Sketch-based Influence Maximization and Computation:
Scaling up with Guarantees

Edith Cohen

Microsoft Research
editco@microsoft.com

Daniel Delling
Microsoft Research
dadellin@microsoft.com

Thomas Pajor
Microsoft Research
tpajor@microsoft.com

Renato F. Werneck
Microsoft Research
renatow@microsoft.com

ABSTRACT

Propagation of contagion through networks is a fundamental
process. It is used to model the spread of information, influence,
or a viral infection. Diffusion patterns can be specified by a
probabilistic model, such as Independent Cascade (IC), or captured
by a set of representative traces.

Basic computational problems in the study of diffusion are
influence queries (determining the potency of a specified seed
set of nodes) and Influence Mazimization (identifying the most
influential seed set of a given size). Answering each influence query
involves many edge traversals, and does not scale when there are
many queries on very large graphs. The gold standard for Influence
Maximization is the greedy algorithm, which iteratively adds to
the seed set a node maximizing the marginal gain in influence.
Greedy has a guaranteed approximation ratio of at least (1 —1/e)
and actually produces a sequence of nodes, with each prefix having
approximation guarantee with respect to the same-size optimum.
Since Greedy does not scale well beyond a few million edges, for
larger inputs one must currently use either heuristics or alternative
algorithms designed for a pre-specified small seed set size.

We develop a novel sketch-based design for influence computa-
tion. Our greedy Sketch-based Influence Maximization (SKIM)
algorithm scales to graphs with billions of edges, with one to two
orders of magnitude speedup over the best greedy methods. It still
has a guaranteed approximation ratio, and in practice its quality
nearly matches that of exact greedy. We also present influence
oracles, which use linear-time preprocessing to generate a small
sketch for each node, allowing the influence of any seed set to be
quickly answered from the sketches of its nodes.

1. INTRODUCTION

The spread of contagion (information diffusion or spread
of an infection) is a universal phenomenon that is extensively
studied in the context of physical, biological, and social
networks. Such cascades can have one or multiple sources (or
seeds) and spread from infected nodes to neighbors through
the link structure. A motivating application for the study of
influence is viral marketing strategies [14, 23], in which the
influence of a set S of people in a social network is the number

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’14, November 3-7, 2014, Shanghai, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662077.

of adoptions triggered if we give S free copies of a product.
The problem also has important applications beyond social
graphs, such as placing sensors in water distribution networks
for detecting contamination [20].

A popular model for information diffusion is Independent
Cascade (IC), in which an independent random variable is
associated with each (directed) edge (u,v) to model the
degree of influence of v on v. A single propagation instance
is obtained by instantiating all edge variables. We then study
the distribution of a property of interest, such as the number
of infected nodes, over these random instances.

The simplest and most studied IC model is binary IC, in
which the range of the edge random variables is binary. A
biased coin of probability p.. is flipped for each directed
edge (u,v). Accordingly, the edge can be either live, meaning
that once u is infected, v is also infected, or null. This model
was formalized in a seminal work by Kempe et al. [19] and
is based on earlier studies by Goldenberg et al. [14]. Note
that each direction of an undirected edge {u,v} may have
its own independent random variable, since influence is not
necessarily symmetric. A particular propagation instance is
specified by the set of live edges, and a node is infected by a
seed set S in this instance if and only if it is reachable from
a seed node. The influence of S is formally defined as the
expectation, over instances, of the number of infected nodes.

Instead of working directly on this probabilistic IC model,
Kempe et al. [19] proposed a simulation-based approach, in
which a set {G¥} of propagation instances (graphs) is gener-
ated in Monte Carlo fashion according to the influence model.
The average influence of S on {G(i)} is an unbiased estimate
that converges to the expectation on the probabilistic model.
The ability to compute influence with respect to an arbitrary
set of propagation instances has significant advantages, as
it is useful for instances generated from traces or by more
complex models [16, 1], which exhibit correlations between
edges that cannot be captured by the simplified IC model [15].
Moreover, the average behavior of a probabilistic model on a
small set of instances captures its “typical” behavior, which
is often more relevant than the expected value when the
variance is very high.

A basic primitive in the study of influence are influence
queries: Compute (or approximate) the influence of a query
set S of seed nodes. With binary influence, this amounts
to performing graph searches from the seed set in multiple
instances. Unfortunately, this does not scale well when many
queries are posed over graphs with millions of nodes.

Even more computationally challenging is the fundamental
Influence Mazimization problem, which is finding the most
potent seed set of a certain size or cost. The problem was
formalized by Kempe et al. [19] and inspired by Richardson
and Domingos [23]. Kempe et al. showed that, even when
the influence function is deterministic (but the number s
of seeds is a parameter), the problem encodes the classic
Max Cover problem and therefore is NP-hard [19]. Moreover,
an inapproximability result of Feige [13] implies that any
algorithm that can guarantee a solution that is at least (1 —
1/e + €) times the optimum is likely to scale poorly with the
number of seeds. Chen et al. [5] showed that computing the
exact influence of a single seed in the binary IC model, even
when edge probabilities are p = 0.5, is #P hard [5].

Using simulations, the objective studied by Kempe et
al. [19] is then to find a set S of seeds with maximum aver-
age influence over a fixed set of propagation instances. A
natural heuristic is to use the set of most influential individ-
uals, say those with high degree or centrality [19], as seeds.
This approach, however, cannot account for the dependence
between seeds, missing the fact that two important nodes
may “cover” essentially the same communities. Kempe et
al. [19] proposed a greedy algorithm (GREEDY) instead. It
starts with an empty seed set and iteratively adds to S the
node with maximum marginal gain in influence (relative
to current seed set). Since our objective is monotone and
submodular, a classical result from Nemhauser et al. [21]
implies that the influence of the greedy solution with s seeds
is at least 1 — (1 — 1/s)°® > 63% of the best possible for any
seed set of the same size. From Feige’s inapproximability
result, this is the best approximation ratio guarantee we
can (asymptotically and realistically) hope for.

GREEDY has become the gold standard for influence max-
imization, in terms of the quality of the results. GREEDY,
however, does not scale to modern real-world social networks.
The issue is that evaluating the marginal contribution of
each node requires a directed reachability computation in
each instance (of which there can be hundreds). Several per-
formance improvements to GREEDY have thus been proposed.
Leskovec et al. [20] proposed CELF, which are “lazy” eval-
uations of the marginal contribution, performed only when
a node is a candidate for the highest marginal contribution.
Chen et al. [6] took a different approach, using the reachabil-
ity sketches of Cohen [7] to speed up the reevaluation of the
marginal contribution of all nodes. While effective, even with
these and other accelerations [17, 22], the best current imple-
mentations of GREEDY do not scale to networks beyond 10°
edges [5], which are quite small by modern standards.

