoft Research
renatow@microsoft.com

ABSTRACT
Closeness centrality, first considered by Bavelas (1948), is an
importance measure of a node in a network which is based on
the distances from the node to all other nodes. The classic
definition, proposed by Bavelas (1950), Beauchamp (1965),
and Sabidussi (1966), is (the inverse of) the average distance
to all other nodes.

We propose the first highly scalable (near linear-time pro-
cessing and linear space overhead) algorithm for estimating,
within a small relative error, the classic closeness central-
ities of all nodes in the graph. Our algorithm applies to
undirected graphs, as well as for centrality computed with
respect to round-trip distances in directed graphs.

For directed graphs, we also propose an efficient algorithm
that approximates generalizations of classic closeness cen-
trality to outbound and inbound centralities. Although it
does not provide worst-case theoretical approximation guar-
antees, it is designed to perform well on real networks.

We perform extensive experiments on large networks, de-
monstrating high scalability and accuracy.

1. INTRODUCTION
Closeness centrality is a structural measure of the impor-

tance of a node in a network, which is based on the ensemble
of its distances to all other nodes. It captures the basic in-
tuition that the closer a node is to all other nodes, the more
important it is. Structural centrality in the context of social
graphs was first considered in 1948 by Bavelas [4].

The classic definition measures the closeness centrality of
a node as the inverse of the average distance from it and was
proposed by Bavelas [5], Beauchamp [6], and Sabidussi [44].
On a graph G = (V,E) with |V | = n nodes, the centrality
of v is formally defined by

B−1(v) = (n− 1)/
∑
u∈V

dvu, (1)
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where dvu is the shortest-path distance between v and u in
G. This textbook definition is also referred to as Bavelas
closeness centrality or as the Sabidussi Index [26, 27,50].

The classic closeness centrality of a node v can be com-
puted exactly using a single-source shortest paths computa-
tion (such as Dijkstra’s algorithm). In general, however, we
are interested not only in the centrality of a particular node,
but rather in the set of all centrality values. This is the case
when centrality values are used to obtain a relative ranking
of the nodes. Beyond that, the distribution of centralities
captures important characteristics of a social network, such
as its centralization [27, 50].

When we would like to perform many centrality queries (in
particular when we are interested in centrality values for all
nodes) on graphs with billions of edges, such as large social
networks and Web crawl graphs, the exact algorithms do
not scale. Instead, we are looking for scalable computation
of approximate values, with small relative error.

The node with maximum classic closeness centrality is
known as the 1-median of the network. A near-linear-time
algorithm for finding an approximate 1-median was pro-
posed by Indyk and Thorup [29, 47]. Their algorithm sam-
ples k nodes at random and performs Dijkstra’s algorithm
from each sampled node. They show that the node with
minimum sum of distances to sampled nodes is with high
probability an approximate 1-median of the network. The
same sampling approach was also used to estimate the cen-
trality values of all nodes [25] and to identify the top k cen-
tralities [40]. When the distance distribution is heavy-tailed,
however, the sample average is a very poor estimator of the
average distance: The few very distant nodes that dominate
the average distance are likely to be all excluded from the
sample C, resulting in a large expected error for almost all
nodes.

Contributions
We present the first near-linear-time algorithm for estimat-
ing, with a small relative error, the classic closeness cen-
tralities of all nodes. Our algorithm provides probabilistic
guarantees that hold for all instances and for all nodes.

Computationally, our algorithm selects a small uniform
sample C of k nodes and performs single-source shortest
paths computation from each sampled node. We provide a
high-level description, illustrated in Figure 1, of how we use
this information to estimate centralities of all nodes.

From the single-source computations, we know the dis-
tances from nodes in C to all other nodes and therefore the
exact value of B(u) for each u ∈ C, but we need to estimate
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Figure 1: Exact: Average distance from blue node to all other nodes. Sampling: Average distance to sampled
(red) nodes. Pivoting: Average distance from pivot (closest sampled node). Hybrid: Distances outside the
threshold radius from pivot are estimated through the pivot (but distances to sampled nodes outside the
threshold are exact). Shorter distances, within the threshold radius, are estimated through sampled nodes.

the centrality of other nodes. As we mentioned, a natural
way to use this information is sampling [25, 29, 40, 47]: Es-
timate the centrality of a node v using the sample average
B̂(v) =

∑
u∈C dvu/k. As we argued, however, the expected

relative error can be very large when the distribution of dis-
tances from the node v to all other nodes is skewed.

A second basic approach, which we propose here, is pivot-
ing, which builds on techniques from approximate shortest-
paths algorithms [15, 48]. We define the pivot c(v) ∈ C of a
node v as the node in the sample which is closest to v. We
can then estimate the centrality of v by that of its pivot,
B(c(v)), which we computed exactly. By the triangle in-
equality, the value of B(v) is within ± dvc(v) of B(c(v)).

A large error, however, can be realized even on natural
instances: The centrality of the center node in a star graph
would be estimated with an error of almost 100%, using
average distance of approximately 2 instead of 1. If we use
the pivoting upper bound

B̂(v) = B(c(v)) + dvc(v)

as our estimator, we obtain an estimate that is about three
times the value of the true average. We can show, however,
that this is just about the worst case: On all instances and
nodes v, the pivoting upper bound estimate is, with high
probability, not much less than B(v) or much more than
three times the value, that is, the estimate is within a factor
of 3 of the actual value. Since the argument is both simple
and illuminating, we sketch it here. When the sample has
size k, it is likely that the distance between v and its pivot
c(v) is one of the 1/k closest distances from v. Actually, with
very high probability, dvc(v) is one of the (logn)/k closest
distances to v. Since B(v) is the average value of a set of
values such that (1− (logn)/k) of them are at least as large
as dvc(v), we obtain that

B(v) ≥ (1− (logn)/k)dvc(v). (2)

We next apply the triangle inequality to obtain

B(c(v)) ≤ B(v) + dvc(v). (3)

Finally, we combine (2) and (3) to obtain that our estimate

B̂(v) ≡ B(c(v)) + dvc(v) ≤ B(v) + 2dvc(v) is not likely to be
much larger than 3B(v).

Therefore, the pivoting estimator has a bounded error
with high probability, regardless of the distribution of dis-

tances, a property we could not get with the sampling es-
timator. Neither method, sampling or pivoting, however, is
satisfactory to us, since we are interested in a small relative
error, for all nodes, on all instances, and with (probabilistic)
guarantees.

Our key algorithmic insight is to carefully combine the
sampling and pivoting approaches. When estimating cen-
trality for a node v, we apply the pivoting estimate only to
nodes u that are “far” from v, that is, nodes that have dis-
tance dvu much larger than the distance to the pivot c(v).
The sampling approach is applied to the remaining “closer”
nodes. By doing so, our hybrid approach obtains an estimate
with a small relative error with high confidence, something
that was not possible when using only one of the methods
in isolation. Moreover, the computation needed by our hy-
brid algorithm is essentially the same as with the basic ap-
proaches: k single-source shortest paths computation for a
small value of k. Our hybrid estimator is presented and an-
alyzed in Section 2. The estimator is applicable to points
in a general metric space and is therefore presented in this
context. An efficient algorithm which computes the hybrid
centrality estimate for all nodes in an undirected graphs is
presented in Section 3.

