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Abstract

The tooling landscape of deep learning is fragmented by a growing gap between
the generic and productivity-oriented tools that optimize for algorithm develop-
ment and the task-specific ones that optimize for speed and scale. This creates an
artificial barrier to bring new innovations into real-world applications. Minerva
addresses this issue with a layered design that provides language flexibility and
execution efficiency simultaneously within one coherent framework. It proposes
a matrix-based API, resulting in compact codes and the Matlab-like, imperative
and procedural coding style. The code is dynamically translated into an inter-
nal dataflow representation, which is then efficiently executed against different
hardware. The same user code runs on modern laptop and workstation, high-end
multi-core server, or server clusters, with and without GPU acceleration, deliver-
ing performance and scalability better than or competitive with existing tools on
different platforms.

1 Introduction
This paper examines the tooling of deep learning that has made of its innovations possible. We notice
a widening gap between the generic and productivity-oriented tools and the more task-specific ones.
Yet, from the perspective of a complete ecosystem, these two classes of tools are intimately related.

To begin our discussion, we note that the core innovations are not by themselves new; going deep,
recurrent and convolutional are some of the key ingredients that were proposed many years ago. The
success of deep learning and the great amount of remaining puzzles inspire new algorithmic innova-
tions in this space, deriving models that sometimes depart significantly from a straightforward feed-
forward network topology [1, 2, 3]. The new models are typically developed in productivity-oriented
tools such as Matlab or Octave. Because of their ease of programming coupled with a significant
collection of optimization and visualization routines, such tools are ideal in breeding ground of new
innovations. However, in order to become relevant, these innovations must be ultimately tested on
real-world data set. The key problem of doing so in such tools is their incompetence to handle large
volume of data and efficiently exploit advanced hardware that are economically viable due to the
trend of big data computing.

Meanwhile, there is a growing number of new task-specific tools. Gravitated towards a few known
network architectures, these tools trade-off programmability in favor of speed and scale. For ex-
ample, many image classification tasks are delivered via variations of the deep convolutional net-
work [4], large-vocabulary speech recognition tasks typically employ multi-layer networks [5, 6],
and those in natural language processing use recurrent architectures [7]. These tools are adept to
leverage the new breed of hardware, including GPU acceleration for matrix computation (e.g. Cuda-
Convnet [8] and Caffe [9]), distributed multi-core CPU-based cluster (e.g. DistBelief [10]), or GPU
cluster [11]. Consequently, they optimize for certain kind of networks, with implementations that are
tightly coupled with the underlying hardware, and the network models sometimes take shortcuts in
order to circumvent hardware limitations. For example, the object classification model in [10] and
[11] disallow sharing of parameters across machine boundaries, even when such sharing is known
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Figure 1: The overall architecture of a Minerva
system.

Category APIs

Building Model
Layer layer = AddLayer(dim)
AddConnection(layer1, layer2, type)
AddConvConnect(layer1, layer2,...)

Creating Matrix

A = Matrix(layer1, layer2, init)
A = Matrix(layer, dim, init)
A = Matrix(dim, layer, init)
vector<Matrix> LoadBatches(layer,
dim, batch_size, filename)

Element-wise OP
(unary)

B = A.Map(func)
B = A op val
B = val op A

Element-wise OP
(multivariate)

C = A op B
C = EleWiseProd(A1, A2, ...)

Matrix
Multiplication C = A * B

Aggregation
B = A.Agg(agg_type)
B = A.AggPerRow(agg_type)
B = A.AggPerCol(agg_type)

Matrix Layout B = A.Transpose()

Model Paralelism SetPartition(layer, part_plan)

Data Paralelism
RegisterToParameterServer(para_set)
PushToParameterSever(para_set)
PullFromParameterSever(para_set)

Table 1: The Minerva API.

to be effective to constrain model capacity to avoid overfitting. While diverse, task-specific tools
share the common spirit that the flexibility is limited to network reconfiguration. Their strengths are
speed and scale, whereas the long turn-over time and difficulties to debug prohibits them to make
dramatic algorithmic changes.