To support massive graphs, several studies proposed algo-
rithms specific to the IC model, which work directly with the
edge probabilities instead of with simulations and thus can
not be reliably applied to a set of arbitrary instances. Borg
et al. [3] recently proposed an algorithm based on reverse
reachability searches from sampled nodes, similar in spirit
to the approach used for reachability sketching [7]. Their
algorithm provides theoretical guarantees on the approxima-
tion quality and has good asymptotic performance, but large
“constants.” Very recently, Tang et. al. [25] developed TIM,
which engineers the (mostly theoretical) algorithm of Borgs
et al. [3] to obtain a scalable implementation with guarantees.
A significant drawback of this approach is that it only works
for a pre-specified seed set size s, whereas GREEDY produces
a sequence of nodes, with each prefix having an approxima-

tion guarantee with respect to the same-size optimum. In
applications we are often interested not in a single point,
but in a trade-off curve that allows us to find a sweet spot
of influence per cost or characterize the network. TIM also
scales very poorly with the seed set size s, and the evaluation
only considered seed sets of up to 50 nodes.

The DegreeDiscount [6] heuristic refines the natural ap-
proach of adding the next highest degree node. MIA [5]
converts the binary IC sampling probabilities p. to deter-
ministic edge weights and works essentially with one deter-
ministic instance. IRIE, by Jung et al. [18], is a heuristic
approximation of greedy addition of seed nodes, and has
the best performance we are aware of for an algorithm that
produces a sequence of seed nodes. In each step, the proba-
bility of each node to be covered by the current seed set .S is
estimated using another algorithm (or simulations). They
then use eigenvector computations to approximate marginal
contributions of all nodes. Of those approaches, the IRIE
heuristic scales much better and is much more accurate than
other heuristics. In particular, it performs nearly as well as
GREEDY on many research collaboration graphs [18].

Contributions.

We design a novel sketch-based approach for influence com-
putation which offers scalability with performance guarantees.
Our main contribution is SKIM (SKetch-based Influence
Maximization), a highly scalable (approximate) implementa-
tion of the greedy algorithm for influence maximization. We
also introduce influence oracles: after preprocessing that is
almost linear, we can answer influence queries very efficiently,
considering only the sketches of the query seed set.

We can apply our design on inputs specified as a fixed
set of propagation instances, as in Kempe et al. [19], with
influence defined as the average over them. We also handle
inputs specified as an IC model, where influence is defined as
the expectation. Our model is defined precisely in Section 2.

We now provide more details on our design. The exact
computation of an influence query requires expensive graph
searches from the query seed set S on each of ¢ instances. The
exact greedy algorithm for Influence Maximization requires
a similar computation for each marginal contribution. We
address this scalability issue by working with sketches.

The core of our approach are per-node summary structures
which we call combined reachability sketches. The sketch of
a node compactly represents its influence “coverage” across /¢
instances; we call this its combined reachability set. The
combined reachability sketch of a node, precisely defined in
Section 3, is the bottom-k min-hash sketch [10, 8] of the
combined reachability set of the node. This generalizes the
reachability sketches of Cohen [7], which are defined for a
single instance. The parameter k is a small constant that
determines the tradeoff between computation and accuracy.
Bottom-k sketches of sets support cardinality estimation,
which means that we can estimate the influence (over all
instances) of a node or of a set of nodes from their combined
reachability sketches. The estimate has a small relative error
and good concentration [7]. Our use of combination sketches
and state-of-the-art optimal estimators is key to obtaining
the best balance between sketch size and accuracy.

Our SKIM algorithm for influence maximization is pre-
sented in Section 4. It scales by running the greedy algorithm
in “sketch space,” always taking a node with the maximum
estimated (rather than exact) marginal contribution.

SKIM computes combined reachability sketches, but only
until the node with the maximum estimated influence is
computed. This node is then added to the seed set. We
then update the sketches to be with respect to a residual
problem in which the node that is selected into the seed
set and its “influence” are no longer present. SKIM then
resumes the sketch computation, starting with the residual
sketches, but (again) stopping when a node with maximum
estimated influence (in the current, residual, instance) is
found. A new residual problem is then computed. This
process is iterated until the seed set reaches the desired size.
Since the residual problem becomes smaller with iterations,
we can compute a very large seed set very efficiently. We
also prove that the total overhead of the updates required
to maintain the residual sketches is small. In particular, for
a set {G(i)} of £ arbitrary instances, the algorithm can be
run to exhaustion, producing a full permutation of the nodes
in O(Zie[l] |G| + me?log? n) time, where m is the sum
over nodes of the maximum indegree (over instances). For
all s > 1, the first s nodes we select have with a very high
probability (at least 1 —1/n° for a constant ¢) influence that
is at least 1 — (1 —1/s)® — € times the maximum influence of
a seed set of the same size s. These are worst-case bounds.
We propose an adaptive approach that exploits properties of
actual networks, in particular a skewed influence distribution,
to achieve faster running times with the same guarantees.

Our use of the residual instances by SKIM is the key for
maintaining the accuracy of the greedy selection through the
execution and providing with high probability, approximation
ratio guarantees that nearly match those of exact GREEDY.

Section 5 presents our influence oracles, which preprocess
the input to compute combined reachability sketches for all
nodes. For instances {G“)} with n nodes and m? edges, the
sketches are built in O(k), m™) total time. The influence
of a set § C V can then be approximated from the sketches
of the nodes in S. The oracle applies the union cardinality
estimator of Cohen and Kaplan [11] to estimate the union of
the influence sets of the seed nodes. The query runs in time
O(|S|klog|S|) and unbiasedly with a well-concentrated rela-
tive error of € = 1/+/k. While preprocessing depends on the
number of instances, the sketch size and the approximation
quality only depend on the sketch parameter k.

The asymptotic bounds we obtain are novel also from a
theoretical perspective, and significantly improve the state
of the art, even for influence maximization on a single (de-
terministic) instance (select a seed set in a directed graph
with maximum reachable set).

Section 6 presents an extensive experimental study. Be-
sides demonstrating the scalability of our algorithms on
real-world networks, we compare SKIM with existing ap-
proaches, including exact GREEDY (when size allows), the
state-of-the-art IRIE heuristic, and TIM. We obtain IC mod-
els from networks by using the well-studied weighted and
uniform [19] probabilities. Our algorithms scale up to very
large graphs with barely any compromise on quality over
exact GREEDY, with theoretical guarantees. On instances
generated by an IC model, we achieve more than an order of
magnitude speedup over the best greedy heuristics, which
are designed specifically for this model. Even for a fixed
small seed set size, SKIM is significantly faster than TIM.

Moreover, our algorithm is efficient and accurate enough
to be executed exhaustively, producing a full permutation
of the nodes for networks with billions of edges. For the

first time, we provide the full (approximate) Pareto front of
influence versus seed set size. These relations showcase a
basic property of the network, and the general pattern that
a small fraction of nodes influences a large fraction of the
network. In contrast, most previous studies we are aware of
only considered seed sets with at most 50 nodes, revealing
only a very restricted view of this relation.

2. MODEL

A propagation instance G = (V, E) is specified by the edge
set F/. The influence of a set of nodes S in instance G is the
number of nodes reachable from S using the edges E:

Inf(G,S) = [{u]| S~ u}l, (1)

where the predicate S ~» u holds if © € S or if there is a
forward path from a node in S to the node wu.