The effectiveness of our hybrid estimate in practice de-
pends on setting a threshold correctly between pivoting and
sampling. Our analysis sets a threshold with which we ob-
tain guarantees with respect to worst-case instances, i.e., for
any network structure and distances distribution of a node.
In our implementation, we experiment with different set-
tings. We also propose a novel adaptive approach, which
estimates the error for several (or effectively all relevant)
choices of threshold values, on a node per node basis. The
sweet spot estimate which has the smallest estimated error
is then used. Our error estimator for each threshold setting
and our adaptive approach are detailed in Section 4.

In applications, we are often interested in measuring cen-
trality with respect to a particular topic or property which
has a different presence at each node. Nodes can also intrin-
sically be heterogeneous, with different activity or impor-
tance levels. These situations are modeled by an assignment
of weights β(i) ≥ 0 to nodes. Accordingly, one can naturally
define weighted classic closeness centrality of a node i as

B−1
β (i) =

∑
j 6=i β(i)∑

j 6=i β(i)dij
. (4)



In Section 5, we present and analyze an extension of our
algorithm designed for approximating weighted centralities.
The approach is based on weighted sampling of nodes, which,
for any weighting β, ensures a good approximations (small
relative error) of Equation (4). The handling of weighted
nodes is supported with almost no cost to scalability or ac-
curacy when compared to unweighted instances.

In Section 6 we consider directed networks. When the
graph is strongly connected, meaning that all nodes can
reach all other nodes, it is often natural to consider close-
ness centrality with respect to round-trip distances. The
round-trip distance between two nodes is defined as the sum
duv + dvu of the shortest-paths distances. We show that a
small modification of our hybrid algorithm, which requires
both forward and reverse single-source shortest-paths com-
putations from each sampled node, approximates round-trip
centralities for all nodes with a small relative error. This fol-
lows because our hybrid estimator and its analysis apply in
any metric space, and round-trip distances are a metric.

When the graph is not strongly connected, however, clas-
sic closeness centrality is not well defined: All nodes that
have one or more unreachable nodes have centrality value of
0. We may also want to separately consider inbound or out-
bound centralities, based on outbound distances from a node
or inbound distances to a node, since these can be very dif-
ferent on directed graphs. Proposed modification of classic
centrality to directed graphs are based on a combination of
the average distance within the outbound or inbound reach-
ability sets of a node, as well as on the cardinalities of these
sets [12, 35]. We therefore consider scalable estimation of
these quantities, proposing a sampling-based solution which
provides good estimates when the distance distribution is
not too skewed.

Section 7 briefly describes other relevant related work, in-
cluding other important centrality measures. The results
of our experimental evaluation are provided in Section 8,
demonstrating the scalability and accuracy of our algorithms
on benchmark networks with up to tens of millions of nodes.

2. THE HYBRID ESTIMATOR
We present our hybrid centrality estimator, which applies

for a set V of n = |V | points in a metric space.
We use parameters k and ε, whose setting determines a

tradeoff between computation and approximation quality.
We sample k points uniformly at random from V to obtain
a set C. We then obtain the distances dij from each point
i ∈ C to all points j ∈ V . The estimators we consider are
applied to this set of nk computed distances.

Specifically, we consider estimators Ŝ[j] for j ∈ V of the
sum S(j) =

∑
i∈V dij . We then estimate the centrality of j

as (the inverse of) B̂[j]← Ŝ[j]/(n− 1).
For points j ∈ C, we can compute the exact value of S(j),

since the exact distances dji are available to all i. For j 6∈ C
we are interested in estimating S(j). We define the pivot of
j (closest node in the sample):

c(j) = arg min
i∈C

dij

and the distance ∆(j) = djc(j) to the pivot.

In the introduction we discussed three basic estimators:
The sample average

B̂(j) =
1

k

∑
i∈C

dij , (5)

the pivot estimator, B̂(j) ≡ B(c(j)), and the pivoting upper
bound

B̂(j) ≡ B(c(j)) + ∆(j) .

We argued that neither one can provide a small relative error
with high probability.

The hybrid estimate Ŝ[j] for a point j ∈ V \ C is ob-
tained as follows (efficient computation is discussed in the
next section). We first compute the pivot c(j) and its dis-
tance ∆(j). We then partition the points V \ {j} to three
parts L(j), HC (j), and H(j), where the placement of a node
i is determined according to its distance dic(j) from the pivot
c(j).

• The points L(j) (L stands for “low”) have distance at
most ∆(j)/ε from c(j). The sum of distances to these
points is estimated using the sum of distances to the
sampled points which are in L(j). Since these points
are a uniform sample from L(j), we compute the effec-
tive sampling probability p(j) ≡ |L(j)∩C|/|L(j)|, and
divide the sum by p(j) to obtain an unbiased estimate.

• The set HC (j) (“high in C”) includes sampled points
i ∈ C that have distance greater than ∆(j)/ε from the
pivot c(j). The distances from v to these points are
accounted for exactly.

• The set H(j) ⊂ V \C (“high”) are the points that are
not sampled whose distance to the pivot c(j) is greater
than ∆(j)/ε. The sum of distances to these points is
estimated by the exact sum of their distances to c(j).

The estimate Ŝ[j] for S(j) is thus

Ŝ[j] =
∑

i∈H(j)

dc(j)i +
∑

i∈HC(j)

dji +
|L(j)|
|L(j) ∩ C|

∑
i∈L(j)∩C

dji. (6)

Since c(j) ∈ L(j) ∩ C, the denominator satisfies |L(j) ∩
C| ≥ 1 and thus the estimator is well defined. It is easy to

verify that the estimate Ŝ[j] for all points j can be computed
from the nk distances we collected.

2.1 Quality Guarantees
We now analyse the quality of the hybrid estimator and

show that the estimate Ŝ[j] has a small relative error for any
point j:

Theorem 2.1. Using k = 1/ε3, the hybrid estimator (6)
has a normalized root mean square error (NRMSE) of O(ε).
Using k = logn

ε3
, when applying the estimator to all points

in V , we get a maximum relative error of O(ε) with high
probability.

Proof. We consider the error we obtain by using Ŝ[j] in-
stead of S[j] for a point j ∈ V \C. Error can be accumulated
on accounting for distances to H(j) or to L(j).

The first set, H(j), includes all non-sample points that
have distance greater than ∆(j)/ε from c(j). The accumu-
lated error on the sum is bounded by ±∆(j) for each point



in H(j). Since the distance from j to a point in i ∈ H(j) is
at least

dc(j)i −∆(j) = ∆(j)(1/ε− 1),

the relative error on all of H(j) is at most ∆(j)/[∆(j)(1/ε−
1)] = 1/(1/ε− 1) = ε/(1− ε).