The dilemma is that we are now facing a broken pipeline: innovations produced on one end are
increasingly harder to be tested on the other. It is legitimate to argue that this is a result of pragmatic
progress, and should be accepted as facts. However, we raise the question as whether this conclusion
is superficial, and the apparent gap between productivity and performance is reconcilable. We begin
our pursuit with the position that it is impractical to replace tools such as Matlab in the tool chain.
Instead, we hypothesize that, with a principled system building approach, it is possible to retain
much of the programmability of the productivity-oriented tools at the programming language level,
and at the same time exploit modern hardware efficiently underneath.

We have prototyped a system called Minerva to meet this challenge, and this paper reports our
progress. Minerva draws inspirations from both classes of tools, and tries to build a bridge in be-
tween. Minerva proposes and programs directly against a matrix-based API, preserves the Matlab-
like, imperative and procedural coding style. This is unlike tools such as Theano [12]. Consequently,
if needed, migrating a Matlab program to Minerva is more straightforward. At runtime, a Minerva
program is translated into an internal dataflow representation, which is executed efficiently on dif-
ferent hardware. The same user code runs on modern laptop and workstation, high-end multi-core
server, or server clusters, with and without GPU acceleration. This modular and layered design
isolates runtime complexity from end users. We have carefully engineered the system, such that it
delivers performance and scalability better than or competitive with existing tools on different hard-
ware platforms. For example, Minerva’s implementation of the convolutional network is as compact
as the Matlab version, and reaches 42.7% top-1 and 29.9% top-5 error rate on ImageNet 1K category
classification task, with speed that is 2x faster than ConvNet and close to Caffe on a single GPU. Our
implementation of recurrent neural network delivers 28X and 124X performance gain on a 16-core
CPU and GPU, respectively, against a widely used hand-tuned single thread implementation.

We acknowledge that programmability is not equal to productivity, but it is a critical and necessary
condition. To make Minerva useful, and we are actively working towards releasing it as an open
source project. In the remainder of the paper, we will describe the overall architecture (Section 2),
the design of programming model (Section 3) and runtime (Section 4). We share our experience and
preliminary results in Section 5. Finally, we conclude in Section 6.

2 System Overview
The overall architecture of Minerva system is illustrated in Figure 1. A Minerva process executes
every training iteration by alternating between two phases, the first phase symbolically executes the
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1 #include "minerva.h"

2
3 float Sigmoid(float x) {

4 return 1.0 / (1.0 + exp(-x));

5 }
6
7 void MLP_Training() {

8 // Building Graph Model

9 Model model;

10 Layer layer1 = model.AddLayer(500);

11 Layer layer2 = model.AddLayer(1000);

12 Layer layer3 = model.AddLayer(10);

13 model.AddConnection(layer1, layer2, FULL);

14 model.AddConnection(layer2, layer3, FULL);

15 SetPartition(layer1, 2); SetPartition(layer2, 2);

16 model.Finalize();

17
18 // Setting Hyper-parameters

19 float rate=0.1; int numEpochs=66, batchSize=100;

20
21 // Initializing matrices

22 Matrix W = Matrix(layer2, layer1, RANDOM);

23 Matrix V = Matrix(layer3, layer2, RANDOM);

24 Matrix b(layer2, 1, RANDOM);

25 Matrix c(layer3, 1, RANDOM);

26 vector<Matrix> inputs = LoadBatches(layer1,...);

27 vector<Matrix> labels = LoadBatches(layer3,...);

28
29 // Data Parallelism: Registering Global Parameters

30 ParameterSet pset;

31 pset.Add("W", W); pset.Add("V", V);

32 pset.Add("b", b); pset.Add("c", c);

