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Abstract
Spoken language understanding (SLU) systems use various fea-
tures to detect the domain, intent and semantic slots of a query.
In addition to n-grams, features generated from entity dictionar-
ies are often used in model training. Clean or properly weighted
dictionaries are critical to improve model’s coverage and accu-
racy for unseen entities during test time. However, clean dic-
tionaries are hard to obtain for some applications since they are
automatically generated and can potentially contain millions of
entries (e.g. movie names, person names) with significant noise
in them. This paper proposes a discriminative model based ap-
proach to weight entities in noisy dictionaries using multiple
knowledge resources. The model makes use of features ex-
tracted from query click logs, knowledge graph and live search
results for accurate entity weighting. Experiments for both in-
tent detection and slots tagging tasks in entertainment search
covering five domains show significant gains over the baselines.
Index Terms: Spoken language understanding, named entity
lists, query click logs, knowledge graphs.

1. Introduction
Spoken language understanding (SLU) systems aim to identify
the user’s intent from the natural language query and extract
semantic slots to fulfill the user’s request [1, 2, 4, 5]. Typically,
SLU systems use classifiers such as Support Vector Machine
(SVM) [6, 7] trained on supervised data for domain and intent
detection, and taggers such as Conditional Random Field (CRF)
models [8] for slot tagging. When a user issues a query, domain
and intent classifiers determine the domain and the intent of the
query and the slot tagger tags semantic slots associated with
the intent. The tagged slots are used to fetch results from the
knowledge backend.

In order to train the classifiers we collect a set of in-domain
queries belonging to each domain that the application supports.
These queries are then annotated manually using a pre-defined
semantic schema. The semantic meaning of a query is repre-
sented with a tuple of domain, intent, and slot list in the seman-
tic space.

〈DOMAIN, INTENT, SLOT LIST〉
A slot list is a list of key-value pairs:

〈SLOT NAME, SLOT VALUE〉
A query belongs to one or more domains, such as

MOVIES, APPS, PLACES, or GAMES. Within a domain, the
query is further classified into one of domain-specific intents,
such as FIND MOVIES, PLAY MOVIES, PURCHASE SONGS,
PLAY SONGS to precisely determine the user’s intent. Seman-
tic slots associated with each intent specify detailed parameters
for the intent. For example, the semantic representation of the
query “find the most recent tom cruise movies” is as follows:

〈
MOVIES, FIND MOVIES, [〈 MOVIE STAR, “tom cruise” 〉,
〈 RELEASE DATE, “most recent”〉]

〉
Classifiers are trained with features from the query, the

conversation context and background knowledge. It has been
proven that high quality dictionaries can provide valuable fea-
tures to make the SLU models more robust to unseen entities
in the training data at runtime by providing broader entity cov-
erage [9]. A dictionary is a list of entities that belong to the
same semantic category. For example, a movie name dictionary
contains a large number of movie names. Knowing whether a
query contains an entity in a dictionary is a good signal (i.e.
feature) to use in all SLU models. Large high quality dictio-
naries are however hard to obtain since they are automatically
created through data mining without human validation. Some
of these dictionaries can contain as many as millions of enti-
ties (e.g. song titles, movie names) making manual inspection
and cleaning costly. Moreover, there is also on-going cost to
keep the dictionaries up to date. For example, new movies and
songs come up at a rate faster than can be manually processed.
For these reasons, large dictionaries contain large amounts of
noise them. The noise comes in two main forms: 1) illegitimate
entities added to the dictionaries, 2) inconsistency in the entity
tokenization and/or normalization. If the amount of noise in
the dictionary is high, using dictionary features in SLU models
does not provide any value and, in some cases, can even hurt
the model performance. There is a need to automatically clean
or more generally to weight dictionary entities. The weight as-
signed to an entity reflects the likelihood that it is a genuine
entity. A low weight indicates that the entity is more likely to
be noise.

Previously a dictionary weighting approach was proposed
in [9], which automatically learns entity weights by mining user
clicks from web search logs. We found that this weighting al-
gorithm has limitations. For example, since it only uses search
click logs [9], many legitimate entities are not weighted prop-
erly. If entities are not included in the logs, this weighting tech-
nique has no evidence to assign proper scores to those entities.
As a result, those entities are treated as unknown and given a
default low weighting score.