We now turn to L(j), where we use a sampling estimator:
We estimate the sum of distances to points in L(j) using
the sum of distances to sample points that are in L(j). The
sample points constitute a random sample of L(j), which
includes each point in L(j) with probability p = k/n.

We compute the variance of estimating
∑
i∈L(j) dji using

the estimate 1
p

∑
i∈L(j)∩C dji. Consider the ratio of the vari-

ance to the square of the sum. The ratio is maximized when
the set L(j) includes all points (otherwise the contribution
of H(j) increases the denominator but not the numerator).
Therefore, since we are upper bounding the error, we can
assume that the set L(j) contains all points.

The points in L(j) are of distance at most ∆(j)(1/ε+ 1)
from j.

We first consider the total contribution to the centrality
of the set of points A that are of distance smaller than ∆(j)
from j. Since ∆(j) is the distance to the pivot, the expected
number of such points is not more than n/k. Their expected
total relative contribution to B(j) is at most their relative
fraction, which in expectation is 1/k � ε. Moreover, for
an integer a > 1, the probability of there being more than
an/k such points is the probability that all k sampled points
selected among the n(1−a/k) farthest points from j, which
is at most (1−a/k)k ≈ e−a. So the contribution of points A
to centrality (and to the variance) is also well concentrated.

We now consider the contribution to variance of points
that have distance between ∆(j) and (1/ε + 1)∆(j). For
convenience we use s ≡ 1/ε+1 and ∆ ≡ ∆(j). Repeating the
same argument as before, since we are computing an upper
bound we can assume that this set contains all points. Given
the sum of distances of these points, the “worst case” for
variance is when all distances are at one of the extremes; we
thus further assume that the distance of each point is either
∆ or s∆. The variance contribution of a point is (1/p − 1)
times its distance squared. We now define x ∈ [0, 1] to be
the fraction of points are of distance ∆; the remaining have
distance s∆. The sum of distances is

n(x∆ + (1− x)s∆) = n∆(x+ (1− x)s)

and the variance is

((1/p)− 1)n(x∆2 + (1− x)s2∆2)

= ((1/p)− 1)n∆2(x+ (1− x)s2)

≤ n2∆2

k
(x+ (1− x)s2).

We now consider the maximum over choices of n and x of
the ratio of the variance to the square of the mean, which is

max
x∈[0,1]

1

k

x+ (1− x)s2

(x+ (1− x)s)2
.

This is maximized at x = s/(s+ 1) = (1 + ε)/(1 + 2ε). The

maximum is 1
k

(s+1)2

4s
= (1+2ε)2

4kε(1+ε)
≈ 1

4kε
. This means that the

Coefficient of Variation (CV) is about 1

2
√
kε

.

Balancing the sampling CV with the pivoting relative er-
ror of ε we obtain k ≈ 1

2ε3
.

In our implementation, we worked with parameter set-
tings of ε =

√
k. This setting means that the relative error

on the pivoting component is at most ε/(1−ε). We can typ-
ically expect it to be much smaller, however. First, because
distances in H(j) can be much larger than ∆(j)/ε. Second,
the estimates of different points are typically not “one sided”
(the estimate is one sided when the pivot happens to be on
or close to the shortest path from j to most other points),
so errors can cancel out. For the sampling component, the
analysis was with respect to a worst-case distance distribu-
tion, where all values lie at the extremes of the range, but in
practice we can expect an error of ≈ 1/

√
k ≈ ε. Moreover,

when the population variance of L(j) is small, we can expect
a smaller relative error.

In Section 4 we propose adaptive error estimation, which
for each point j, uses the sampled distances dij to obtain a
tighter estimate on the actual error.

3. COMPUTING ESTIMATES
We now consider closeness centrality on undirected graphs,

with a focus on efficient computation, both in terms of run-
ning time and the (run-time) storage we use, Specifically, we

would like to compute estimates Ŝ[v] of S(v) =
∑
j dvj for

all nodes v ∈ V .
All the estimators we consider, the basic sampling (5) and

pivoting estimates and the hybrid estimate (6) are applied to
a set of (at most) kn sampled distances. To compute these
distances, we can first sample a set C of k nodes uniformly at
random and then run Dijkstra’s single-source shortest path
algorithm from each node u ∈ C to compute the distances
duv from u to all other nodes. The computation of the es-
timates Ŝ[v] given these distances is linear. The issue with
this approach is a run-time storage of O(nk).

We first observe that both the basic sampling and the
basic pivoting estimates can be computed using only O(1)
run-time storage per node. With sampling, we accumulate,
for each node v, the sum of distances from the nodes in C.
We initialize the sum to 0 for all v and then when running
Dijkstra from u ∈ C, we add duv to each scanned node v.
The additional run-time storage used here is the state of Di-
jkstra and O(1) additional storage per node. With pivoting,
we initialize ∆(v) ← ∞ for all nodes. When running Dijk-
stra from u, we accumulate the sum of distances as S(v).
We also update ∆(v) ← min{duv,∆(v)} when a node v is
scanned. When ∆(v) is updated, we also update the pivot
c(v)← u. Finally, for each node v, we estimate S(v) by the
precomputed S(c(v)).

The pseudocode provided as Algorithm 1 computes the
hybrid estimates (6) for all nodes using O(1) additional stor-
age per node. To do so with only O(1) storage, we use an
additional run of Dijkstra: For each node v ∈ V , we first
compute its pivot c(v) and the distance ∆(v) = dvc(v). This
can be done with a single run of Dijkstra’s algorithm having
all sampled nodes as sources.

We then run Dijkstra’s algorithm from each sampled node
u ∈ C. For the sampled nodes u ∈ C, the sum S(u) is

computed exactly; for such cases, we have Ŝ[u] = S(u). For

the nodes v 6∈ C we compute an estimate Ŝ[v].
The computation of the estimate is based on identifying

the three components of the partition of V \ {v} into L(v)∪
HC (v) ∪ H(v), which is determined according to distances



from the pivot c(v). The pivot mapping computed in the
additional run is used to determine this classification.

The contributions to the sum estimates Ŝ[v] are computed
during the single-source shortest paths computations from
C. In particular, the contribution to Ŝ[v] of sampled nodes
u ∈ L(v)∪HC (v) are computed when we run Dijkstra from
u. The contribution of H(v) is computed when we run Di-
jkstra from the pivot c(v) of v.

When running Dijkstra from a sampled node u ∈ C and
visiting v, we need to determine whether u is in L(v) or
HC (v) in order to compute its contribution. If u ∈ HC (v),

we increase Ŝ[v] by duv. If u ∈ L(v), we would like to in-

crease Ŝ[v] by duv/p[v]. At that point, however, p[v], which
depends on |L(v)| and |C ∩L(v)|, may not be available. We
therefore add duv to LCsum[v], which tracks the sum of dis-
tances to nodes in C ∩ L(v). We also increment LCnum[v],
which tracks the cardinality |C∩L(v)|. When the k Dijkstra

runs terminate, we can compute p[v] and increase Ŝ[v] by
LCsum[v]/p[v].

