
VARIABLE-ACTIVATION AND VARIABLE-INPUT DEEP NEURAL NETWORK FOR 

ROBUST SPEECH RECOGNITION 
 

Rui Zhao1, Jinyu Li2, and Yifan Gong2   
1Microsoft Search Technology Center Asia, Beijing, China   

2Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 
 

 

ABSTRACT 

 
In a previous study, we proposed a variable-component deep 

neural network (VCDNN) to improve the robustness of context-

dependent deep neural network hidden Markov model (CD-DNN-

HMM). We model the components of DNN with a set of 

polynomial functions of environmental variables, more specifically 

signal-to-noise ratio (SNR) in that study. We refined VCDNN on 

two types of DNN components: (1) weighting matrix and bias (2) 

the output of each layer. These two methods are called variable-

parameter DNN (VPDNN) and variable-output DNN (VODNN). 

Although both methods got good gain over the standard DNN, they 

doubled the number of parameters even with only the first-order 

environment variable. In this study, we propose two new types of 

VCDNN, namely variable activation DNN (VADNN) and variable 

input DNN (VIDNN). The environment variable is applied to the 

hidden layer activation function in VADNN, and is applied directly 

to the input in VIDNN. Both VCDNNs only increase a negligible 

number of parameters compared to the standard DNN. 

Experimental results on the Aurora4 task show that both methods 

have similar performance as VPDNN, obtaining around relative 

3.71% word error reduction from the standard DNN with 

negligible increase in number of parameters. 

 

Index Terms— deep neural network, variable component, 

variable input, variable activation, robust speech recognition 

 

1. INTRODUCTION 

 
Recently, a new acoustic model, referred to as the context-

dependent deep neural network hidden Markov model (CD-DNN-

HMM), has been developed. It has been shown, by many groups 

[1][2][3][4][5][6], to outperform the conventional GMM-HMMs in 

many automatic speech recognition (ASR) tasks. However, there 

are only very few works to investigate the effectiveness of CD-

DNN-HMM on noise-robust ASR tasks [7][8][9][10], although 

robustness is still very challenging to real-world applications 

[12][13].  

 

In a previous study, we proposed a model-based noise-robust 

method called variable-component DNN (VCDNN) [14], which is 

inspired by the idea from the variable-parameter HMM (VPHMM) 

method [15]. In VCDNN, we want to have any component in the 

DNN to be modeled as a set of polynomial functions of an 

environment variable. In [14], we investigated two types of 

variation: variable-parameter DNN (VPDNN) in which the weight 

matrix and bias are environment-variable dependent, and variable-

output DNN (VODNN) in which the output of each hidden layer is 

environment-variable dependent. As in VPHMM, the variable-

dependent components are computed online for the environment 

condition detected in the testing data using their associated 

polynomial functions during recognition.  

Although better performance is achieved, even with the first-

order environment variable, VPDNN and VODNN doubled the 

number of parameters from the standard DNN. The impact of an 

environment variable to the DNN should be in a low dimension 

space. Therefore, we should be able to use only a limited number 

of parameters to handle it. In this paper, we propose two new types 

of VCDNN, namely variable activation DNN (VADNN) and 

variable input DNN (VIDNN). An environment variable is applied 

to the hidden layer activation function in VADNN, and is applied 

directly to the input in VIDNN. Both DNNs only slightly increase 

the number of parameters. Experimental results on the Aurora4 

task [16] show that both methods are very effective, obtaining 

relative around 3.71% word error reduction from the standard 

DNN, with negligible increase in number of parameters. 

This paper is organized as follows. In Section 2, we review the 

standard DNN and previously proposed VPDNN and VODNN. 

Then, in Section 3, the proposed VADNN and VIDNN will be 

described in detail. In Section 4, the experimental results on 

Aurora4 will be presented.  Finally, the conclusions and future 

works will be given in Section 5.  

 

2. STANDARD DNN, VPDNN AND VODNN 

 
In this section, we first describe the standard DNN formulation and 

training methods. Then, we introduce our previously proposed 

variable-component DNN (VCDNN) methods in the form of 

variable-parameter DNN (VPDNN) and variable-output DNN 

(VODNN) [14]. 

 

2.1 Standard DNN 
 

The standard DNN can be considered as a multi-layer perceptron 

(MLP) consisting of one input layer, one output layer and many 

hidden layers. Each node in the output layer represents one senone.  