Our input is specified as a set G = {Gm} of £ > 1 prop-
agation instances GV = (v, E(i)) on the same set of nodes.
The influence of S over all instances {G(i)} is the average
single-instance influence:

Inf(G, 5) = Inf({G@},) = %Z Inf(GD,S). ()

i€[l]

The set of propagation instances can be derived from cascade
traces or generated by a probabilistic model.

The input can also be specified as a probabilistic model,
such as Independent Cascade (IC) [19], which defines a dis-
tribution G over instances G ~ G that share a set V' of nodes.
In this case, the influence of G is defined as the expectation

Inf(G, S) = Egng Inf(G, S). (3)

We are interested in influence oracles and in influence
maximization. Influence queries are specified by a seed
set S C V and the goal is to compute (or estimate) the
influence Inf(G, S). Influence oracles, after efficient prepro-
cessing of the input, allow us to support very fast queries.
Influence maximization is the problem of finding a seed
set S C V with maximum influence, where |S| = s is given.
We are interested in efficiently computing a seed set whose
influence is close to the maximum one, as well as in comput-
ing a sequence of seeds so that each prefix has influence that
is close to maximum for its size.

3. COMBINED REACHABILITY
SKETCHES

At the heart of our approach are combined reachability
sketches, which are summary structures X, that we associate
with each node u. The combined sketches can be defined
with respect either to a set G = {G?} of £ > 1 instances or
to a probabilistic model G.

We first consider as input a set of £ > 1 instances. We de-
fine the reachability set of a node u in instance G as R(G, u) =
{v | u ~¢g v}, where u ~¢ v means that v is reachable
from u in G. Considering all instances, the combined reacha-
bility set is a set of node-instance pairs: Ry = {(v,17) | u ~ 5
v}. The influence of a set of nodes S on instances {GV} can
thus be expressed as

Inf({G7}, §) = %Z‘ U R(G@,u)‘ - %’ U R.
ues

i€[l] ueS

- @)

This is the average over the instances {G¥} (with i € [¢]) of
the number of nodes reachable from at least one node in S.

The combined reachability sketch of a node captures its
reachability information across instances. The sketches we
use are the bottom-k min-hash sketches [7, 10] X, of the
combined reachability sets R,: We associate with each node-
instance pair (v,?) an independent random rank value rff) ~
UJ0,1], where UJ0,1] is the uniform distribution on [0, 1].
The combined reachability sketch of w is the set of the k
smallest rank values amongst {r'" | (v,1) € Ry }:

X, = BorroM-k{r{" | (v,i) € RY}, (5)

where BOTTOM-k of a set is its subset consisting of the k
smallest values. When there is a single instance (¢ = 1) the
combined reachability sketches are the same as the reacha-
bility sketches of Cohen [7].

We define the threshold rank 1, of each node u as

7 =K ({r(| (v,9) € RDY), (6)

which is the kth lowest rank value in R,. (For a set Y
of cardinality |Y| < k, we define k™(Y) = 1.) Therefore,
when | X, | = k we have 7, = max{X,}, and 7, = 1 otherwise.
The cardinality |R.| can be estimated from X, using a
bottom-k cardinality estimator. The estimate is | X, | if 7, =
1 (ie., if | Xu| < k) and is (k—1) /7, otherwise. This estimate
has a Coefficient of Variation (CV), which is the ratio of
the standard deviation to the mean, that is never more
than 1/v/k — 2 and is well concentrated [7]. By applying
Chernoff bounds with ¢ > 1, we obtain that using k =
2+ 6)672 Inn, the probability of having relative error larger
than e is at most 1/n°. Therefore, we can be correct with
high probability on estimating the influence of all nodes.

3.1 Structured Permutation Ranks

Instead of using ranks drawn from U0, 1], we can work with
integral permutation ranks with respect to a permutation
on the nf node-instance pairs. We can also structure the
permutation so that each sequence in positions in + 1 to
(i + 1)n for integral ¢ > 0 has each node appear in exactly
one pair. The associated instance with a node v in chunk i is
randomly selected from instances j for which the pair (v, j)
does not have a permutation rank of in or less (independently
for each node). One can show that this can only improve
estimation accuracy [8]. Only the first min{k, £}n positions
can be included in combined reachability sketches of nodes.

When estimating influence, we can convert permutation
ranks to random ranks using the exponential distribution [7].
We can also estimate cardinality of a subset of the D = nf
elements directly from permutation ranks [D], using the
unbiased estimator 1 + (k — 1)(D — 1)/(T — 1), where the
threshold T is the kth smallest permutation rank. This
estimator can be interpreted as setting aside the element
with permutation rank 7', and estimating the fraction (of the
other D—1 elements) that is in our set by the fraction of such
elements with rank smaller than 7', which is (k —1)/(T — 1).

3.2 Sketches for an IC Model

We now define sketches with respect to a binary IC model
G, presented as a graph with probabilities p. associated with
its edges. The influence of a set of nodes S is

Inf(G, 8) = Ea~g | R(G,u)]. (7)

ues

The sketches we define for G also contain at most k rank
values, but provide approximation guarantees with respect
to (7). The sketches can be interpreted as the sketches
computed for ¢ instances generated according to the model
G ~ G as { — oco. When doing so, at the limit, each
unique rank value corresponds to a unique instance, so we do
not need to explicitly represent “instances.” We work with
structured permutation ranks (Section 3.1). Since it suffices
to consider the first kn ranks, this conveniently removes the
dependence of the rank representation on ¢. We can similarly
apply an estimator to the kth smallest rank 7' < kn — k to
estimate influence: Instead of estimating cardinality (which
goes to infinity with ¢) and dividing by ¢ using the estimator

% + % we take the limit as £ — oo and estimate

influence using n(k — 1)/(T — 1).

4. SKIM: SKETCH SPACE IM

In this section we present our Sketch-based Influence Max-
imization (SKIM) algorithm. We first review GREEDY, the
greedy algorithm for influence maximization (working with
¢ instances) presented by Kempe et al. [19]. GREEDY is
applied with respect to the influence objective Inf(G, S), as
defined in Equation (2). It starts with an empty seed set
S = (. In each iteration, it adds to S the node v with
maximum marginal gain,

Inf(g,SU{v})flnf(g,S):%‘ U r\ &

ueSuU{v} uesS

- (8)

This is the same as choosing v maximizing Inf(G, S U {v}).

SKIM approximates exact GREEDY by ensuring that at
each iteration, with sufficiently high probability, or in expec-
tation over iterations, the node we choose to add to the seed
set has a marginal gain that is close to the maximum one.
To do so, it suffices to compute sketches only to the point
that the node with the maximum estimated marginal gain
is revealed. To maintain accuracy, we maintain a residual
problem and respective sketches.