Deciding whether u is in L(v) or HC (v) can sometimes
be done only after the pivot c(v) was visited by the Dijkstra
run from u. If duv > ∆(v)(1/ε + 1) then from the triangle
inequality duc(v) > ∆(v)/ε and we can determine that u ∈
HC (v). Similarly, if duv ≤ ∆(v)(1/ε− 1) we can determine
that u ∈ L(v). Otherwise, we can classify u only after we
visit c(v) and know the distance dc(v)u. In this case, the

accounting of u to Ŝ[v] is postponed: We place the pair
(v, duv) in List[c(v)]. Each time a sampled node z ∈ C is
visited by u, we process the list List[z] and for each entry
(v, dvu) we use duz ≡ duc(v) to classify v and accordingly

increase Ŝ[v] or LCsum[v]. List[z] is then deleted.
The accounting for H(v) is done when running Dijkstra

from the pivot c(v). During Dijkstra from u, we record in-
formation on each node v for which c(v) ≡ u. The threshold
values ∆(v)/ε are recorded in increasing order in the Thresh
array, as nodes are visited. The set of nodes with pivot u and
a threshold value is recorded in the entry of Nodes which
corresponds to the threshold value. The sum of distances
from u to all nodes in V \C with distances that are between
entries in the Thresh array is computed in the correspond-
ing entries of the Bin array. After Dijkstra’s algorithm from
u is completed, we process these arrays in reverse, comput-
ing for each node v such that c(v) ≡ u the contribution of

H(v) to the estimate Ŝ[v].
This algorithm performs k+1 runs of Dijkstra’s algorithm

and uses running storage that is linear in the number of
nodes (does not depend on k). This means the algorithm has
very little computation overhead over the basic estimators.

4. ADAPTIVE ERROR ESTIMATION
Algorithm 1 also computes, for each node v, an estimate

on the error of our estimate Ŝ[v]. This estimate is adap-
tive, that is, it depends on the input. This is in contrast to
the error bounds in Theorem 2.1, which are with respect to
worst-case instances and, if used, will typically grossly over-
estimate the actual error and provide weak and pessimistic
confidence bounds. We explain how these adaptive estimates
are computed.

We also propose adaptive error minimization as Algorithm
2: Instead of working with a fixed value of ε, as in Algo-
rithm 1, the new algorithm chooses the estimate that has
the smallest estimated error.

4.1 Error Estimation
In Algorithm 1, error estimates are computed separately

for each of the two components: one from the pivoting on
the “distant” nodes H(v), and one from the sampling, on the
“closer” nodes L(v).

The pivoting error is estimated by considering distant
sampled nodes, that is, nodes in HC (v). These nodes are
treated as a representative sample of H(v). For these nodes,
we take the average of the squared difference between the
distance of the node from v and its distance from the pivot
c(v):

ŜQ(H(v)) =
1

|HC (v)|
∑
u∈HC(v)

(
duv − dc(v)u

)2
. (7)

Note that for nodes in HC (v), both these distances are avail-
able from the single-source shortest-paths computations we
performed. Finally, to obtain an estimate on the contribu-
tion of the pivoting component to the squared error of Ŝ[v],
we multiply by the magnitude |H(v)| of the set H(v), which
we know exactly. In cases when there are not enough or no
samples (when HC (v) is empty), we instead compute the av-
erage squared difference over a “suffix” of the farthest nodes
in C.

The sampling error applies to the remaining“closer”nodes
L(v) and depends on the distribution of distances in L(v),
that is, on the population variance of L(v), and on the sam-
ple size from this group, which is L(v)∩C. We first estimate
the population variance of the set of distances from v to the
set of nodes L(v). This is estimated using the sample vari-
ance of the uniform sample L(v) ∩ C, as

σ̂2(L(v)) =
1

|C ∩ L(v)|
∑

u∈C∩L(v)

(
duv −

∑
u∈C∩L(v) duv

|C ∩ L(v)|

)2

=

∑
u∈C∩L(v) d

2
uv

|C ∩ L(v)| −

(∑
u∈C∩L(v) duv

|C ∩ L(v)|

)2

. (8)

We then divide the estimated population variance by the
number of samples |L(v)∩C| (variable LCnum in the pseu-
docode) to estimate the variance of the average of |L(v)∩C|
samples from the population. To estimate the variance con-
tribution of the sampling component to the sum estimate
Ŝ[v], we multiply by |L(v)| (variable Lnum in the pseu-

docode). The combined square error of Ŝ[v] is estimated
by summing these two components:

|H(v)|ŜQ(H(v)) +
|L(v)|
|L(v) ∩ C| σ̂

2(L(v)).

4.2 Adaptive Error Minimization
In order to get the most mileage from the k single source

shortest paths computations we performed, we would like to
adaptively select the best “threshold” between pivoting and
sampling, rather than work with a fixed value.

For a node v ∈ V and a threshold value T let

H(v, T ) = {u ∈ V \ C | dc(v)u > T}
HC (v, T ) = {u ∈ C | dc(v)u > T}
L(v, T ) = {u ∈ V | dc(v)u ≤ T}.

The set H(v, T ) contains all non-sampled nodes with dis-
tance from c(v) greater than T , the set HC (v, T ) contains
all sampled nodes with distance from c(v) greater than T ,



Algorithm 1 Centrality estimation for all nodes: undirected

Input: Network G, integer k > 0, ε > 0
select uniformly at random k nodes C = {c1, . . . , ck} ⊂ V
for v ∈ V do . Computation equivalent to a single Dijkstra

c[v]← arg mini=1,...,k dciv . Pivot of v
∆[v]← dv,cc[v]

. distance of v to its pivot

Ŝ[v]← 0 ; LCsum[v]← 0; LCnum[v]← 0 ; LCsumSq[u]← 0 ; HCsum[u]← 0 ; HCsumSqErr[u]← 0 ;

for i = 1, . . . , k do
t← 0; curt← 0; Thresh[0]← 0 . Initialize thresholds array and counters
Run Dijkstra from the sampled node ci
for each new node u visited by Dijkstra do

d← dciu . distance from ci to u

Ŝ[ci]← Ŝ[ci] + d
if u ∈ C then . equivalently, cc[u] = u

j ← c[u] . a sampled node is its own pivot, we get its index
last[j]← i; dist[j]← d . cj was visited from ci and has distance dist[j]
for z ∈ List[j] do

if d > ∆[z.node]/ε then HCsum[z.node]
+← z.d . ci ∈ HC(z.node)

HCsumSqErr[z.node]
+← (z.d− d)2

else LCsum[z.node]
+← z.d; LCnum[z.node]

+← 1; LCsumSq[z.node]
+← z.d2 . ci ∈ L(z.node)

Delete List[j]
else . u 6∈ C

if (d ≤ ∆[u](1/ε− 1)) or (last[c[u]] = i) and (dist[c[u]] ≤ ∆[u]/ε) then . ci ∈ L(u)