 

Usually, a sigmoid function is chosen as the activation 

function for hidden layers of DNN and the output of the 𝑙 -th 

hidden layer 𝑜𝑙 is given by: 

𝑜𝑙 = 𝑓𝑠𝑖𝑔𝑚(𝑢𝑙)                                               (1) 

𝑢𝑙 = (𝑊𝑙)𝑇𝑜𝑙−1 + 𝑏𝑙                                       (2) 

where 𝑜𝑙−1 is the input of the 𝑙-th layer, 𝑊𝑙 and 𝑏𝑙are the weight 

matrix and bias of the 𝑙 -th layer, respectively. 𝑓𝑠𝑖𝑔𝑚(𝑥) =

1/(1 + 𝑒𝑥).  



The activation function of the output layer (layer 𝐿 ) is a 

softmax function  

𝑜𝑘
𝐿 =

𝑒𝑥𝑝 (𝑢𝑘
𝐿)

∑ 𝑒𝑥𝑝 (𝑢𝑖
𝐿)𝑆

𝑖=1

 .                                 (3) 

Hence, the senone posterior probability 𝑃(𝑠𝑘|𝑥) is:  

𝑃(𝑠𝑘|𝑥) =
𝑒𝑥𝑝 (𝑢𝑘

𝐿)

∑ 𝑒𝑥𝑝 (𝑢𝑖
𝐿)𝑆

𝑖=1

 ,                             (4) 

where 𝑥  is the input feature vector of DNN, 𝑠𝑘   is the senone 

responding to unit 𝑘 of the top layer, and S is the total number of 

senones. The first layer’s input 𝑜0 = 𝑥 . The senone emission 

likelihood of HMM 𝑝(𝑥|𝑠) is then calculated according to 

𝑝(𝑥|𝑠) =  𝑃(𝑠|𝑥) ∙ 𝑝(𝑥)/𝑃(𝑠) .                    (5) 

𝑃(𝑠) is the prior probability of senone 𝑠. 𝑝(𝑥)  is independent of 𝑠 

and can be ignored during HMM decoding.  

 

In DNN training, the commonly used optimization criterion is 

the cross-entropy between the posterior distribution represented by 

the reference labels �̂�(𝑠|𝑥) and the predicted distribution 𝑃(𝑠|𝑥). 

The objective function is:    

𝐹𝐶𝐸 = − ∑ �̂�(𝑠𝑖|𝑥)log(𝑃(𝑠𝑖|𝑥))𝑆
𝑖=1  .             (6) 

The reference label is typically decided based on the forced-

alignment: 

�̂�(𝑠𝑖|𝑥) = {
1    if x is aligned to senone si 
0                                                else

 .     (7) 

Then equation (6) is simplified as:  

𝐹𝐶𝐸 = − log(𝑃(𝑠′|𝑥)) ,                            (8) 

where 𝑠′ is the reference senone for the speech input 𝑥. 

 

With the above objective function, a DNN can be trained with 

the method introduced in [1], which consists of unsupervised pre-

training and supervised fine-tuning. The algorithm used in the fine-

tuning stage is error back propagation, where the weight matrix 𝑊 

and bias 𝑏 of layer 𝑙 are updated with: 

�̂�𝑙 = 𝑊𝑙 + 𝛼𝑜𝑙−1(𝑒𝑙)T   (9)                           

�̂�𝑙 = 𝑏𝑙 + 𝛼𝑒𝑙                                 (10) 

where 𝛼  is the learning rate. 𝑜𝑙−1  and 𝑒𝑙  are the input and error 

vector of layer 𝑙, respectively.  𝑒𝑙 is calculated by propagating the 

error from its upper layer:  

                       𝑒𝑖
𝑙 = [∑ 𝑤𝑖𝑘

𝑙+1𝑒𝑘
𝑙+1𝑁𝑙+1

𝑘=1 ]𝑓𝑠𝑖𝑔𝑚
′ (𝑢𝑖

𝑙) ,               (11) 

where 𝑤𝑖𝑘
𝑙+1 is the element of weight matrix 𝑊𝑙+1 in 𝑖-th row and 

𝑘-th column for layer 𝑙 + 1, and 𝑒𝑘
𝑙+1 is the 𝑘-th element of error 

vector 𝑒𝑙+1 for layer 𝑙 + 1. 𝑁𝑙+1 is the node number in layer 𝑙 + 1. 