SKIM constructs (partial) combined reachability sketches
by adapting a construction of reachability sketches [7]: It
processes node-instance pairs (u,7) by increasing rank, per-
forming a reverse reachability search in G® from u. The
sketch X, of each visited node v is augmented with the rank
rif) of the pair. For a given value of k, the first node w
whose sketch reaches size k is also the node with maximum
estimated influence. This is because the bottom-k cardinality
estimate of a node depends only on the kth smallest rank
in X,, 7, (which is a complete sufficient statistic for cardi-
nality estimation from the sketch [8]); see Equation (6). For
the node u, 7, is equal to the rank 7"1@ of the last processed

pair (u,). For other nodes v with incomplete sketches, we

know that 7, > n(f), so their estimate is lower.

Sketch building is suspended once the node v with max-
imum estimated influence is found. SKIM then adds v to
the seed set and generates a residual problem, with v and all
node-instance pairs it covers removed from the instances G.
The (partially computed) sketches of each remaining node
u are updated using X, < X, \ X, which deletes from the
sketch the ranks of all covered node-instance pairs.

The process of building sketches is then resumed on the
residual problem, working with updated partial sketches
and instances. We continue processing node-instance pairs

Algorithm 1: Sketch-based Influence Maximization

// Initialization

forall the pairs (u,i) do covered[u,i] < false

forall the nodes v do size[v] «+ 0

index <— hash map of node-instance pairs to nodes
seedlist «~ () // List of seeds & marg. influences
rank <— 0

shuffle the n¢ node-instance pairs (u,)

// Compute seed nodes
while |seedlist| < n do
while rank < n¢ do
rank < rank + 1
(u,) < rank-th pair in shuffled sequence

// Build sketches

if covered[v,i] = false then
BFS from u in reverse graph G, during
which
foreach scanned node v do

size[v] < size[v] + 1

index[u,i] < index[u,i] U {v}

if size[v] = k then

T4 // Next seed node

abort sketch building

if all nodes u have size[u] < k then
|« ¢« argmax, . size[u]

I, <0 // The coverage of z
forall the instances ¢ do // Residual problem
(forward) BFS from z in graph G during which
foreach scanned node v do

if covered[v,i] then prune

I, <+ I, +1

covered[v,i] + true // Cover v in 1

forall the nodes w in index|[v,i] do

| size[w] « size[w] — 1

index(v,i) <~ L // Erase (v,i) from index
I, + I, /¢
| seedlist.append (z,/5)

return (seedlist)

in increasing rank order, starting from the first rank that
exceeds 7, and skipping pairs that are already covered.

We provide pseudocode for SKIM as Algorithm 1. Instead
of maintaining the actual partial sketches X,, the algorithm
only keeps their cardinalities size[v]. To support correct and
efficient updates of the sketches, we maintain an inverted in-

dex index[u, 7] that lists, for each rank value n(f) we processed,

all nodes v such that rz(f) € X,. The entry for rank rz(f) is
created and populated when we perform a reverse reachabil-
ity search from pair (u,%). The algorithm outputs the list
seedlist of pairs (o3, I;), where {o;} is a permutation of the
nodes according to the order they are selected into the seed
set, and I; is the marginal influence of o;.

The surprising property of our construction is that this
whole iterative process is very efficient. If we run SKIM with
a fixed k = ce~?logn, Section 4.1 will show that we obtain
the following worst-case performance guarantees:

THEOREM 4.1. SKIM runs in time O(nl + >, |E®W| +
me~log® n), where m = Y max; INDEc® (v) < |{J, EW|.
The permutation {o;} of nodes has the property that with
probability 1 — 1/ for all s € [n], the set of seed
nodes S = {o1,...,0s}, has Inf{GD},8) > (1 —1/e —
€) arg maxz||z|<s Inf({G"}, Z).

4.1 Algorithm Analysis

4.1.1 Correctness

It is not hard to show that the influence of a node v in
the residual problem of iteration 4 is equal to its marginal
influence with respect to S = {o1,...,0;—1} in the original
problem. Therefore, I;, which is the influence of o; in the
residual problem of iteration 4, is the marginal influence of o;,
with respect to S = {o1,...,0s-1} in the original problem.
Thus, by definition, for all s € [n] and S = {o1,...,0s},
Inf({G©},8) =32, L

We also show that the partial sketches correctly capture a
component of the sketches computed for the residual problem:

LEMMA 4.1. At the end of an iteration selecting v, each
updated partial sketch X, is equal to the set of entries of the
combined reachability sketch X, of u in the residual problem
that have rank value at most 7.

PrOOF SKETCH. The content of each sketch X, before
computing the residual is clearly a superset of all reach-
able node-instance pairs (z,4) with rank r) < 7, in the
residual problem. We can then verify that entries are re-
moved from X, only and for all covered node-instance pairs
with rii) <7. O

4.1.2 Running Time

We now analyze the running time of SKIM. All updates
of the residual problem together take time linear in the size
of {Gm}, since nodes and edges that are covered by the
current seed set are removed once visited and never consid-
ered again. The remaining component of the computation is
determined by the number of times ranks are inserted (and
removed) from sketches. Inserting a value to X, involves a
scan of all (remaining) incoming edges to u in an instance.
Removals of ranks can be charged to insertions. So we need
to bound the total number of rank insertions:

LEMMA 4.2. The expected total number of rank insertions
at a particular node is O(klnn).

PRrROOF SKETCH. Consider a sketch X,. We can show,
viewing the sketches as uniform samples of reaching pairs,
that each rank value removal corresponds to cardinality—and
hence influence (marginal gain)—Dbeing reduced in expecta-
tion by a factor of 1 — 1/k. The initial influence is at most
n, so there are at most kIn(nk) insertions until the marginal
influence is reduced below 1/k, at which point we do not
need to consider the node. []

The running time is dominated by the sum over nodes v,
of the number of times a rank is inserted to the sketch
of v, times the in-degree of v (the maximum over instances).
From the lemma, we obtain a bound of O(kmInn) on the
total number of insertions. Thus, we obtain a bound of
O(kmIn(n)+3_, |G¥]) on the running time of the algorithm.

4.1.3 Approximation Ratio

To obtain an approximation that is within 1+ ¢ with good
probability, we can choose a fixed k = ce”?logn, for some
constant c¢. The relative error of each influence estimate of a
node in an iteration is at most € with probability of at least 1—
1/n°. Since we use polynomially many estimates (maximize
influence among n nodes in each of at most n iterations), all
estimates are within a relative error of € with probability that
is polynomially close to 1 — 1/nc72. Lastly, we bound the
approximation ratio of the “approximate” greedy algorithm
we work with, which uses seeds with close to maximum
instead of maximum marginal gain:

LEMMA 4.3. With any submodular and monotone objec-
tive function, approximate greedy, which iteratively chooses
a node with marginal gain that is at least (1 — 8) of the
mazimum, has an approximation ratio of at least (1 — (1 —
1/5)°* —O(8)). The same claim holds in expectation when the
selection is well concentrated, that is, its probability of being
below (1 — ad) times the mazimum decreases exponentially
with a > 1.