33 RegisterToParameterServer(pset);

34
35 // Learning Procedure

36 for(int epoch = 1; epoch <= numEpochs; ++epoch) {

37 for(int i = 1; i <= inputs.size(); ++i) {

38 Matrix x = inputs[i];

39 // Feedforward

40 Matrix y = (W * x + b).Map(&Sigmoid);

41 Matrix z = (V * y + c).Map(&Sigmoid);

42 // Backpropgation

43 Matrix ze = EleWiseProd(z, 1-z, z-labels[i]);

44 Matrix ye = EleWiseProd(y, 1-y, W.Transpose()*ze);

45 // Updating Weight

46 W -= rate * ye * x.Transpose() / batchSize;

47 V -= rate * ze * y.Transpose() / batchSize;

48 b -= rate * ye.AggPerRow(SUM);

49 c -= rate * ze.AggPerRow(SUM);

50 }

51 // Data Parallelism: Sync Parameters

52 if (epoch % 3 == 0) PushToParameterSever(pset);

53 if (epoch % 6 == 0) PullFromParameterSever(pset);

54 EvalAll();

55 }

56 }
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Figure 2: The Minerva program of a 3-layer neural network

user code to generate the dataflow representation, whereas the second phase evaluates it concretely.
The dataflow representation is platform independent, and is identical in each process. This layered
design separates the support for language flexibility and execution efficiency. The cost to generate
the dataflow graph is negligible, but it enables the rest of the system to focus on performance.

In deep learning, parallelism exists in two mutually complementary forms (DistBelief [10]). For
model parallelism, multiple processes are grouped into model replica to train the same model. The
processes partition the dataflow graph deterministically. Each process works on its portion while
resolving data dependency among them via asynchronous remote procedure calls, and thus max-
imumly hides communication overhead. We perform automatic inference to derive near-optimal
data placement among processes to preserve locality, which is important when we run on a cluster
of machines. Note that by utilizing the specially-designed programming model, our architecture
derives data placement in a complete static and de-centralized way, and thus gets rid of the central
coordination needed in other computing engines for big data [13, 14, 15].

For data parallelism, multiple model replicas work on different partitions of the data sets. Each
replica has one local parameter server that it updates to. The parameter servers of different repli-
cas asynchronously exchange updates among themselves to keep the models loosely synchronized,
possibly via a centralized master.

The system is logically partitioned into two tiers (Figure 1). The upper-level runs data parallelism
across model replicas, and the lower-level exploits model parallelism within each model replica.
Minerva processes exploit two major hardware advantages: GPU acceleration, and multi-core CPUs.
Doing the former is relatively straightforward, the dataflow graph is always evaluated in GPU if it
is available. The minimum configuration is one model replica containing only one process coupled
with one parameter server process, which can be run on a laptop. Scaling out the system is achieved
by adding more replicas, more processes of each replica, or both.

3 Programming Model
A valid design alternative is to express the model using the graph programming paradigm since,
after all, the neural network is a graph. Indeed, our first prototype leverages the gather/scatter/apply
API in GraphLab [16]. One immediate benefit is that it directly expresses all parallelism inherent in
the algorithm. The problem is that the entire training procedure is now broken into isolated vertex
programs. Such fragmentation leads to tedious inference of the overall program flow, and debugging
becomes a nightmare, which entirely defeats the purpose of being user friendly.

The detour to graph programming is nevertheless beneficial. It reveals the insight that the training
programs are a series of matrix operations induced from the graphical representation of the model.
Our approach combines the strength of both graphical representation for the model and matrix inter-
face for the computation, which can be summarized as “build as a graph, program with matrices”.
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3.1 Minerva API
Minerva defines a set of APIs (Table 1) to cover three distinctive stages of a deep-learning algorithm:
describing the model architecture, declaring the primary matrices, and finally, specifying the learn-
ing procedure. The programming style is imperative and procedural, resembling how one develops
algorithm in Matlab. Figure 2 shows the code snippet of a simple 3-layer neural network.