𝑓𝑠𝑖𝑔𝑚
′ (𝑢𝑖

𝑙) is the derivative of sigmoid function. The error of the 

top layer (i.e. output layer) is the derivative of the objective 

function defined in equation (8). 

𝑒𝑠
𝐿 = −

𝜕𝐹𝐶𝐸

𝜕𝑢𝑠
𝐿 = (𝛿𝑠𝑠′ − 𝑜𝑠

𝐿).                    (12) 

𝛿𝑠𝑠′ is the Kronecker delta function. 

 

2.2 VPDNN and VODNN 
 

The basic idea in VCDNN is to refine the DNN components by 

modeling their variation against environment changes, which is not 

explicitly taken into consideration in a standard DNN. In [14], we 

have specifically worked on two types of components of DNN: (a) 

VPDNN: on weight matrix and bias, and b) VODNN: on the 

output of each layer. 

 

In VPDNN, the weight matrix W and bias b of layer 𝑙  is 

modeled as a function of the environment variable 𝑣:  

𝑊𝑙 = 𝑓𝑤
𝑙 (𝑣) , 𝑏𝑙 = 𝑓𝑏

𝑙(𝑣)    0 < 𝑙 ≤ 𝐿 .            (13) 

Here, we use a polynomial function for both 𝑓𝑤
𝑙  and 𝑓𝑏

𝑙  based 

on its advantages and effectiveness shown in VPHMM [15].  SNR 

is selected as the environment variable. So we have:  

𝑊𝑙 = ∑ 𝐻𝑗
𝑙𝑣𝑗𝐽

𝑗=0      0 < 𝑙 ≤ 𝐿                           (14) 

𝑏𝑙 = ∑ 𝑝𝑗
𝑙𝑣𝑗𝐽

𝑗=0         0 < 𝑙 ≤ 𝐿                          (15) 

 

In VODNN, we assume the output of each hidden layer could 

be described by a polynomial function of the environment variable 

𝑣.  

      𝑜𝑙 = ∑ 𝑓𝑠𝑖𝑔𝑚(𝑢𝑗
𝑙)𝑣𝑗𝐽

𝑗=0         0 < 𝑙 < 𝐿 ,                 (16) 

where  

𝑢𝑗
𝑙 = (𝐻𝑗

𝑙)
𝑇

𝑜𝑙−1 + 𝑝𝑗
𝑙        0 < 𝑙 < 𝐿 .                    (17) 

 

In equation (14) to (16), 𝐽 is the polynomial function order.  𝐻𝑗
𝑙 is a 

matrix with the same dimensions as 𝑊𝑙 and  𝑝𝑗
𝑙  is a vector with the 

same dimension as 𝑏𝑙 . In VPDNN and VODNN, 𝐻𝑗
𝑙  and 𝑝𝑗

𝑙  (0 ≤

𝑗 < 𝐽 ) need to be estimated instead of  𝑊𝑙  and 𝑏𝑙 , so the 

parameters number is 𝐽 + 1 times of that in the standard DNN. 

 

In [14] SNR is normalized with a sigmoid function  �̃� = 𝑓𝑠𝑖𝑔𝑚(𝛽𝑣) 

for both VPDNN and VODNN because the numerical value range 

of raw SNR is too big compared with the DNN components. −1 <
𝛽 < 0 is a constant to make the normalized SNR for the clean data 

to be close to zero. 

 

3. VADNN AND VIDNN 
Although better recognition performance is achieved, VPDNN and 

VODNN doubled the number of parameters from the standard 

DNN even with the first-order SNR variable. We believe that the 

impact of SNR to DNN could be represented   in a low dimension 

space. Therefore, we should be able to use only a limited number 

of parameters to handle it. In this section, we propose two new 

types of VCDNN, namely variable activation DNN (VADNN) and 

variable input DNN (VIDNN). SNR variable is applied to hidden 

layer activation function in VADNN, and is applied directly to the 

input in VIDNN. The increased number of parameters of both 

DNNs is almost negligible compared to that of the standard DNN.  

 

3.1 VADNN 

 

In VADNN, the activation function of hidden layer has 

environment-variable-dependent parameters.  