PRrOOF. The argument extends the analysis of exact greedy
by Nembhauser et al. [21]. For any s, and after selecting any
set U of seeds, the maximum marginal gain by adding a
single node is always at least 1/s of the maximum possible
gain for s nodes. When using the approximation, this is at
least (1 — d)/s of the maximum possible gain. Therefore,
after approximate greedy selection of s nodes, the influence
isat least 1 — (1 —(1—140)/s)° <1—(1—-1/s)® —O(6) using
the first order term of the Taylor expansion. []

4.2 Extensions

4.2.1 Adaptive Error Estimation

This worst-case analysis is too pessimistic, both for the
approximation ratio and running time. In our experiments,
we tested SKIM with a fixed k, and observed that the com-
puted seed sets had influence that is much closer to the exact
greedy selection than indicated by the worst-case bounds.

The explanation is that the influence distribution on real
inputs is heavy-tailed, with the vast majority of nodes having
a much smaller influence than the one of maximum influence.
One factor of O(logn) in the worst-case running time is
due to a “union bound” ensuring a relative error of e for
all nodes in all iterations, with high probability. With a
heavy tail distribution, we can identify the maximum with a
small error if we ensure a small error only on the few nodes
that have influence close to the maximum. Furthermore,
when the maximum influence is separated out from other
influence values, our approximate maximum is more likely
to be the node with actual maximum influence. Moreover,
the estimation error over iterations averages out, so as the
seed set gets larger we can work with lower accuracy and
still guarantee good approximation.

‘We propose incorporating error estimation that is adaptive
rather than worst-case. This facilitates tighter confidence
bounds on the estimation quality of our output. It also allows
us to adjust the sketch parameter k during computation in
order to meet pre-specified accuracy and confidence levels.

Let the discrepancy in an iteration be the gap between the
actual maximum and the marginal influence of the selected
seed. We will bound the sum of discrepancies across iterations
by maintaining a confidence distribution on this sum.

The estimation uses two components. (i) The exact mar-
ginal influence I, of the selected node in each iteration, as
well as the sum I = ZKS I, which is the influence of our
seed set. The value I; is computed when generating the
residual problem. (ii) Noting in each iteration the size of
the second largest sketch (excluding the last processed rank).
Intuitively, if the second largest sketch is much smaller than
the first one, it is more likely that the first one is the actual
maximum. We bound the discrepancy in a single iteration
using Chernoff bounds. The probability that the sum of
independent Bernoulli trials falls below its expectation u by
more than vy is

Pr{Z < (1—)] < (W) .)

We use this to bound the probability that the discrepancy
exceeds Ae, where A is the exact marginal gain of our selected
seed node. We consider the second largest sketch size, k' <
k — 1 (the last rank of 7 is not considered part of the sketch
even if included). We use Z = k', u = 7A(1 + ¢€), and
v=1- ﬁ;e) in Equation (9) to obtain a confidence level.

Finally, to maintain an upper bound on the confidence-
error distribution of the sum of discrepancies, we take a
convolution, after each iteration, of the current distribution
with the distribution of the current iteration.

4.2.2 Alternative Implementations

SKIM can be adapted for higher concurrency by running
the sketch-building phases in batches of ranks. We can
also adapt it to process inputs presented as an IC model
instead of as a set of instances. This yields a more efficient
implementation than when generating a set of instances using
simulations and running SKIM on them. In IC-model SKIM,
the residual problem is a collection of partial models and
sketch building is performed on the probabilistic model. We
omit details due to space limitations.

5. INFLUENCE ORACLES

We now present an accurate and efficient oracle for binary
influence, which is based on precomputing a combined reacha-
bility sketch (as defined in Section 3) for each node. We pre-
process a set of £ instances G = {GV} using O(k Zle |E®])
computation and working storage of O(k) per node. The
preprocessing generates combined reachability sketches X,
of size O(k) for each node v € V.

THEOREM 5.1. Given a set {X,} of combined reachability
sketches for G with parameter k, influence queries Inf(G, S)
for a set S of nodes can be estimated in O(|S|klog|S|) time
from the sketches {X. | u € S}. The estimate is non-
negative and unbiased, has C'V at least 1/v/k — 2, and is well
concentrated, meaning that the probability that the relative
error exceeds a/ Vk decreases exponentially with a > 1.

We next present the two components of our oracle: esti-
mating the influence of S from the sketches of the nodes in S
and efficiently computing all combined reachability sketches.

5.1 Influence Estimation from Sketches

We show how to use the combined reachability sketches
of a set of nodes S to estimate the influence of S, as given
in Equation (4). In graph terms, this means estimating

the cardinality of the union UuES R, from the sketches X,
with u € S. The influence Inf(G, S) is the union cardinality
divided by the number of instances ¢ and, accordingly, is esti-

mated using ‘Uves R, |/€ Our estimators use the threshold
rank 7, of each node u; see Equation (6).

From the bottom-k sketches of each set R, for u € S we
can unbiasedly estimate the cardinality of the union U s Pu.
One way to do this is to compute the bottom-k sketch of
the union [7], which has threshold value 7 = kth{UuGS w)
and apply the cardinality estimator (k — 1)/7. This would
already conclude the proof of Theorem 5.1.

In our implementation, we use a strictly better union
cardinality estimator that uses all the (at most k|S|) values
in the set of sketches instead of just the kth smallest:

Unl- ¥)

maXyes|zeXy\{ru} Tu
ves z€lJ, g Xo\ro)

This estimator, proposed by Cohen and Kaplan [11], can be
computed from the |S| sketches in time O(|S|klog|S]), by
first sorting the |S| sketches by decreasing threshold, and
then identifying for each distinct rank value the threshold of
the first sketch that contains it. When the sets R, are all
the same, the estimate is the same as applying an estimator
to the bottom-k sketch on the union, but Equation (10)
can have up to a factor of /|S| lower CV when the sets
R, are sufficiently disjoint. Moreover, this estimator is an
optimal sum estimator in that it minimizes variance given
the information available in the sketches.

We can also derive a permutation version of Equation (10).
The simplest way is to treat the permutation rank 7" as a
uniform rank » = (T — 1)/(én — 1) which is the probability
that the rank of another node is smaller than 7.

5.2 Building Combined Reachability Sketches

When there is a single instance G = (V, E), the combined
sketches are simply reachability sketches [7, 10]. Reachability
sketches Y, for all nodes can be computed very efficiently,
using at most mk edge traversals in total, where m is the
number of edges [7].

Algorithm 2 computes combined sketches by applying the
pruned searches algorithm of Cohen [7] on each instance G*)
obtaining a sketch YU(Y for each node, and combining the
results. The combined sketch X, is obtained by taking the
bottom-k values in the union of the ¢ sketches, defined as
X, « BOTTOM-k(uingUm).

The algorithm runs in O(k), |E®™]) time. Rather than
storing all sets of sketches, we can compute and merge concur-
rently or sequentially, but after each step, take the bottom-k
values in the current bottom-£ set and the newly computed
sketch for instance GV X, « BOTTOM-k{X,, va}. There-
fore, the additional run time storage requirement for sketches
is O(nk). This gives us the worst-case bounds on the com-
putation stated in Theorem 5.1.