In this work, we propose a new discriminative model based
approach that leverages multiple knowledge sources to improve
dictionary weighting performance. The proposed technique
uses a knowledge graph and live search results in addition to the
query click logs. This model based approach has the advantage
to incorporate multiple sources of signals during the weighting
process and therefore learns the proper weights for each entity.

In the next section, we describe the algorithm work flow. In
Section 3, we describe how a knowledge graph is used to extract
useful entity type features. In Section 4, we explain how we
leverage search click logs and enhance the technique by using



a live search engine. Then in Section 6 we explain how to
build SVM classifiers using all features and weight candidate
dictionaries. We evaluate the weighting approach for assisting
intent and slot models in five SLU domains: movies, music,
applications, games, and places. The experimental results are
presented in Section 7 followed by the conclusion in Section 8.

2. Proposed Dictionary Weighting
Architecture

SLU systems are trained to generate the best semantic represen-
tation using models built from queries annotated with semantic
labels. Entity dictionaries are also heavily used to build large
web-scale SLU systems to improve model’s coverage and thus
accuracy for unseen entities in the training data during runtime.
These dictionaries (i.e. ”candidate dictionary” in Fig. 1) are
automatically mined from the web, search logs and other re-
sources and consequently contain significant amount of noise.
A typical movie name dictionary may contain hundreds of thou-
sands movie names, but it also contains significant amount of
invalid movie names or entities are not actually movie names.
For example, many alphabetic letters and digits appear in the
collected movie name dictionary, some of which may be valid
movies, but many of which are not.

The goal of this study is to assign a weight to each entity
in the dictionary. The weight determines the likelihood that
the entity is indeed a member of the target entity type (e.g.
movie name). Using the assigned weights, a large dictionary
is divided into multiple dictionaries resulting in dictionaries
weighted from high to less likely entity lists; the least likely
is expected to capture the invalid entities in the full dictionary.

In Fig. 1 we depict the proposed dictionary weighting archi-
tecture. We use three resources to weight dictionaries: 1) a seed
entity list obtained from the supervised training data (e.g. all the
entities tagged as ”movie name” in the training data), 2) search
click logs and live search results, 3) a knowledge graph. The
seed list is high quality due to human supervision and serves as
positive samples to train the discriminative weighting model. A
random entity list is also extracted from Bing search logs and is
used as the negative samples for training the model. The model
learns to discriminate between a genuine entity vs. a random
entity, which could any entity in the web.

Search engines return multiple search results represented by
URLs. The URLs clicked by users are considered more relevant
to the query. A click log for a search query contains the query
itself and URLs clicked by users in the format of:

〈 QUERY, [〈 CLICKED URL, CLICK COUNT 〉] 〉
Whether or not an entity belongs in an entity dictionary

can be evaluated by considering the domain of the websites
users click on when searching for that entity. An entity can be
weighted by comparing the click distribution of the entity and
aggregated click distribution of the seed list.

The knowledge graph contains rich information about en-
tities, including entity types. Entity type is used as an impor-
tant resource for additional features in the proposed weighting
approach to train a dictionary weighting model. For each en-
tity, features extracted from the search click logs and knowledge
graph are used to augment lexical n-gram features derived from
the entities in both the seed list (positive class) and random list
(negative class). A binary SVM model is trained using the fea-
ture representations to weight a candidate dictionary (shown in
Fig. 1) which contains noisy entities. Each candidate entity is
given a weighting score. Using K-means clustering approach,

Figure 1: Dictionary Entity Weighting Architecture
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the candidate dictionary is then split into multiple clusters. Each
cluster forms a smaller dictionary and is used to generate ad-
ditional features for training downstream SLU models. SLU
models should give different feature weights to the new dictio-
naries. The noisy dictionaries should be weighted lower in the
SLU models. As a result, the impact of the noise in candidate
dictionaries on SLU models is reduced.