𝑜𝑙 = 𝑓𝑠𝑖𝑔𝑚(𝑎𝑙 °𝑢𝑙 + 𝑚𝑙 ) ,                            (18) 

where 𝑎𝑙 °𝑢𝑙  means the element-wise product of vector 𝑎𝑙  and 

𝑢𝑙 .   𝑎𝑙  and 𝑚𝑙  are defined as the polynomial functions of SNR: 

𝑎𝑙 = ∑ ℎ𝑗
𝑙𝑣𝑗𝐽

𝑗=0                                    (19) 

𝑚𝑙 = ∑ 𝑝𝑗
𝑙𝑣𝑗𝐽

𝑗=0                                       (20) 

 

We can that see for VADNN, the additional variable-dependent 

parameters ℎ𝑗
𝑙 = [ℎ𝑗1

𝑙 , ℎ𝑗2
𝑙 , … , ℎ𝑗𝑁𝑙

𝑙 ] and 𝑝𝑗
𝑙 = [𝑝𝑗1

𝑙 , 𝑝𝑗2
𝑙 , … , 𝑝𝑗𝑁𝑙

𝑙 ]   for 

each hidden layer are vectors with dimension 𝑁𝑙 , which is the 

http://en.wikipedia.org/wiki/Kronecker_delta


number of nodes of layer 𝑙. So its number of parameters is much 

smaller than that in VPDNN or VODNN.  

 

In the training of VADNN, we need to estimate  ℎ𝑗
𝑙and 𝑝𝑗

𝑙  as 

well as the standard DNN parameters 𝑊𝑙 and 𝑏𝑙. The initial value 

of 𝑎𝑙  and 𝑚𝑙  are set to: 

ℎ𝑗𝑘
𝑙 = 1  if 𝑗 = 0

ℎ𝑗𝑘
𝑙 = 0  if 𝑗 > 0

𝑝𝑗𝑘
𝑙 = 0

                      (21) 

 

 The updating formula can be derived with error back 

propagation algorithms as below: 

�̂�𝑙 = 𝑤𝑙 + 𝛼𝑜𝑙−1(𝑒𝑙 ° 𝑎𝑙 )
T
                     (22) 

�̂�𝑙 = 𝑏𝑙 + 𝛼(𝑒𝑙 ° 𝑎𝑙 )                          (23) 

ℎ̂𝑗
𝑙 = ℎ𝑗

𝑙 + 𝛼(𝑒𝑙 ° 𝑢𝑙 )𝑣𝑗                          (24) 

�̂�𝑗
𝑙 = 𝑝𝑗

𝑙 + 𝛼𝑒𝑙𝑣𝑗                                (25) 

 

In the recognition stage, the activation output for each hidden 

layer is calculated according to (18) with the estimated SNR of the 

testing data. Then the senone posterior is computed with equation 

(4) as in standard DNN.  

 

3.2 VIDNN 

 

In VIDNN, the SNR value is concatenated to the input feature 

directly to make the input variable dependent, as show in Figure 1. 

 

Standard DNN Input vector SNR

Hidden layer

...
Hidden layer

Output layer

 
 

Figure 1. Flowchart of VIDNN 

The SNR related parameters 𝑊𝑣
1, 𝑏𝑣

1 can be estimated in the 

same way as the standard DNN parameters 𝑊1, 𝑏1  which is 

described in section 2.1. During the recognition, the SNR is 

estimated for the testing data and concatenated with the standard 

DNN feature. Then the concatenated feature is fed into the DNN 

show in Figure 1 to get the senone posterior.   

 

Now we can apply an environment variable to any component 

of DNN: to input (via VIDNN), to parameter (via VPDNN), to 

activation function (via VADNN), and to layer output (via 

VODNN). This completes the whole framework of VCDNN. 

 

4. EXPERIMENTS 

 
The proposed methods are evaluated with Aurora 4 [16], a noise-

robust medium-vocabulary task based on the Wall Street Journal 

corpus (WSJ0). Aurora 4 has two training sets: clean and multi-

condition. Each of them consists of 7138 utterances (about 14 

hours of speech data). For the multi-condition training set, half of 

the data was recorded with a Sennheiser microphone and the other 

was with a secondary microphone. Besides, 6 types of noises (car, 

babble, restaurant, street, airport, and train) were added with SNRs 

from 10 to 20dB. The subset recorded with the Sennheiser 

microphone was called as channel wv1 data and the other part as 

channel wv2 data. 