LCsum[u]
+← d; LCnum[u]

+← 1

LCsumSq[u]
+← d2

else . We can not determine if ci ∈ L(u) or we know ci ∈ HC(u) but c[u] was not yet visited
z.node← u; z.d← d
List[c[u]]← List[c[u]] ∪ {z}

if c[u] = i then . ci is the pivot of u
if Thresh[t] = d/ε then . same threshold as previous

nodes[t]← nodes[t] ∪ {u}
else t← t+ 1; Thresh[t]← d/ε; nodes[t]← {u}; bin[t]← 0; count[t]← 0

while curt < t and d > Thresh[curt+ 1] do curt
+← 1

if d > Thresh[curt] then bin[curt]
+← d; count[curt]

+← 1

. Compute tail sums for nodes for which ci is pivot
tailsum← 0; tailnum← 0
while t > 0 do

tailsum
+← bin[t]

tailnum
+← count[t]

for u ∈ nodes[t] do
Hsum[u]← tailsum
Hnum[u]← tailnum . Hnum[u] = |H(u)|; Hsum[u] =

∑
v∈H(u) dc(u)v

t← t− 1

for u ∈ V \ C do
Lnum← n− 1−Hnum[u]− k + LCnum[u]; HCnum← k − LCnum

p← LCnum[u]
Lnum

. Fraction of sampled nodes that are in L(u)

Ŝ[u]← Hsum[u] + HCsum[u] + LCsum[u]/p

SqErrEst[u]← 1
LCnum[u]

(LCsumSq[u]
LCnum[u]

−
( LCsum[u]
LCnum[u]

)2
)Lnum[u] + HCsumSqErr[u]

HCnum
Hnum[u]

return For all u: (u, Ŝ[u],SqErrEst[u])



and the set L(v, T ) contains all nodes with distance from
c(v) at most T .

We can then define an estimator with respect to a thresh-
old T , as in Equation (6):

Ŝ(v, T ) =
∑
u∈H(v,T )

dc(v)u +
∑
u∈HC(v,T )

dvu

+
|L(v, T )|
|L(v, T ) ∩ C|

∑
u∈L(v,T )∩C

dvu.
(9)

In Algorithm 1 we used the threshold value Tv = ∆(v)/ε
for a node v. Here we choose Tv adaptively so as to balance
the estimated error of the first and third summands.

One way to achieve this is to apply Algorithm 1 simulta-
neously with several choices of ε. Then, for each node, we
take the value with the smallest estimated error. We pro-
pose here Algorithm 2, which maintains O(k) state per node
but looks for the threshold sweet spot while covering the full
range between pure pivoting and pure sampling.

Algorithm 2 computes estimates and corresponding er-
ror estimates as in Algorithm 1. The estimates, however,
are computed for k values of the threshold Tv which corre-
spond to the distances from c(v) to each of the other sampled
nodes. From these k estimates, the algorithm selects the one
which minimizes the estimated error.

The reason for considering only these k threshold values
(for each pivot) is that they represent all the possible as-
signments of sampled nodes to L(v) or HC (v).

Finally, we note that the run-time storage we use depends
linearly in the sets of threshold values and therefore it can
be advantageous, when run-time storage is constrained, to
reduce the size further. One way to do this is, for exam-
ple, to only use values of Tv which correspond to discretized
distances.

5. WEIGHTED CENTRALITY
We now consider weighted classic closeness centrality with

respect to node weights β : V ≥ 0, as defined in Equa-
tion (4). We limit our attention to estimating the denomi-
nator

Sβ(i) =
∑
j 6=i

β(i)dij ,

since the numerator
∑
j 6=i β(i) can be efficiently computed

exactly for all nodes by computing the sum
∑
i β(i) once

and, for each node j, subtracting the weight of the node j
itself from the total. We show how to modify Algorithm 1
to compute estimates for Sβ(i) for all nodes. We will also
argue that the proof of Theorem 2.1 goes through with minor
modifications, that is, we obtain a small relative error with
high probability.

If the node weights are in {0, 1}, the modification is straight-
forward. We obtain our sample C only from nodes i with
weight β(i) = 1 and account only for these nodes in our
estimate of S.

We now provide details on the modification needed to han-
dle general weights β. The first component is the node sam-
pling. We apply a weighted sampling algorithm; in partic-
ular, we use VarOpt stream sampling [13, 17], which is a
weighted version of reservoir sampling [30, 49]. We obtain
a sample of exactly k nodes so that the inclusion probabil-
ity of each node is proportional to its weight. More pre-
cisely, VarOpt computes a threshold value τ (which de-

pends on k and on the distribution of β values). A node v is
sampled with probability min{1, β(v)/τ}. These sampling
probabilities are PPS (Probability Proportional to Size),
but with VarOpt we obtain a sample of size exactly k
(whereas independent PPS only guarantees an expected size
of k). For each sampled node we define its adjusted weight

β̂(v) = max{τ, β(v)}, where τ is the VarOpt threshold.
The weighted algorithm is very similar to Algorithm 1, but

requires the modification stated as Algorithm 3. The con-
tributions to Ŝ[u] of nodes v that are in H[u] (accounted for
in the tail sums computed in the bin array) or in HC [u] are
multiplied by β(v). For nodes in L(v), we compute the in-
verse probability estimate with respect to the inclusion prob-
ability min{1, β(v)/τ}. We divide the contribution, which

is β(v)duv, by the inclusion probability, obtaining β̂(v)duv.
Our error estimates can also be easily modified to work

with weighted centralities. Instead of the cardinality of each
set, we use the total β weight of the set; instead of a sum of
distances, we use the β-weighted sum.

Algorithm 3 Modifications of Alg. 1 for weighted centrality

Ŝ[ci]
+← β(u)dciu . when computing Ŝ for ci ∈ C

Ŝ[u]
+← β(ci)dciu . when ci ∈ HC(u)

Ŝ[u]
+← β̂(ci)dciu . when ci ∈ L(u)

if β(ci) < τ then varest[u]
+← d2ciu(τ − β(ci))τ .

when ci ∈ L(u); when β(ci) > τ then ci is included with
probability 1 and its contribution to variance is 0.

bin[curt]
+← β(u)dciu ; count[curt]

+← β(u) . when
computing tail sums/counts for ci

The analysis of the approximation quality of Ŝ in Algo-
rithm 3 carries over to the weighted algorithm. In fact, the
skewness of β can only improve estimation quality: intu-
itively, the sample would contain in expectation more than
k/n fraction of the total β weight, since heavier items are
more likely to be sampled.

6. DIRECTED GRAPHS

6.1 Round-trip Centralities
For a strongly connected directed graph, it is natural to

consider the round-trip distances
←→
d ij ≡ dij + dji, and

round-trip centrality values computed with respect to these
round-trip distances.