6. EXPERIMENTS

We implemented our algorithms in C++ using Visual
Studio 2013 with full optimization. All experiments were run
on a machine with two Intel Xeon E5-2690 CPUs and 384 GiB
of DDR3-1066 RAM, running Windows 2008R2 Server. Each

Algorithm 2: Combined reachability sketches

forall the nodes u € V do
sketches[u] « 0
| local[u] < 0

// Global sketches
// Instance-local sketches

shuffle the n¢ node-instance pairs (u, %)

forall the instances i do
// Build local sketches for instance ¢
for pairs (u,j) with j =i by increasing rank r do
BFS from u in reverse graph GW, during which
foreach scanned node v do
if |local[v]| = k then prune
L local[v] < local[v] U {r}
/ Merge local sketches into global sketches
orall the nodes u do
// Both sketches[u] and local[u] are sorted
sketches[u] <— merge (sketches[u],local[u])
trim sketches[u] to size k
local[u] < @

=,

return (sketches)

CPU has 8 cores (2.90 GHz, 8 x 64kiB L1, 8 x 256kiB, and
20 MiB L3 cache), but all runs are sequential for consistency.

We ran our experiments on benchmark networks avail-
able as part of the SNAP [24] and WebGraph [2] projects.
More specifically, we test social (Epinions, Slashdot, Gowalla,
TwitterFollowers, LiveJournal, Orkut, Friendster, Twitter), col-
laboration (AstroPh), and web (Slovakia, Slovakia ') networks.
Slovakia' is obtained from Slovakia by reversing all arcs (in-
fluence follows the reverse direction of links).

Kempe et al. [19] proposed two natural ways of associating
probabilities with edges in the binary IC model: the uniform
scheme assigns a constant probability p to each directed
edge (they used p = 0.1 and p = 0.01), whereas in the
weighted cascade (wc) scheme the probability is the inverse
of the degree of the head node (making the probability
that a node is influenced less dependent on its number of
neighbors). We consider the wc scheme by default, but we
will also experiment with the uniform scheme (un). These two
schemes are the most commonly tested in previous studies
of scalability [20, 6, 5, 18, 22, 25].

6.1 Influence Maximization

This section evaluates SKIM, our new sketch-based influ-
ence maximization algorithm. By default we set the num-
ber of sampled instances to ¢ = 64 and compute sketches
with k& = 64 entries. (These choices will be justified in later
experiments.) To evaluate the actual influence values of the
seeds computed by SKIM, we use a set of 512 different sam-
pled instances, in which we simply run BFSes a posteriori.

Table 1 summarizes the performance of our algorithm on
several networks of varying sizes with up to almost two billion
edges. Besides the network sizes, the table reports results
for three seed set sizes s: 50, 1000 and n, i.e., computing full
permutation. In each case, it reports the total running time
of our algorithm as well as the total influence of the related
seed set as a percentage of n. (Note that for s = n this value
is 100 % by definition, so we omit it in the table.) For s = 50
and 1000, the table also reports the corresponding numbers

Table 1: Performance of SKIM and IRIE. SKIM uses k = 64, { = 64, and we evaluate the influence on 512 (dif-
ferent) sampled instances. For all runs (except those for n seeds) we set a time limit of two hours. For the
runs that did not finish (DNF), we report the influence of the seed set (its size is shown in parenthesis after

“DNF”) computed within the time limit (*).

influence [%] running time [sec]

50 seeds 1000 seeds 50 seeds 1000 seeds n seeds
instance V] [-103] |A| [103] SKIM IRIE SKIM IRIE SKIM IRIE SKIM IRIE SKIM
AstroPh 14.8 239.3 11.1 114 45.9 46.5 0.5 0.5 1.0 4.3 1.9
Epinions 75.9 508.8 15.8 15.9 34.4 34.1 0.7 0.9 1.6 10.3 6.7
Slashdot 7.4 828.2 214 216 52.1 523 0.8 1.5 1.9 19.8 7.5
Gowalla 196.6 1900.7 18.1 18.1 30.9 31.1 1.4 5.1 3.5 75.2 21.5
TwitterFollowers 456.6 14 855.9 4.4 4.2 172 175 3.0 23.1 10.7 388.5 85.1
LiveJournal 4847.6 68475.4 1.6 1.5 6.8 6.7 8.6 261.1 31.1 4576.5 933.0
Orkut 3072.6 234 370.2 5.3 5.3 12.1 115" 34.0 473.3 102.9 DNF (915) 1197.2
Friendster 65608.4 1806067.1 9.5 8.8" 15.4 8.8" 794.0 DNF (43) 1308.5 DNF (43) 19254.2
Twitter 41652.2 1468364.9 21.1 21.1 38.0 253" 965.4 4233.4 1912.8 DNF (92) 11558.8
Slovakia 50636.2 1930292.9 5.4 4.8 14.8 10.1" 86.6 2272.5 293.9 DNF (290) 117434
Slovakia " 50636.2 1930292.9 10.3 10.0 259 16.7F 220.7 1740.6 621.4 DNF (230) 11679.3

for IRIE [18], one of the fastest available heuristics that can
generate full permutations. We use our own implementation
of IRIE, which is somewhat faster than the one evaluated in
the original paper. Except for s = n, we set an execution time
limit of two hours; we report “DNF” and the corresponding
number of computed seeds for those runs that did not finish.

The table shows that the influences computed by IRIE and
SKIM are very close; sometimes SKIM being better. However,
SKIM is significantly faster, outperforming IRIE by several
orders of magnitude on many instances. In particular, when
computing 1000 instead of 50 seeds, SKIM’s speedup over
IRIE becomes more evident as IRIE’s running time grows
linearly with the number of seed nodes, whereas with SKIM
it decreases with the size of the residual problem. As a result,
we can compute the 1000 most influential nodes on a graph
with 65 million nodes and 1.8 billion edges (Friendster) in just
22 minutes. Similarly, computing a full influence ordering
with SKIM takes less then 5.5 hours on all graphs.