The test set contains 14 subsets. 2 of them are clean and the 

other 12 are noisy. The noisy test sets were recorded with the same 

types of microphone as in multi-condition training set. Also, the 

same 6 types of noise as in multi-condition training set were added 

with SNRs between 5 and 15 dB.  

The acoustic feature of baseline CD-DNN-HMM system are 

24-dimensional log Mel filter-bank static features without 

utterance-level mean normalization plus their first- and second-

order derivative features, totally 72 dimensions. The dimension of 

the DNN input layer is 792, formed from a context window of 11 

frames. Its output layer contains 1209 units, which means there are 

1209 senones in the HMM system.  The DNN has 5 hidden layers 

with 2048 units in each layer.  

 

4.1. Experiment Results 

 
In the experiments, we compare the standard DNN with variations 

of VCDNN: VPDNN, VADNN, and VIDNN. VODNN is not 

included here because it has similar performance as VPDNN [14]. 

The standard DNN and VCDNNs are all trained with the noisy 

wv1 data from multi-condition training set. The test data are clean 

and six noisy wv1 sub sets. The reason we only choose wv1 data 

for the experiments is that wv2 data contains channel distortion 

which is another factor affecting the performance of ASR. 

Currently we want to only consider noise as a factor and use SNR 

as the environment variable, and in the future we will introduce 

channel distortion into our modeling. The results are given in Table 

1. The results of standard DNN and VPDNN are slightly different 

from those in [14] because the DNN models in [14] were initiated 

first with clean data only and updated with multi-condition data. 

That setup may not be available in realistic condition. Therefore, in 

this paper we only use the available multi-condition data for all the 

experiments.  

Table 1. Comparison of the standard DNN with the first-order 

VCDNNs using SNR as the environment variable 

Model WER 

standard DNN 11.31 

VPDNN 10.74 

VADNN 10.89 

VIDNN 10.92 

 

In Table 1, for VPDNN and VADNN, the normalized SNR is 

used as the variable because the numerical value range of raw SNR 

is too big compared with the DNN components, which may bring 

some optimization problem to VCDNN. However, it is popular to 

remove the sigmoid or softmax nonlinearity of a variable if it is 

used as the input of a network (e.g., TANDEM [17] or bottle-neck 

[18] feature). Hence, the raw SNR is used in VIDNN in Table 1. 

As shown in [14], the first-order polynomial is good enough to 

model the variation caused by SNR changes within the DNN 



framework. Therefore, the first-order polynomial is used in all the 

experiments. The results show that the three variations of VCDNN 

give very similar word error rate (WER), obtaining 3.45%-5.04% 

relative WER reduction from the standard DNN.  

Table 2 gives the parameter number for standard DNN and 

VCDNNs. VPDNN doubles the number of parameters from the 

standard DNN, VADNN and VIDNN only increase a negligible 

number of parameters compared to that of the standard DNN. This 

confirms our belief that the impact of SNR to DNN may be in a 

low dimension space, without the need to use a large number of 

parameters to model it.  

 

 Table 2. Comparison of the parameter number of the 

standard DNN with the first-order VCDNNs 

 

Model Parameter number 

standard DNN 20,886,713 

VPDNN 39,296,185 

VADNN 20,927,673 

VIDNN 20,890,809 
 

 

4.2. Visualized Analysis 
 

At first glance, we are surprised at the improvement of VIDNN by 

only adding a single SNR value to the input vector. The original 

log Mel filter-bank feature (static together with its dynamic 

feature) has 72 dimensions. How can the additional single 

dimension input from SNR makes such an impact to the whole 

DNN? Next, we try to use t-SNE [19] to visualize the impact of 

adding SNR as an additional input variable. t-SNE is a tool to 

visualize high dimensional data in a low dimensional space. It 

preserves neighbor relation so that the nearby points in the two-

dimensional t-SNE plot are also very close in the original high 

dimensional space. A parallel pair of utterances is used for the 

illustration. The first one is a clean utterance (447c020s in the 

clean test set), and the second one is synthesized from the clean 

one by adding airport noise with SNR 9db (447c020s in the airport 

test set).  

We first look at the t-SNE plots of the log filter bank feature 

and the 1st, 5th layer activation vectors of the corresponding DNN 

for this pair of stereo utterances in Figure 2. The green upper 

triangles correspond to the frames of pure clean silence, and the 

black lower triangles are the frames of pure noise. The red stars 

refer to clean speech frames, and the blue circle are noisy speech 

frames. From Figure 2.a), we can clearly see that most clean 

speech and noisy speech samples are scattered from each other. 