3. Knowledge Graph Features
A knowledge graph (e.g. freebase.com) represents a generic se-
mantic space using entities (e.g. movie names, persons, places,
organizations, etc.) and relations between entities. The graph
contains a large set of tuples in a resource description frame-
work (RDF) defined by W3C. A tuple typically consists of two
entities: a subject and an object, and linked by some relation.
Knowledge graphs have powered major commercial search en-
gines as the graphs contain huge number of entities, attributes
of the entities, and relation with other entities. Moreover, a
knowledge graph is not static, it grows over time and is up-
dated periodically. Knowledge graphs are a valuable resource
for SLU systems as well [11, 12]. Traversing the social graph
has been proposed [13] for Facebook. Linking textual docu-
ments, such as Wikipedia, to knowledge graphs is studied in
this framework [14]. Using the semantic space defined in the
knowledge graph for SLU tasks relies heavily on the research
of semantic web [15, 16] and semantic search [17].

One of the key contributions of this work is to use the
knowledge graph to weight dictionary entities. The most in-
teresting information is the entity type defined in the graph for
every entity. In the knowledge graph, the relation “type” repre-
sents the entity type. Table 1 shows some examples of entities
and their relations in the knowledge graph. From the graph, we
learn that “Romeo & Juliet” could be a film name, or music al-
bum as it has two types: “film.film” and “music.album”. The



Table 1: Entities and relation examples in the knowledge graph
Subject Relation Object
Ridley Scott type film.producer
Ridley Scott type tv.producer
Romeo & Juliet type film.film
Romeo & Juliet type music.album
Romeo & Juliet producer Baz Luhrmann
Romeo & Juliet producer Ridley Scott

type information from the knowledge graph can be helpful to
weight an entity list of “movie name”, “music track”, or “movie
producer”. Another example of a type relation in the table is
“producer”: “Baz Luhrman” and “Ridley Scott” are two of the
producers of the film “Romeo & Juliet”.

We currently only use the type information from the graph
as features to build discriminative classifiers. A knowledge
graph search tool is used to search entities in the graph. The
tool returns multiple matched entities and each match is associ-
ated with a score to represent the relevance of the matched entity
with the input entity [18]. A series of Deep Structured Semantic
Models (DSSM) is proposed for entity ranking. A deep neural
network is used to rank a set of entities for a given input. First,
a non-linear projection is performed to map the input and the
entities to a common low-dimensional semantic space. Then,
the relevance of each entity given the query is calculated as the
cosine similarity between their vectors in that semantic space.

Each matched entity may have multiple types defined in the
graph. We compute the score of a type t for a given entity e as
follows:

Ke(t) =
∑

ei∈kgsr(e),t∈types(ei)

sim(e, ei)

|types(ei)|
(1)

where kgsr(e) is the knowledge graph search results for e,
and types(e) denotes all possible entity types of e. The score
sim(e, ei) assigned by knowledge graph search tool measures
the similarity between a matched entity ei and the input entity
e using algorithms proposed in [18].

4. Search Click Log Features
Large-scale search engines such as bing.com serve millions of
queries per day. Together with the search queries, user clicked
URLs are also logged anonymously. Query click logs implic-
itly encode information that associates a query to relevant web
sites. This information is used for many natural language pro-
cessing (NLP) tasks. In [10] a large query log of more than
twenty million queries is used to extract the semantic relations
that are implicitly captured in the actions of users submitting
queries and clicking answers. In [19], n-gram features are ex-
tracted from query-url pairs to enhance the web search ranking
task. Click logs can also be used to refine entity lists extracted
and processed from noisy sources [9]. For example, the top 5
clicked URLs (shortened by domain names only) for movies “A
lot like love” and “Romeo & Juliet” are given in Table2. We
see that 3 URLs are common out of top 5 clicked URLs. These
URLs are mostly movie domain specific. We can use the clicked
URLs as features to determine the likelihood of an entity being
a member of a movie dictionary. The intuitive assumption be-
hind this is that, for entities belonging to the same dictionary:
(1) URLs returned from search engine converge to a small set;
(2) the URLs clicked the most are more relevant to the query.