Since round-trip distances are a metric, the hybrid esti-
mator (6) applies, as does Theorem 2.1, which provides the
strong guarantees on approximation quality. Moreover, a
simple modification of the algorithms we presented for undi-
rected graphs applies to estimation of round-trip centralities
in strongly connected directed graphs. We choose a uniform
random sample of k nodes, as we did in the undirected case.
Then, for each sampled node u ∈ C, we perform two single-
source shortest paths computations, to compute the forward
and a backward distances to all other nodes. Then for each
node v ∈ V \ C, we compute the sum

←→
d uv = duv + dvu of

these distances. We sort the nodes v by increasing
←→
d uv. We

then use the sorted order and round-trip distances the same
way we used the Dijkstra order in the undirected version of
the algorithm.



Algorithm 2 Classic closeness centralities with adaptive error minimization

select a set C = {c1, . . . , ck} ⊂ V of sampled nodes, uniformly at random; for j = 1, . . . , k, use c[cj ]← j.
for v ∈ V do ∆[v]←∞
for i = 1, . . . , k do

∆[ci]← 0 . pivot of ci is itself, distance to pivot is 0
cvisited← 1; vvisited← 0 . number of nodes in C and V \ C, respectively, visited so far
distsumvisited← 0 . sum of distances to nodes in V \ C visited so far
δ[i, i]← 0 . δ[i, j] is the distance between sampled nodes ci and cj
π[i, 1]← i . π[i, ∗] is the permutation of sampled nodes by increasing distance from ci
Run Dijkstra’s algorithm from ci
for v ∈ V in order of first visit by Dijkstra do

d← dciv
if v ∈ C then

j ← c[v] . index of sampled node v
cvisited← cvisited+ 1; π[i, cvisited]← j; δ[i, j]← d
TailNum[i, cvisited]← vvisited
TailSum[i, cvisited]← distsumvisited

else . v 6∈ C
if d < ∆[v] then

∆[v]← d, c[v]← i

D[v, i]← d . (n− k)× k matrix of distances of v ∈ V \ C to sampled nodes 1, . . . , k

vvisited
+← 1; distsumvisited

+← d

After Dijkstra ends:
for j = 1, . . . , k do

TailNum[j, cvisited]← vvisited−TailNum[j, cvisited]
TailSum[j, cvisited]← distsumvisited−TailSum[j, cvisited]

Ŝ[ci]← distsumvisited+
∑k
j=1 δ[i, j] . Exact S[ci] of sampled node ci

EstErr[ci]← 0; . estimated errors (no errors) for Ŝ[ci].

for v ∈ V \ C do . Compute Ŝ, EstErr for all remaining nodes

LCsum← 0; HCsum←
∑k
i=1D[v, i]; HCsumSqErr←

∑k
i=1(D[v, i]− δ[c(v), i])2

Ŝ[v]← Ŝ[c[v]]; EstErr[v]← HCsumSqErr · (n− 1− k)/k
MinErr← EstErr[v]
for i = 1, . . . , k do . scan sampled nodes π[c(v), i] by increasing distances from c(v)

LCsumSq
+← D[v, π[c(v), i]]2

Hnum← TailNum[c(v), π[c(v), i]]
Lnum← n− 1−Hnum− k + i . |L(v)| for current threshold
LCnum← i; p← LCnum/Lnum

LCsum
+← D[v, π[c(v), i]] . sum of distances to sampled nodes within threshold

HCsum
−← D[v, π[c(v), i]] . sum of distances to sampled nodes outside threshold

Hsum← TailSum[c(v), π[c(v), i]]

HCsumSqErr
−← (D[v, π[c(v), i]]− δ[c(v), π[c(v), i]])2

Est← LCsum/p+ Hsum + HCsum . estimated S[v]

EstErr← 1
LCnum

(LCsumSq
LCnum

−
(
LCsum
LCnum

)2
)Lnum + HCsumSqErr

HCnum
Hnum . est. error for threshold δ[c(v), π[c(v), i]]

if EstErr < MinErr then
MinErr← EstErr . Look for the estimation sweet spot
Ŝ[v]← Est; SqErrEst[v]← EstErr

return Ŝ,SqErrEst



6.2 Inbound and Outbound Centralities
As mentioned in the introduction, for general (not neces-

sarily strongly connected) directed graphs, we may also be
interested in separating outbound or inbound centralities. In
particular, we are interested in the average distance from a
particular node v to all nodes it can reach (outbound cen-
trality) or from nodes that can reach v (inbound centrality),
as well as in the cardinalities of these sets.

The size of the outbound reachability set of v is

−→
R [v] = |{u ∈ V \ {v} | v ; u}| ,

where v ; u indicates that u is reachable from v. Similarly,
the size of the inbound reachability set of v is

←−
R [v] = |{u ∈ V \ {v} | u; v}| .

Accordingly, we define the total distance to the outbound
reachability set of v as

−→
S [v] =

∑
u|v;u

dvu,

and the total distance to the inbound reachability set of v
as

←−
S [v] =

∑
u|u;v

duv.

The outbound and inbound centralities are accordingly de-

fined as the (inverse of the) ratios
−→
S [v]/

−→
R [v] and

←−
S [v]/

←−
R [v].

Unfortunately, the hybrid estimator, and even the special
case of the pivoting estimator, do not work well with direc-
tion. This is because directed distances are not a metric
(they are not symmetric). Intuitively, distances from the
pivot (closest sampled node) can be much larger than dis-
tances from the node for which we estimate centrality.

Sampling can be used with direction, but, when naively
applied, will not provide relative error guarantees even when
the distance distribution is not skewed. The reason is that
it is not enough to use all distances from a small sample of
nodes. For sampling to work, we need to obtain a sample of
a certain size from the reachability set of each node. Some
nodes, however, may reach few or no nodes from this sample.
Therefore the sample provides very little information (or
none at all) for estimating the centrality of these nodes.

We extend the basic sampling approach to directed graphs
using an algorithm of Cohen [14] that efficiently computes
for each node a uniform sample of size k from its reachability
set (for outbound centrality) or from nodes that can reach
it (for inbound centrality). We modify the algorithm so
that respective distances are computed as well. (We apply
Dijkstra’s algorithm instead of generic graph searches.) This
algorithm also computes nk distinct distances, but does so
adaptively, so that they are not all from the same set of
sources.

The same algorithm also provides approximate cardinali-
ties of these sets [14]. This means that, when the distance
distribution is not too skewed, we can obtain good estimates
of the average distance to reachable nodes (or from nodes
our node is reachable from).

Algorithm 4 contains pseudocode for estimating outbound

average distance (
−→
B =

−→
S /
−→
R ) and reachability (

−→
R ) for all

nodes. By applying the same algorithm on G instead of the
reverse graph GT , we can obtain estimates for the inbound
quantities.