Also, the pure noise samples are mixed with some noisy speech 

samples. The DNN training provides a layer-by-layer feature 

extraction strategy that automatically derives powerful noise-

resistant features from primitive raw data for senone classification. 

This invariance property can be observed in Figure 2.b) and 2.c), in 

which the noisy and clean speech samples become better aligned 

together when going through the DNN from the lower layer to the 

higher layer. There are still some not-well-aligned samples, which 

the DNN cannot perform good invariance on. If the noisy and 

clean samples are perfectly aligned in the t-SNE plot, that means 

these samples are very close to each other in the original high-

dimension space. Therefore, when being presented to a classifier,  

 
a) log filter bank feature 

 

 
b) 1st layer activation vector 

 

 
c) 5th layer activation vector 

 

Figure 2. t-SNE plot for the log filter bank feature, and the 1st, 5th 

layer activation vectors of the corresponding DNN for a pair of 

stereo utterances 



 
a) log filter bank + SNR feature  

 

 
b) 1st layer activation vector 

 

 
c) 5th layer  activation vector 

 

Figure 3. t-SNE plot for the log filter bank + SNR feature, and the 

1st, 5th layer activation vectors of the corresponding VIDNN for a 

pair of stereo utterances 

similar results will generated from these well-aligned samples. By 

comparing Figure 2.a) and Figure 2.c), it is clear that the activation 

vector in the 5th layer of the DNN is much better aligned for clean 

and noisy speech samples than the log filter bank feature. Note that 

the pure silence samples and the pure noise samples are not well 

aligned because the difference between the log filter bank values of 

pure silence and noise samples is much larger than that of the clean 

and noisy speech samples. As discussed in [20], the DNN’s 

invariance property can only handle the input samples with 

moderate difference. Otherwise, even after going through multiple 

layers of a DNN, the invariance cannot be obtained.  

In Figure 3, we examine the concatenated log filter bank and 

SNR feature, and the 1st, 5th layer activation vectors of the 

corresponding VIDNN for the same pair of stereo utterances. 

Comparing Figure 3.a) with 2.a), we can see that by concatenating 

SNR with the log filter bank feature, the data distribution 

significant changes. In Figure 3.a), the samples from the clean 

utterance (i.e., the pure silence and clean speech frames) are totally 

separated from the noisy utterance (i.e., the pure noise and noisy 

speech frames). This means that the impact of adding only one 

dimensional SNR to the original 72 dimension log filter bank 

feature is large. It is also interesting to compare Figure 3.b) with 

2.b), in which the 1st layer activation vectors are plotted. Rather 

than beginning to align the samples from clean and noisy 

utterances together as in Figure 2.b), the function of the first layer 

of VIDNN is to separate the non-speech samples from speech 

samples. Then with multiple higher layers, the clean and noisy 

speech samples begin to align very well as in Figure 3.c). As a 

conclusion, although being of only one dimension compared to the 

72 dimensions of log filter bank feature, the SNR variable really 

makes difference to the sample distribution of clean and noisy 

utterances, and results in different recognition performance. 

 

5. CONCLUSIONS AND FUTURE WORKS 
 

In this paper, we complete the whole framework of variable-

component DNN by proposing variable activation DNN (VADNN) 

and variable input DNN (VIDNN). Together with previously 

proposed variable parameter DNN (VPDNN) and variable output 

DNN (VODNN), now we can apply an environment variable to 

any component of DNN: to input (via VIDNN), to parameter (via 

VPDNN), to activation function (via VADNN), and to layer output 

(via VODNN). Both VADNN and VIDNN only increase a 

negligible number of parameters compared to standard DNN. This 

is much better than the previously proposed VPDNN and VODNN, 

which double the number of parameters even with the first-order 

environment variable.   

Experimental results on the Aurora4 task show that all the 

variations of VCDNN give similar WERs They obtained 3.45%-

5.04% relative WER reduction from the standard DNN. The 

advantage of VADNN and VIDNN proposed in this paper is that 

they can achieve satisfactory WER reduction with negligible 

increase number of parameters. Furthermore, there is almost no 

cost to implement VIDNN which only needs to estimate the SNR 

value for the current utterance and then concatenate it with the 

original feature. We also use a t-SNE plot to show that although 

the SNR variable only has one dimension, it makes a clear impact 

to the data distribution when concatenated with the 72-dimensional 

log filter bank feature, resulting in better recognition performance.  