A Minerva model has two entities: layer and connection. User declares a layer by calling
model.AddLayer(dim), and model.AddConnection(l1, l2) to connect the two lay-
ers. In this example, dim is a scalar that specifies number of neurons, and the type of connection
is fully connected. Line 9-16 builds the model in Figure 2 (partition will be explained shortly). So
far, we have found that these two simple APIs are sufficient to describe all the models that we have
studied, including recurrent network, and multi-modal network [3]. This explicit graphical structure
acts as a scaffold, against which all variables are directly or indirectly pinned. This is critical for
Minerva to declare and extract parallelism, as we shall explain shortly.

The basic data type in deep learning algorithm is matrix. For example, the hidden layer’s activation
is computed with y = sigmoid(Wx + b) (line 40). To carry out this statement, matrix W , x and
b must be declared. In Minerva, matrices are either directly derived from the model (e.g. W, b and
inputs), or are results of computation (e.g. y). In either case, they are attached to the model, via
either explicit declaration or program inference. In this example, x is attached to layer1, y and b
are attached to layer2, and W is attached to the connection in between (see Figure 3(a)).

Writing training procedure is straightforward. Line 38-49 corresponds to the feed-forward pass,
back propagation and the weight update. The style of the program is similar to many of the Matlab
implementations of deep learning algorithms we have studied. We incrementally add operators as
we implement various deep learning networks. Table 1 summarizes the major ones. The most
important types are element-wise operator and an extended version of multiplication operator. In
addition, there are various forms of aggregation operations for error calculation or normalization.

CNN (convolutional neural network) requires some special treatments. Recall that each layer in
CNN is a stack of feature maps, and each of which is a 2-D or 3-D data. Thus, the input and output
of each layer actually has a internal multi-dimensional structure. Furthermore, instead of a fully
connection, a filter is replicated and tiled between the two layers. All these structural information are
given by a single interface AddConvConnect(layer1, layer2,...). Then, the Matrix
class operators such as + and * automatically take appropriate implementation (see Section 4).

3.2 Expressing parallelism
Minerva runtime executes the user code symbolically to build an internal dataflow graph. The
dataflow fragment that corresponds to one statement of the feed-forward pass (line 40) is depicted
in Figure 4(a). Fragments of individual statement are stitched together, and when an EvalAll()
statement is hit (line 54), the entire dataflow representation is evaluated concretely – a form of lazy
evaluation. This dataflow representation expresses all the potential parallelism inherent in the train-
ing algorithm. To improve performance further, user can elect to employ model parallelism (line
15), data parallelism (line 30-33, 52-53), or both of them. These options are entirely optional, and
the system runs correctly without them.

Model parallelism. The algorithm-inherent parallelism is typically too low to be exploited by a
multi-core and/or a cluster of servers. Increasing the amount of parallelism can be done by par-
titioning the models, using the SetPartition(layer, partplan) interface. Line 15 in-
structs that layer1 and layer2 be both partitioned into two equal portions, and thereby splits
the original model (Figure 3). After partitioning, the equivalent dataflow graph (Figure 4(b)) now
expresses more parallelism. Note that all matrices attached to the splitted segments of the model
are automatically partitioned via program inference. The split leads to their partitioning scheme
depicted in Figure 3(b).

Data parallelism. Minerva can train multiple model replicas in parallel. These replicas execute the
same user code but on different set of machines, and synchronize through a logically centralized
parameter server. To enable data parallelism, we first register to the parameter server the set of
parameters to be synchronized (line 30-33). User can control the pace to update and refresh its
parameter set (line 52-53). The update sends deltas, whereas the refresh downloads the entire new
set. Since weight updates are commutative and associative, the logic in parameter server is simple.
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3.3 User-enabled optimization
The most important optimization to get good performance is to hide various I/O latencies. These
optimizations are often scenario and platform dependent. We demonstrate how Minerva achieves
them with only a few lines of code change.

For example, when data volume is too large to fit in memory, loading data from disk should proceed
in parallel with computation. In Minerva, this can be done by letting a temporary matrix prefetch the
next batch of data, and switching to it at the end of the iteration, as illustrated in Figure 5a. Training
on the current batch and loading of the next are therefore proceed in parallel.