Table 2: Top clicked URLs of two movies
A lot like love Romeo & Juliet
imdb.com imdb.com
en.wikipedia.org en.wikipedia.org
rottentomatoes.com rottentomatoes.com
movies.msn.com shakespeare.mit.edu
movies.yahoo.com sparknotes.com

One issue with using only click logs is that some entities
may not be covered in the query logs since logs are extracted
for a limited time frame (e.g. six months) for computational
reasons. It is not computationally possible to process all the
search queries that ever hit a search engine. Even the search
engines employ a moving time window for processing and stor-
age of the search logs. In these cases there may be no evidence
we can use to weight these entities. For example, “apollo thir-
teen” is a movie name that appeared in the movie training data,
but it does not appear in search logs. In addition to the limit
on date range for log extraction, the most common reasons for
missing logs are: (1) some entities are very old, and they are not
searched recently, e.g. “apollo thirteen” was released 18 years
ago; (2) some entities are quite new and they have not shown up
in the logs. One way to solve the issue of missing logs for enti-
ties is to search bing.com at real time, so that we can have extra
URLs to use in addition to URLs in search logs. Given that the
search engine is updated on a daily basis, real-time search can
make sure we capture the newest entities.

We run live search through the search engine for all entities
no matter if they appear in click logs or not. Each URL returned
from a live search is considered to have one click. For sim-
plicity, we refer all URLs, both from click logs and live search
results, as “clicked URLs” hereafter since they are utilized sim-
ilarly in entity weighting process.

5. Cross-Entropy Based Entity Weighting
Approach

Here, we implemented the baseline cross-entropy based dictio-
nary weighting technique [9]. In [9] a score function that re-
flects the likelihood that an entity is a true member of a dictio-
nary (e.g. movie name entity list) using clicked URLs is de-
fined. The resulting score is expected to be higher for entities
that have a clear membership (e.g. ”sleepless in seattle”) in the
dictionary, and lower for entities that are ambiguous (e.g. ”start
up”) or do not belong to the dictionary at all.

We measure how likely a URL is clicked for entities in a
given entity list as follows:

P (url|entityList) = Count(url|entityList)∑
i Count(urli|entityList)

(2)

The count function is defined as total clicks from all entities
in the list:

Count(url|entityList) =
∑

e∈entityList

Count(url|e) (3)

where Count(url|e) is the number of times the url is clicked
when the search query is e.

To weight an entity in a dictionary, we compare the clicked
URL distribution in two entity lists. The first one is a seed list
representing the target dictionary and it consists of all entities



annotated with the same entity tag in the SLU training data,
such as, “movie name”, “song name”, “place name”, etc. The
second list is a collection of entities randomly extracted from
the search logs representing the background entities. For each
entity, a weighting score is computed based on clicked URL
distribution over two entity lists:

L(e) =
∑
i

(P (urli|e) ∗ log(P (urli|seedList))−∑
i

(P (urli|e) ∗ log(P (urli|randomList))

=
∑
i

P (urli|e) ∗ log(
P (urli|seedList)

P (urli|randomList)
)

(4)

Essentially L(e) measures the difference of two cross en-
tropies: the first cross entropy is for the clicked URL distribu-
tion in the entire seed list, and the second cross entropy is for
the clicked URL distribution in the random entity list.

6. Entity Weighting Classifier
Previously we have seen the benefit of using weighted dictionar-
ies with click logs [9]. This work further improves dictionary
quality using a discriminative model based approach to incor-
porate features described in Section 3 and 4. For each entity
list, an SVM model is built to combine features from the knowl-
edge graph and click logs. Each knowledge graph type is used
as an individual feature and the feature value is calculated as in
Equation 1. A separate feature is created for click logs, and the
feature value is the score computed in Equation 4.

The model training set consists of two parts: the positive
samples created from the seed list, and negative samples cre-
ated from the random list which is extracted from large search
query logs. The positive samples are manually labeled; there-
fore we can assume those samples are of high quality and do
indeed belong to the target entity type. However negative sam-
ples are automatically extracted from search logs and some of
them might belong to the target entity type. To mitigate the
noise, we make sure the negative sample list will not contain
any entities from seed list or candidate list (i.e. the dictionary
to be weighted).