In this study, we only use SNR as the environment variable. 

Encouraged by the results, we will continue to add more 

environment variables in the future.  

 

REFERENCES 

 
[1] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-

tuning in context-dependent DBN-HMMs for real-world 

speech recognition,” in Proc. NIPS Workshop on Deep 

Learning and Unsupervised Feature Learning, 2010. 

[2] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. 

Novak, and A. Mohamed, “Making deep belief networks 

effective for large vocabulary continuous speech recognition,” 

in Proc. Workshop on Automatic Speech Recognition and 

Understanding, pp. 30–35, 2011. 

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large-

vocabulary speech recognition,” IEEE Trans. on Audio, 

Speech and Language Processing, vol. 20, no. 1, pp. 30–42, 

2012. 

[4] N. Jaitly, P. Nguyen, and V. Vanhoucke, “Application of 

pretrained deep neural networks to large vocabulary speech 

recognition”, in Proc. Interspeech, 2012. 

[5] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, 

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. 

Kingsbury, “Deep neural networks for acoustic modeling in 

speech recognition: The shared views of four research groups,” 

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 

2012. 

[6] L. Deng, J. Li, J. -T. Huang et al. “Recent advances in deep 

learning for speech research at Microsoft,” in Proc. ICASSP, 

2013. 

[7] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep 

neural networks for noise robust speech recognition,” in Proc. 

ICASSP, pp. 7398–7402, 2013. 

[8] B. Li and K. C. Sim, “Noise adaptive front-end normalization 

based on vector Taylor series for deep neural networks in 

robust speech recognition,” in Proc. ICASSP, pp. 7408–7412, 

2013. 
[9] B. Li, Y. Tsao, and K. C. Sim, “An investigation of spectral 

restoration algorithms for deep neural networks based noise 

robust speech recognition,” in Proc. Interspeech, pp. 3002–

3006, 2013. 
[10] M. Delcroix, Y. Kubo, T. Nakatani, and A. Nakamura, “Is 

speech enhancement pre-processing still relevant when using 

deep neural networks for acoustic modeling,” in Proc. 

Interspeech, pp. 2992–2996, 2013. 
[11] A. Narayanan and D. Wang, “Investigation of speech 

separation as a front-end for noise robust speech recognition,” 

IEEE/ACM Transactions on Audio, Speech & Language 

Processing, vol. 22, no. 4, pp. 826-835, 2014. 

[12] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview 

of noise-robust automatic speech recognition, in IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, 

2014. 

[13] M. Seltzer, "Robustness is dead! Long live robustness!" in 

Reverb Challenge Workshop, 2014. 

[14] R. Zhao, J. Li, and Y. Gong, “Variable-component deep 

neural network for robust speech recognition,” In Proc. 

Interspeech, 2014. 

[15] X. Cui and Y. Gong, “A study of variable-parameter Gaussian 

mixture hidden Markov modeling for noisy speech 

recognition,” IEEE Trans. on Audio, Speech and Language 

Processing, vol. 15, no. 4, pp. 1366–1376, 2007. 

[16] N. Parihar and J. Picone, “Aurora working group: DSR front 

end LVCSR evaluation AU/384/02,” Tech. Rep., Institute for 

Signal and Information Processing, Mississippi State Univ., 

2002. 

[17] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem 

connectionist feature extraction for conventional HMM 

systems,” in Proc. ICASSP, vol. 3, pp. 1635–1638, 2000. 

[18] F. Grezl, M. Karafiat, S. Kontar, and J. Cernocky, 

“Probabilistic and bottle-neck features for LVCSR of 

meetings,” in Proc. ICASSP, vol. IV, pp. 757–760, 2007. 

[19] L. Van der Maaten and G. Hinton, “Visualizing data using t-

SNE,” Journal of Machine Learning Research, vol. 9, no. 11, 

2008. 

[20] D. Yu, M. Seltzer, J. Li, J. T. Huang, and F. Seide, “Feature 

learning in deep neural networks–studies on speech 

recognition tasks,” in Proc. International Conference on 

Learning Representations, 2013. 

 