Another example is to hide network latency in model parallelism. Considering a matrix that repre-
sents the neuron activations of one layer. The matrix is partitioned among multiple processes and
has number of rows equal to the mini-batch size. A single propagation needs these processes to send
its portion of this matrix to all others, incurring bursty and expensive data shuffling across network.
Although our runtime already performs partial computation as data arrives, this expense is still vis-
ible. We deal with this problem by simply carving up one mini-batch into smaller mini-mini-batch,
enabling pipelining across layers (Figure 5b).

thisBatch = LoadBatches(..., inputfiles[1]);
for(int n = 1; n < numBatchFiles; ++n) {
nextBatch = LoadBatches(..., inputfiles[n+1]);
...; // Training on thisBatch
EvalAll();
thisBatch = nextBatch;

}

(a) Batch prefetching

for(int i = 0; i < numMiniBatches; ++i) {
for(int j = 0; j < numMiniMiniBatches; ++j) {
// Calculate gradient on the j’th mini-mini-batch
gradients[j] = ...;
}
for(int j = 0; j < numMiniMiniBatches; ++j) {
parameters -= rate * gradients[j]; // Gradient decent
}
EvalAll();

}

(b) Mini-mini batch pattern
Figure 5: User-enabled optimizations

4 System design
As shown in Figure 1, each Minerva process has identical flow of execution. It first steps through
the model-building part of the user code (e.g. line 9-16 of Figure 2), generating an internal graphical
representation of the model, which will be referenced to infer data placement decision and parallel
execution plan later. The following part (Line 36-55 of Figure 2) is training procedure. Each iteration
is decomposed into two phases. The first phase processes statements lazily to form a dataflow
graph, whose vertexes are either computing vertex or data vertex. This phase stops when hitting a
EvalAll() statement, and the graph is then concretely evaluated. By definition, the inputs of the
dataflow graph are data vertexes that are ready at this point (e.g. load training data). The evaluation
of a computing vertex fills downstream data vertexes and progressively triggers further evaluation in
the dataflow graph. All ready vertexes are queued up and processed by a thread pool. When all of
them are processed, the control returns to symbolic execution phase of the next iteration.

Support heterogeneous hardware. Computing vertexes are virtual pointers that carry out prede-
fined operations (see Table 1). These pointers implement polymorphism to call different libraries
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and engines. We use Intel’s MKL library or Nvidia’s CUBLAS library to perform matrix computa-
tion when running on a multi-core CPU or GPU, respectively. For GPU training, the state of model
always live in GPU, and training data is on-demand fetched from CPU memory.

Model parallelism. Processes in one model replica update the same model in parallel. Note that
theoretically we can arbitrarily increase the amount of parallelism in the dataflow graph by using
more partitions to split the layers (using the SetPartition API; see Section 3). Since all pro-
cesses generate identical graphs, parallel execution is then reduced to a coordinated and partitioned
execution plan among them.

The important considerations regarding a parallel execution plan are load-balance, coordination
overhead and data locality; they are critical especially in a cluster environment. Note that split-
ting all the layers evenly achieves load-balance in normal cases, and that is the default partitioning
strategy. Coordination overhead could thus be removed completely by this statically partitioning
policy. During execution, each process executes computing vertexes that it owns and skips others
(See Figure 4 for an example). The ownership of a computing vertex is decided by the location of
its input and output data vertexes. Therefore, the placement of data vertex uniquely determines the
assignment of workload among processes. In theory, one can take any policy to place data vertex,
as long as it is deterministic, but it is also tricky to get optimal performance. A good solution should
maximizes locality, so that the computing vertexes have inputs local to them most of the time. Our
key observation is that data attached to the same layer are also likely to operate together. Our place-
ment policy thus works by enforcing those data to be co-located, and fixing the rest deterministically
(see Figure 3). Note that all data are attached to the model, which reveals some clues about what
data should be co-located. The insight is that the data that attached to the same model part are
likely to be operated together. Consider Line 43 in Figure. 2, both z and labels are attached to
layer3, and the − and EleWiseProd operations could be perfectly paralleled without incurring
any communication, if all these operands are co-located. In fact, these operators comprise majority
of operations in a deep learning algorithm. By placing these data together, most of the operations
will find their input locally. For other operators like multiplication, they are computationally intense
and induce network traffic no matter how smart a placement algorithm is. In practice, this scheme
works very well against other more complex alternatives we have considered. For any data that does
travel across process boundary, we insert pointers to remote send and receive calls on the edge in
the dataflow graph. The transfer is triggered when a data is produced, and thus maximumly hides
communication latency.