Each sample is converted into a feature vector to train an
SVM classifier. Each entity in a candidate list is then weighted
using the resulting classifier. For example, an entity classifier
for “movie name” is built from a training set of 66K samples
(6K positive and 60K negative), and each sample has 1141 fea-
tures. There are 1140 features for knowledge graph type scores
and one feature for click log score. A movie name sample is
then converted into a vector as follows:

〈Ke(t1), Ke(t2), Ke(t1140), L(e)〉
These features for the seed and random lists are used to

train the binary SVM classifiers. Each entity in a candidate dic-
tionary is weighted and given a score by a classifier created in
Section 6. Since dictionaries are used as binary features in our
SLU system, weighted dictionaries cannot be used directly. We
simply bucket the weighted dictionaries using K-means cluster-
ing algorithm so that a weighted dictionary is split into n clus-
ters. Each cluster is used as a smaller dictionary. As a result, the
original single dictionary feature is expanded into n features for
the intent and slot models. We tested the number of clusters n
from 1 to 10, and the best performance results is achieved when

Table 3: Intent detection experiments (error rates %)
Experiments movie app place game music
baseline: without
dictionaries 6.2 5.0 8.1 9.2 5.8
unweighted
dictionaries 5.5 4.6 7.5 7.7 5.5
dics weighted
with click logs 5.5 4.5 7.3 7.7 5.4
dics weighted
with click logs
and knowledge
graph

5.1 4.3 7.0 7.5 5.0

n is set to 5. As n increases, some dictionaries are not weighted
properly due to data sparseness: the training data does not have
enough coverage of the entities in small clusters.

7. Experimental Results and Discussions
We built an SLU system for search that covers five domains:
movies, apps, places, games and music. For each domain, an
intent and a slot model are trained using the training data. Lex-
ical n-gram features and dictionary features are used for model
training. The entity weighting methods are evaluated in each
domain and are compared for the performance of intent and slot
models.

The baseline intent and slot models do not use any dictio-
naries. Intent and slot models built with the proposed dictionary
weighting approach are compared to models with unweighted
dictionaries, and models with dictionaries weighted with only
click logs which was proposed in [9]. Table 3 shows the exper-
imental results for intent detection models. The intent model
performance is measured using intent classification error rates.
We can see that the baseline model without using dictionaries
is the worst performer in every domain. With unweighted dic-
tionaries the error rates drop by 0.3 to 1.5 points. Models with
dictionaries weighted with click logs performs better than un-
weighted dictionaries. The best performance comes from using
proposed weighting approach shown in the last row.

All experiments used the same data sets and N-gram fea-
tures, the only difference is whether entity dictionaries are uti-
lized and how they are utilized. When a weighted dictionary
is used, it is split into 5 smaller dictionaries based on entity
weights. So the feature sets used in the last two tests are slightly
larger. For example, 20 dictionary features are converted into
100 dictionary features in the movie domain.

Similar experiments are performed on slot tagging tasks.
The performance comparison is presented in Table 4. We use
F1 scores to measure the accuracy of CRF models. The pro-
posed method in the last row consistently outperforms other
approaches. While the improvement for the places domain is
insignificant, the improvement in movie domain over the previ-
ously proposed dictionary weighting approach [9] is 3%. Also
we notice that the models with dictionaries weighted only with
click logs perform slightly worse than unweighted dictionaries
in movie domain. This is due to the fact there are some legiti-
mate entities missing in search logs and they are clustered into
the bucket with the lowest weight.

The proposed method has a larger performance gain in
movie and music domains than the other three. The major
reason is that candidate dictionaries for these two domains are
larger: 56K and 70K entries, respectively. They contain more



Table 4: Slot tagging experiments (F1 measure %)
Experiments movie app place game music
baseline: without
dictionaries 62.56 79.10 74.67 72.44 67.62
unweighted
dictionaries 68.49 80.23 84.47 83.76 70.28
dics weighted
with click logs 68.11 80.73 85.42 84.02 71.46
dics weighted
with click logs
and knowledge
graph

71.08 81.41 85.56 84.52 72.51

noisy entities therefore a good weighting approach can boost
slot tagging performance.

8. Conclusion and Future Work
We proposed a discriminative model based approach that uses
multiple knowledge sources to weight dictionary entities and
improve web-scale spoken language understanding systems.
Entity weighting classifiers are built using features extracted
from a knowledge graph and search click logs. Intent and slot
models trained with the proposed weighting approach perform
consistently better than the baseline and models built with pre-
vious weighting methods. The knowledge graph used in this
study is constructed mainly based on public resources such as
freebase and wikipedia. Therefore the proposed method can be
adopted for similar SLU tasks. Future work in this area includes
using additional information sources for entity weighting. For
example, the snippet in every search result gives richer infor-
mation than URL itself. We currently only use type information
from knowledge graph, but entity description is also available
and can be useful as well.
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