Algorithm 4 Estimate for all v ∈ V average distance to
reachable nodes B̂ and cardinality R̂: directed graphs

t← 0,
for v ∈ V do mark[v] ← False; count[v] ← 0; T[v] ←
0; distsum[v]← 0

for nodes u ∈ V in random order do
t← t+ 1; mark[u]← True
Perform pruned Dijkstra from u on GT

for each scanned node v of distance dvu do
if count[v] = k then Prune Dijkstra at v
else

if u 6= v then

distsum[v]
+← dvu

count[v]
+← 1

if count[v] = k then
T[v]← t
if mark[v] then T[v]← t− 1

for v ∈ V do
if count[v] = 0 then B̂[v]← 0

else B̂[v]← distsum[v]/count[v]

if count[v] < k then R̂[v]← count[v]

else R̂[v]← 1 + (k−1)(n−2)
T [v]−1

The algorithm computes for each node a uniform random
sample of size k from its reachability set. It does so by
running Dijkstra’s algorithm from each node u in random
order, adding u to the sample of all nodes it reaches. Since
these searches are pruned at nodes whose samples already
have k nodes, no node is scanned more than k times during
the entire computation. The total cost is thus comparable
to k full (unpruned) Dijkstra computations. This algorithm
does not offer worst-case guarantees. However, on realistic
instances, where centrality is in the order of the median
distance, it performs well.

The algorithm applies a bottom-k variant [19] of the reach-
ability estimation algorithm of Cohen [14] and also computes
distances. The cardinality estimator is unbiased with coeffi-
cient of variation (CV) at most 1/

√
k − 2 [14]. The quality

of the average distance estimates depends on the distribu-
tion of distances and we evaluate it experimentally.

We also consider non-uniform node weights and the re-

spective weighted definitions,
−→
S β [v] =

∑
u|v;u β(u)dvu and

−→
Rβ [v] =

∑
u|v;u β(u). A pseudocode for a weighted version

is provided as Algorithm 5. The algorithm assigns nodes
with ranks that depend on their weight, effectively having
each node count for a bottom-k sample of its reachability
set, as proposed by Cohen and Kaplan [14, 19]. The pseu-
docode uses priority sampling [24, 39]. The algorithm then
processes nodes according to increasing rank order. The
weighted reachability estimate is applied to the rank of the
kth sample (this is a bottom-k estimator).

7. RELATED WORK
Closeness centrality is only one of several common defini-

tions of importance rankings. These include degree central-
ity, intended to capture activity level, betweenness central-
ity, which captures power, and eigenvalue centralities, which
capture reputation [27,50].



Table 1: Evaluating algorithms on undirected instances. For each instance, we report its number of nodes
and edges, and for several algorithms the running time and average relative error.

Exact Sampling Pivoting Hyb.-0.1 Hyb.-ad

|V | |E| time err. time err. time err. time err. time
type instance [·103] [·103] ≈ [h:m] [%] [sec] [%] [sec] [%] [sec] [%] [sec]

road fla-t 1 070 1 344 59:30 5.4 24.4 3.2 21.6 2.5 28.3 2.8 73.2
usa-t 23 947 28 854 44 222:06 2.9 849.4 3.7 736.4 2.0 2 344.3 2.6 9 937.9

grid grid20 1 049 2 095 70:34 4.3 26.5 3.5 26.8 2.9 29.2 3.3 69.7
triang buddha 544 1 631 19:07 3.6 14.5 3.3 13.6 2.4 15.9 3.2 30.7

buddha-w 544 1 631 21:25 3.5 16.4 2.6 15.5 2.2 18.5 2.9 38.1
del20-w 1 049 3 146 72:06 2.7 27.4 3.6 26.7 2.6 32.6 2.7 71.0
del20 1 049 3 146 67:54 4.1 25.6 5.3 25.2 3.7 27.0 3.6 54.7

game FrozenSea 753 2 882 38:25 3.0 22.1 4.1 20.2 2.1 24.0 3.4 49.3
sensor rgg20 1 049 6 894 137:36 1.6 54.2 3.8 49.3 2.1 63.7 2.2 123.3

rgg20-w 1 049 6 894 160:29 1.6 61.2 3.8 57.1 2.1 73.3 2.3 142.3
comp Skitter 1 695 11 094 248:27 0.7 59.7 14.3 55.2 0.7 61.6 3.6 109.5

MetroSec 2 250 21 643 269:51 0.6 52.1 2.3 47.5 0.6 53.2 0.3 93.2
social rws20 1 049 3 146 113:40 0.9 45.6 3.0 41.3 0.9 49.4 0.9 98.6

rba20 1 049 6 291 132:35 0.8 56.8 9.7 48.4 0.8 60.2 1.0 117.4
Hollywood 1 069 56 307 226:42 1.0 86.5 14.6 81.8 1.0 85.7 1.9 117.6
Orkut 3 072 117 185 2 973:09 1.7 377.4 7.2 367.6 1.7 376.4 2.1 553.0

Algorithm 5 Estimate for all v ∈ V weighted sum of dis-
tances to reachable nodes Ŝ and weighted sum of reachable
nodes R̂: directed graphs

for v ∈ V do count[v] ← 0; Bcount[v] ← 0;
distsum[v]← 0

V+ ← {v ∈ V | β[v] > 0}
for u ∈ V+ do r[v]← rand()/β[v] . rand() ∼ U [0, 1] is
uniform at random from [0, 1]

for u ∈ V+ in increasing r order do
Perform pruned Dijkstra from u on GT

for each scanned node v of distance dvu do
if count[v] = k then Prune Dijkstra at v
else

if u 6= v then

count[v]
+← 1

if count[v] < k then

distsum[v]
+← β[u]dvu

Bcount[v]
+← β[u]

if count[v] = k then
T[v] = r[u]

for v ∈ V do
if count[v] = 0 then R̂[v]← 0; Ŝ[v]← 0

else if count[v] < k then R̂[v]← Bcount[v]; Ŝ[v]←
distsum[v]

else Ŝ[v]← distsum
T [v]

; R̂[v]← k−1
T [v]

We only consider the classic definition of closeness cen-
trality. A well-studied alternative is distance-decay close-
ness centrality, where the contribution of each node to the
centrality of another is discounted (is non-increasing) with
distance [11,12,16,18,21,41]. The subtle difference between
distance-decay and classic closeness centrality is that the
latter emphasizes the penalties for far nodes, whereas the
distance-decay measures instead emphasize the reward from
closer nodes. Distance-decay centrality is well defined on
disconnected or directed graphs. In terms of scalable compu-
tation, efficient algorithms with a small relative error guar-

antee were known for two decades and engineered to handle
graphs with billions of edges [2, 8, 9, 14,16,18,20,42]. These
algorithms, however, provide no guarantees for estimating
classic closeness centrality. The intuitive reason is that they
are based on sampling that is biased towards closer nodes,
whereas correctly estimating classic closeness centrality re-
quires accounting for distant nodes, which can be missed by
such a sample.

8. EXPERIMENTS
We implemented our algorithms in C++ using Visual Stu-

dio 2013 with full optimization. We conducted all tests on a
machine with two Intel Xeon E5-2690 CPUs and 384 GiB of
DDR3-1066 RAM, running Windows 2008R2 Server. Each
CPU has 8 cores (2.90 GHz, 8× 64 kiB L1, 8 × 256 kiB, and
20 MiB L3 cache), but all runs are sequential. We use 32-bit
integers to represent arc lengths.