We also compare SKIM to TIM* [25], the fastest influ-
ence maximization algorithm we are aware of. We ran their
implementation (kindly given to us by the authors) to re-
port figures on our instances. As in their experiments, we
set the € parameter of TIMT to 1.0. Table 2 reports the

Table 2: Comparing SKIM and TIM' regarding in-
fluence and running time for 50 and 1000 seeds.

influence [%] running time [sec]

50 seeds 1000 seeds 50 seeds 1000 seeds
instance SKIM TIM SKIM TIM SKIM TIM SKIM TIM
AstroPh 11.1 11.6 45.9 47.0 0.5 0.7 1.0 1.8
Epinions 15.8 15.8 34.4 34.8 0.7 0.3 1.6 23
Slashdot 21.4 222 52.1 52.6 0.8 1.2 1.9 6.9
Gowalla 18.1 18.2 30.9 314 1.4 2.0 3.5 134
TwitterF's 44 4.6 172 17.6 3.0 7.1 10.7 28.7
LiveJournal 1.6 1.7 6.8 7.0 8.6 26.0 31.1 89.1
Orkut 53 5.4 12.1 12.3 34.0 102.0 102.9 427.8
Friendster 95 9.6 154 15.6 794.0 406.5 1,308.5 410.5
Twitter 21.1 21.3 38.0 38.1 965.4 291.6 1,912.8 795.0
Slovakia 54 55 14.8 149 86.6 299.3 293.9 647.1
Slovakia " 10.3 10.5 25.9 26.3 220.7 384.1 621.4 313.4

influence (as percentage of n) as well as the running time for
50 and 1000 seed nodes. We note that SKIM and TIM™ are
extremely close in quality, with TIM* tending to be slightly
better. SKIM is faster than TIM™' on most instances except
on Friendster, Twitter, and Slovakia' with 1000 seeds, and
generally the two are never more than a factor of three apart.
However, recall that SKIM actually computes a sequence of
nodes such that every prefix of this sequence also (approxi-
mately) maximizes the influence. In contrast, TIM* must be
rerun to obtain a smaller set of maximally influential nodes.

We next argue why our paremeter choices are reasonable.
First, we evaluate the impact of the number £ of instances
on the solution quality. Figure 1 (left) reports the quality
of the seed nodes found by GREEDY (GRE) when we use
different ¢ values during the algorithm, but evaluate the
quality of the resulting seed set on 4096 (different) instances.
We observe that increasing ¢ does help quality, but only up
to a certain point. In particular, values beyond 64 yield
modest improvements. Since our running times depend on £,
we use this value by default.

Figure 2 compares SKIM to GRE, IRIE, and DEG (in-
cluding nodes by order of decreasing degree) on two inputs:
Slashdot and TwitterFollowers. For SKIM, we test various
values for k (4, 16, 64, 256). We report the influence error
when compared to GRE (top) and the running time (bot-
tom). We observe that the error for SKIM decreases as we
increase k, k = 64 being the sweet spot, after which solution
quality does not improve by much anymore. Running times
increase for all algorithms with the size of the seed set, but
SKIM is consistently the fastest algorithm for any size.

Figure 3 evaluates the performance of SKIM and IRIE on
the two IC schemes (wc,un), using TwitterFollowers as input.
We observe that SKIM matches the solution quality of IRIE
but is significantly faster.

Finally, Figure 4 shows the influence (top) and running
time (bottom) of SKIM when computing the full permutation.
We plot the relative influence and running time (both as
percentage) subject to the number of computed seed nodes
as the algorithm progresses (also as percentage of n). To
the best of our knowledge, we are the first who are able to
compute (approximately) the full Pareto front of influence
versus seed set size on graphs with billions of edges within

a few hours only. The tradeoff seems to characterize the
core of the network: On Slovakia and Twitter, 0.1% of the
nodes already cover almost 50% of the entire graph, while on
Slashdot and Friendster, 0.1% of the seeds only cover 25-30%
of the graph, albeit with a faster growth. Other instances
have a slower growth in influence, but on all instances 10%
of the nodes cover at least 50% of the graph. Regarding
running time, we observe that all instances exhibit similar
behavior. In particular, more than 50% of the total running
time is spent computing the first 10% of seed nodes.

6.2 Influence Oracles

This section evaluates our influence oracle (cf. Section 5).
We use the IC model (with we probabilities) to generate
a set of £ = 64 instances. We build combined reachability
sketches of size k = 64 for this set of instances and evaluate
the performance of our oracle (cf. Section 2).

Table 3 summarizes the performance of our oracle on sev-
eral networks. It reports the time spent for preprocessing and
the required space (in MiB) to store the combined sketches.
Queries are evaluated for seed set sizes s of 1, 50, and 1000.
For each s, we generate 100 seed sets whose nodes are selected
uniformly at random. We report the average running time
of the query (estimator) in microseconds and the relative
error of the estimated influence when compared to the exact
influence of the respective seed set.

We observe that preprocessing times are reasonable for all
graphs while space consumption is essentially linear in the
number of nodes. For example, on LiveJournal (the biggest
instance tested), the sketches require 2.3 GiB of space, which
we computed in just 34 minutes. The influence of a single
node can then be estimated in 1-2ps, while for 1000 seed
nodes we require 5.2ms. Note that the query time is almost
independent of the graph size. Using k = 64, the error stays
well below 10% for one seed node, and decreases significantly
for larger seed sets (to around 1% for s = 1000).

Figure 5 shows in detail how the error of the estimator (y
axis) decreases when the seed set size increases (z axis). To
better evaluate the performance of estimating the union of
several reachability sets, we use the following neighborhood
generator for queries: For each query, it first picks a node u at
random with probability proportional to its degree. From w it
exhaustively grows a BF'S of the smallest depth [such that the
tree contains at least s nodes. The nodes for the seed set are
then uniformly sampled from this tree. With this generator,
we expect the reachability sets of seed nodes to highly overlap.

T T T T T T T [| | T | | T]
© | —o— 4 16 i | —&— Slashdot |
Sl | —A—-64 —@—128 | . | Epinions |
Yor | —0—256—0—1024 7 S X —@— AstroPh
II=r 1 2 aor -
~ [1@ St —
. [~ -1 @
£ 12 |'» b
2o 15 of -
s 1 e i
i {5 8]]
SXL ; I |

ol o - 1 o] AN TR Y B R B

26 27 28 29 210211212213
Number of instances £

500 1000

I
0
AstroPh: seed set size

Figure 1: Evaluating different numbers of simula-
tions (left) and evaluating the average error of our
oracle on 1000 random seeds, subject to varying /.
The right plot is discussed in Section 6.2.

T T T T T
GRE | DEG
IRIE —@— SK-4 7]
SK-16 —}— SK-64 -|
SK-256

20
100
T
1

error wrt. GRE
10

error wrt. GRE
50

A
o o o
| I S S I S N N |
0 500 1000 0 500 1000
Slashdot: seed set size TwitterF's: seed set size
| T T T | T T T | | T T T | T T T |
=l 1 e
&= 88r 7
g g
= = - A1)
£ T 1
=} =}
=] =]
=] Y =]
=~ ¢ =
I S E S B | SCL 1 1T
0 500 1000 0 500 1000
Slashdot: seed set size TwitterF's: seed set size

Figure 2: Evaluating influence and running time for
several algorithms. The legend applies to all plots.

Looking at the figure, we observe that the estimation error of
our oracle decreases rapidly for increasing s. Also, running
queries from the neighborhood generator (right) compared to
the uniform one (left), has almost no effect on the estimation
error; for 50 seed nodes it is even better on many instances.