Handling convolutional network. Convolution is a case that needs special handling owing to its
different inherent parallelism. Parallelism in CNN proceeds by dividing up the input and output data
into smaller patches. A set of filters local to a process convolves over its partition. The dataflow
construction of a convolution operation considers boundary conditions, and fetches data belonging
to different partitions (Figure 6). The convolution operator (C in Figure 6) follows the same opti-
mization as in [11] by first forming larger matrix from non-consecutive inputs and then performing
matrix multiplication. The gain of multiplication outweights the overhead of additional memory
copy, and is especially effective for GPU.

Data parallelism. In Minerva, there is one parameter server local to each machine. It receives local
updates and asynchronously exchanges them with other parameter servers. For GPU-based training,
the update frequency is very high (e.g. < 1s for one mini-batch in ImageNet training), and we have
found the master-slave architecture as done in DistBelief non-scalable. We have developed a proto-
col that enables parameter sharing as long as the parameter servers form a loop-free topology. The
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protocol resembles the algorithmic structure of belief propagation in Bayes network [17]. Basically,
a parameter server merges its own updates with those from all its connected neighbors, and gossips
to each of them the missing portion. The protocol is proved to achieve eventual consistency, and
tolerates dynamic fail and rejoin of any machine. It gives the flexibility of trading off model diver-
gence with scalability. For example, a topology where all parameter servers form a chain has the best
load balance but the slowest propagation, and the master-slave topology is the opposite but performs
poorly under high update rate. A twin-master topology strikes a balance in between (Figure 7). We
refer user to [18] for the detailed design.

5 Experience and Evaluation
We have implemented the most common deep learning networks and a variety of popular regular-
izations. We have also built gradient checker, enabling us to catch a number of subtle bugs. The
user code is typically as compact as their Matlab versions. We also support scripting a network just
as other task-specific tools to speed up common trainings. We have verified model accuracy with
various regression tests, against Matlab code as well as other systems. Minerva’s implementation of
the CNN model [4] gives 42.7% top-1 error rate on the ImageNet 1K classification task. Our study
of incremental and hierarchical learning [19] is done entirely through Minerva.

We now report results of system performance (i.e. speed and scale) using three networks; they are
chosen because the common baselines are well known. The first is a well-known CNN model [4]
for ImageNet 1K classification. The Speech-net is a conventional deep feed-forward network. Its
default configuration contains 1100 input neurons, 8 hidden-layers of 2K sigmoid neurons and a
9K softmax output layer. This is a large-vocabulary speech recognition model our sibling speech
research group uses. Finally, RNN is a recurrent network with 10K (vocabulary size) input, 1000
hidden and 10K flat output units. Its core training loop has fewer than 60 lines of code.

We have done extensive evaluations across different platforms; due to space limitation we can only
present a few results in detail. For desktop productivity, Minerva is 1.5x ∼ 2.0x and 15x faster
than Matlab for speech-net and a scaled-down CNN, respectively, on a 4-core workstation; we get
qualitatively similar results on a Lenovo X1 labtop. In all experiments below that run on CPU,
model partitioning is turned on to create more parallelism. The optimal partition scheme is task-
and platform-dependent, and can be discovered by simple profiling. For example, the CNN model
running on a 16-core server with a 16-way partition enjoys a 4.6x speed up against no partition.