We test a variety of instances, including social networks
(Epinions [43], WikiTalk [31, 32], Flickr [38], Hollywood [7,
10], Twitter [22], LiveJournal [34], and Orkut [52]), com-
puter networks (Gnutella [37], Skitter [33], Slashdot [34],
MetroSec [36]), and web graphs (NotreDame [1], Indo [7,10],
Indochina [7, 10]). All these instances are unweighted, and
some are directed. We consider two additional synthetic
instances: rws20 is generated according to a preferential at-
tachment model [51] and rba20 is a small-world graph [3].

We also test road networks [23]. Instances fla-t (Florida)
and usa-t (USA) are undirected and use TIGER data; eur-t
and eur-d are directed and represent Western Europe. For
these instances, the suffix indicates whether edge costs rep-
resent travel times (-t) or distances (-d). Instance grid20 is
a 1024× 1024 unweighted grid.

The buddha instance is a computer graphics mesh rep-
resenting a three-dimensional object [45]. Instance del20
is a Delaunay triangulation of 220 random points on the
unit square [28]. Nodes also represent random points in the
unit square for rgg20, but now two nodes are connected by
an edge if the corresponding Euclidean distance is below
a given threshold (chosen to ensure the graphs are almost
connected [28]). Such random geometric graphs often model
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Figure 2: Cumulative quality distribution (over 1000 queries) for varying ε.

sensor networks. These three instances are unweighted; their
counterparts with a -w suffix have edge lengths correspond-
ing to Euclidean distances. Instance FrozenSea is a grid with
obstacles from Starcraft (a computer game) available from
movingai.com [46]. Edge lengths are set to 408 for axis-
aligned moves and 577 for diagonal moves (577/408 ≈

√
2).

8.1 Undirected Closeness Centrality
Table 1 summarizes the main results for undirected in-

stances. We set k = 100 for this experiment. We evaluate
sampling, pivoting, and our novel hybrid algorithm with re-
spect to running time and solution quality. We consider two
versions of our algorithm, both based on Algorithm 1: the
first uses ε =

√
1/k = 0.1; the adaptive version picks, for

each node, the ε value from {0.001, 0.025, 0.05, 0.1, 0.2, 0.5,
0.99} that minimizes the estimated error.

For each instance, Table 1 shows the number of nodes
and edges it contains (in thousands), followed by the es-
timated time needed to compute exact centralities for all
nodes. Then, for each approximate algorithm, we show
its average relative error (over 1000 random nodes queried)
and the total time for computing centrality estimates for all
nodes (including preprocessing).

We observe that the exact algorithm is prohibitively time-
consuming for large graphs, justifying our settling for ap-
proximations. Among those, all methods do reasonably well,
with average relative error always below 15%. The sampling
algorithm is in general more robust than pivoting, with aver-
age relative error below 6%. For some high-diameter graphs
(such as road networks and meshes), however, pivoting finds
better results. Our hybrid algorithm successfully achieves
a good tradeoff between these two approaches. Its quality
usually matches the best among pivoting and sampling, and
often outperforms them.

The adaptive version of our algorithm goes one step fur-
ther and actually uses different values of ε to obtain even
finer tradeoffs. This can occasionally be helpful (as in Met-
roSec), but in general using fixed ε is better in terms of

running time and quality. Although Algorithm 2 uses ad-
ditional space to make even finer choices, it leads to very
similar results (not shown in the table). We conclude that

fixing ε =
√

1/k is a good strategy: It is more robust than
either sampling or pivoting, with very little overhead. On
the biggest graph we tested (Orkut), with 117 million edges,
we obtained centrality estimates with approximation guar-
antees for all nodes in about six minutes.

Figure 2 examines the quality of the algorithms in Table 1
in more detail. For comparison, we also show results for the
hybrid algorithm with ε = 0.5. Once again, we compute
the relative error for 1000 queries, plotted in order of in-
creasing error. In other words, for each value 1 ≤ i ≤ 1000,
we report the i-th smallest relative error observed for each
algorithm. We consider six representative instances. For
fla-t, grid20, and buddha-w, sampling yields better results
than pivoting; for del20-w, FrozenSea, and Skitter, sampling
behaves better. On all cases, our default hybrid algorithm
(with ε = 0.1) is generally better than either method. We
note that, unsurprisingly, pivoting tends to have more out-
liers than pure sampling (i.e., the worst queries for pivoting
are worse than the worst for sampling). Although some of
this effect is transferred to the hybrid algorithm, it is much
less pronounced. This is not true with higher ε, which causes
the hybrid algorithm to rely more heavily on pivoting.

8.2 Directed Centrality
We now consider centrality on arbitrary directed graphs.

Table 2 gives the results obtained by Algorithm 4. Once
again, we use k = 100 and evaluate the algorithm with 1000
random queries. The “Exact” column shows the estimated
time for computing all n outbound centralities using Dijk-
stra computations. We then show the average relative error
(over the 1000 random queries) and the total running time
to compute all n centralities using Algorithm 4. Although
this algorithm has no theoretical guarantees, its average rel-
ative error is consistently below 6% in practice. Moreover,



Table 2: Evaluating algorithms on directed in-
stances. As in Table 1, we report the number of
nodes and directed edges and for several algorithms
the running time and average relative error.

Exact Sampling

|V | |E| time err. time
type instance [·103] [·103] ≈ [h:m] [%] [sec]

road eur-t 18 010 42 189 28 399:47 3.2 655.9
eur-d 18 010 42 189 22 306:20 3.2 517.0

web NotreDame 326 1 470 0:54 2.4 1.5
Indo 1 383 16 540 58:46 4.1 21.1
Indochina 7 415 191 607 2 884:19 4.7 174.7

comp Gnutella 63 148 0:02 2.8 0.6
social Epinions 76 509 0:07 5.4 1.1

Slashdot 82 870 0:18 2.2 2.2
Flickr 1 861 22 614 227:01 4.3 65.1
WikiTalk 2 394 5 021 22:01 0.5 5.4
Twitter 457 14 856 28:16 1.2 26.1
LiveJournal 4 848 68 475 2 757:01 1.9 276.8

it is quite practical, taking less than three minutes even on
a graph with almost 200 million edges.

9. CONCLUSION
We presented a comprehensive solution to the problem

of approximating, within a small relative error, the classic
closeness centrality of all nodes in a network. We proposed
the first near-linear-time algorithm with theoretical guaran-
tees and provide a scalable implementation. Our experimen-
tal analysis demonstrates the effectiveness of our solution.

Our basic design and analysis apply in any metric space:
Given the set of distances from a small random sample of
the nodes to all other nodes, we can estimate, for each node,
its average distance to all other nodes, with a small relative
error. We therefore expect our estimators to have further
applications.
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