Finally, Figure 1 (right) reports the performance of the
oracle for fixed instances on the general IC model. We vary
the number /¢ of instances generated by simulations when
building the oracle, but compute the error on a different
set of 8192 instances. Since our oracle implementation is
optimized for fixed instances, we see a higher error with £ =
64. We can also see that the error decreases with the number
of simulations. We conclude that for an IC model oracle, it
is beneficial to construct sketches that have approximation
guarantees with respect to the IC model itself (cf. Section 3.2)
rather than work with simulations.

7. CONCLUSION

We presented highly scalable algorithms for binary influ-
ence computation. SKIM is a sketch-space implementation of
the greedy influence maximization algorithm that scales it by

R R e e e g CT T~ T T T T T 1]
o = —@— SKIM-wc
— F PEadhin T IRIE-wc 1
2 ol Y S 1 2 | —A— SKIM-un |
= © 5 /‘-H' . GEJ | —@— IRIE-un i
sol o 1 E8k -
% S/ 1 o0 i}
S_p ¥ i
Rl pUovewes eSS £
B [.- = B
Lo 4 " o -
L booeferenernsfeonnern b oo oo N T T S S
0 500 1000 0 500 1000

TwitterF's: seed set size TwitterF's: seed set size
Figure 3: Evaluating SKIM and IRIE on the uni-
form (un) and weighted cascade (wc) models. The
legend applies to both plots.

T T T T T T 1111 T T T T T T T TT
—@— Epini A

100
I

Slashdot
—— TwitterF’s

o

o
— dl A
1 o B
— o 1 X .
§ 0 _: ° ﬁ ;—.— LiveJourn J —:
8 o 1 g [B
o © B Ry -
Q B ED = B
é = 4 = B
= ¥ 1 2 1E —O— Orkut -
'—‘ 1 0= K, —}— Friendster |
g 4 = Twitter =

- —()— Slovaki.

vl ey il g vl © T xovxaxiaxml_
0.1 1 10 100 0.1 1 10 100

seed set size [%)] seed set size [%)

Figure 4: Evaluating influence permutations (top)

and running time (bottom) on several instances.

The legend applies to both plots.

Table 3: Evaluating our influence oracle with ¢ = 64.

preproc. queries

1 seed 50 seeds 1000 seeds

time space time err. time err. time err.
instance [sec] [MiB] [ps] [%] [ns] [%)] [ns] [%]
AstroPh 4 7.2 1.6 8.5 166.7 2.1 4658.3 0.5
Epinions 10 371 1.3 5.2 155.0 3.4 5011.1 1.1
Slashdot 20 378 1.5 6.0 155.2 3.9 4982.3 1.0
Gowalla 46 96.0 1.5 7.3 179.8 3.2 5275.6 1.1

TwitterFollowers 229 223.0 2.1 7.0 190.2 3.3 5061.8 0.8
LiveJournal 2064 2367.0 2.0 7.1 189.6 3.0 5168.3 0.9

several orders of magnitude, to graphs with billions of edges.
SKIM computes a sequence of nodes such that each prefix
has a probabilistic guarantee on approximation quality that
is close to that of GREEDY. We also presented sketch-based
influence oracles, which after a near-linear processing of the
instances can estimate influence queries in time proportional
to the number of seeds. Our experimental study focused
on instances generated by an IC model, since the fastest
algorithms we compared with only apply in this model. Our
experiments revealed that SKIM is accurate and faster than
other algorithms by one to two order of magnitude.

In future work, we plan to develop a SKIM-like algorithm
for timed influence, where edges have lengths that are inter-
preted as transition times and we consider both the speed
and scope of infection [15, 4, 9, 1, 12]. We also plan to
use sketches to efficiently estimate the Jaccard similarity of

X
[[I I I I I] 9 :—é I [Alstrol]“’h I —:
00 B ol Epinions .
N 1 E —#&— Slashdot -
XL 1 *°rF —&— Gowalla B
5 © I 1 5 S C —O0— TyvitterF7s]
=R 1Bl LiveJournal T
Cxp 1°%oF]
~ | 1 XE -
B 1 1
X[. o]
[= | | | 1 | 1 i C | | | | [
1 10 20 30 40 50 1 10 20 30 40 50
seed set size (uniform) seed set size (neighborhood)
Figure 5: Evaluating our oracle for seed sets of

varying size, which are selected uniformly at ran-
dom (left) or with our BFS-based method (right).

the influence sets of two nodes, which we believe to be an
effective similarity measure [9].

81] REFERENCES

. D. Abrahao, F. Chierichetti, R. Kleinberg, and

A. Panconesi. Trace complexity of network inference. In

KDD, 2013.

P. Boldi and S. Vigna. The WebgGaph framework I:

compression techniques. In WWW. 2004.

[3] C. Borg, M. Brautbar, J. Chayes, and B. Lucier. Maximizing
social influence in nearly optimal time. In SODA, 2014.

[4] W. Chen, W. Lu, and Y. Zhang. Time-critical influence
maximization in social networks with time-delayed diffusion
process. In AAAI 2014.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. In KDD. ACM, 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence

maximization in social networks. In KDD. ACM, 2009.

E. Cohen. Size-estimation framework with applications to

transitive closure and reachability. J. Comput. System Sci.,

55:441-453, 1997.

[8] E. Cohen. All-distances sketches, revisited: HIP estimators
for massive graphs analysis. In PODS. ACM, 2014.

[9] E. Cohen, D. Delling, F. Fuchs, A. Goldberg,
M. Goldszmidt, and R. Werneck. Scalable similarity
estimation in social networks: Closeness, node labels, and
random edge lengths. In COSN. ACM, 2013.

[10] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In ACM PODC, 2007.

[11] E. Cohen and H. Kaplan. Leveraging discarded samples for
tighter estimation of multiple-set aggregates. In ACM
SIGMETRICS, 2009.

[12] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable
influence estimation in continuous-time diffusion networks.
In NIPS. Curran Associates, Inc., 2013.

[13] U. Feige. A threshold of Inn for approximating set cover. J.
Assoc. Comput. Mach., 45:634-652, 1998.

[14] J. Goldenberg, B. Libai, and E. Muller. Talk of the network:
A complex systems look at the underlying process of
word-of-mouth. Marketing Letters, 12(3), 2001.

[15] M. Gomez-Rodriguez, D. Balduzzi, and B. Schélkopf.
Uncovering the temporal dynamics of diffusion networks. In
ICML, 2011.

[16] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In KDD, 2010.

[17] A. Goyal, W. Lu, and L. Lakshmanan. Celf++: Optimizing
the greedy algorithm for influence maximization in social
networks. In WWW. ACM, 2011.

[18] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM. ACM,
2012.

[19] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD. ACM,
2003.

[20] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,

J. VanBriesen, and G. N. Cost-effective outbreak detection
in networks. In KDD. ACM, 2007.

[21] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the
approximations of maximizing submodular set functions.
Mathematical Programming, 14, 1978.

[22] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi.
Fast and accurate influence maximization on large networks
with pruned monte-carlo simulations. In AAAI 2014.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD. ACM, 2002.

[24] Stanford network analysis project. snap.stanford.edu.

[25] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In
SIGMOD, 2014.

2

[7