7



Scaling up. Figure 8 shows the results of CNN on a 16-core Xeon E5-2665 CPU and GTX Titan
GPU with mini-batch size of 128, comparing against ConvNet and Caffe. We vary the model size
by changing number of feature maps. The small, medium (default) and big model correspond to
0.38/1.05/3.91 billion connections. Focus first on our CPU performance, scaling the model size
scales the running time almost linearly. On the GPU side, Minerva runs 2x faster on the medium
model than ConvNet, and close to Caffe (0.75 vs. 0.60). For the large model, only Minerva and
Caffe can complete the run. We also evaluate the training speed using larger mini-batch size. For
the small model, Minerva is about 20% and 24% faster than Caffe with 256 and 512 mini-batch
size respectively. For medium and big model, Minerva’s and Caffe’s performance are close. Further
improvements could be achieved by using the unwrapping trick proposed/used in [9, 20].

Figure 9 shows the performance of RNN training with RNNLM and Minerva on a 16-core server,
where hidPart and outPart are the partition number in hidden and output layer, respectively.
bpttBlock is the model update cycle. Without model parallelism, Minerva performs more than 6
times better than RNNLM on a single core. The reason is that we batch 100 sentences in one training
pass and apply matrix-matrix multiplication, unlike RNNLM which only uses hand-tuned matrix-
vector multiplication. Without model parallelism, there is limited room for improvement with more
cores, and we reach only 110 words/s with 16 cores. Partitioning the model at hidden, the output
and at both layers successively unlock more and more parallelism without compromising model
accuracy, to around 250 words/s, nearly 18X performance gain over RNNLM. With lower model
update frequency (by setting bpttBlock = 5), we reach 380 words/s. Finally, the same code trains
unmodified on GPU and reaches 1674 words/s. This is another 4.4X speedup over 16-core CPU
training and more than two orders of magnitude faster than RNNLM(124X).

On CPU, scaling up the model to 50K, 100K, 500K and 1M input/output units decreases the through-
put proportionally, to 94, 47, 9.3 and 4.5 words/s, respectively. This is because of the dominating
cost of hidden-output computation, which is proportional to input/output layer size. GPU obtains up
to 7.3X speedup over CPU but stops at the 500K configuration, as the model exceeds GPU memory.

The result of speech-net with varying mini-batch size is depicted in Figure 10. The CPU perfor-
mance varies little around 1K samples per second while larger mini-batch improves the utilization
of GPU, and with 8K mini-batch, we reach nearly 7K samples per second. This result matches well
with hand-tuned GPU implementation from our sibling speech research group.

Scale-out. The speedup performance of CNN over a 4-core cluster is shown in Figure 11, using user-
level network I/O optimization with mini-mini-batch (see Section 3). It achieves nearly 4x speedup
with 8 machines. Consistent with the finding in DistBelief [10], speech-net scales relatively poorly,
due to the intense cross-machine communication induced by the all-to-all connections. It would
seem that the 64-GPU cluster [11] has achieved better scalability of model parallelism. The critical
difference is that the benchmark used in that system is a sparse auto-encoder with local receptive
field, with no weight sharing across machine boundaries. Our CNN is a classifier with a 3-layer
fully-connected layers; model parallelizing such a network remains an open challenge.

6 Conclusion and ongoing works
Minerva is a domain-specific instead of task-specific engine. The difference is subtle but important.
The challenges we resolve with the modular and layered design is to achieve programmability and
performance simultaneously in one coherent framework.

Our ongoing works are multifaceted. We are very close to making GPU data parallelism work.
GPU model parallel meets performance problem of using GPU-direct to transfer data among NVidia
cards, but we believe this can be solved soon. More problematic is the intense traffic induced by par-
titioned fully-connected layers. A better alternative maybe one in which some of the fully-connected
layers are not split but pipelined [21], Minerva allows such flexibility and we plan to experiment.

We are implementing more advanced deep-learning algorithms and optimizations, including Quasi-
Newton methods, Conjugate Gradient Descent and Hessian Free approaches. There is a large body
of algorithmic work that Minerva should support if we want to make it useful. We recognize that
this has to take community’s effort, and are actively working towards releasing Minerva as an open
source project.
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