
Making Vapnik-Chervonenkis bounds accurate

Léon Bottou

Abstract This chapter shows how returning to the combinatorial nature of the
Vapnik-Chervonenkis bounds provides simple ways to increase their accuracy, take
into account properties of the data and of the learning algorithm, and provide em-
pirically accurate estimates of the deviation between training error and testing error.

1 Introduction

Although the Vapnik-Chervonenkis (VC) learning theory [19, 20, 21, 17, 18] has
been justly acclaimed as a major conceptual breakthrough, applying its essential
theorems to practical problems often yields very loose bounds. In the case of the pat-
tern recognition problem, the theorems provide distribution–independent uniform
bounds on the deviation between the expected classification error and the empiri-
cal classification error. Their derivation reveals many possible causes for their poor
quantitative performance:

i) Practical data distributions may lead to smaller deviations than the worst possible
data distribution.

ii) Uniform bounds hold for all possible classification functions. Better bounds may
hold when one restricts the analysis to functions that perform well on plausible
training sets.

iii) A symmetrization lemma translates the main combinatorial result into a bound
on the deviation between expected and empirical errors. This lemma is a conser-
vative inequality.

iv) The combinatorial characterization of the Vapnik-Chervonenkis capacity is a
conservative upper bound.
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v) The union bound P(∪iAi)≤∑i P(Ai) constitutes a critical step of the proof. This
bound could be reasonably accurate if the events were independent events with
low probability. Nothing guarantee that this is the case.

An apparently different class of bounds, sometimes called sample compression
bounds, often provides much more realistic estimates of the generalization error.
Such bounds predate the VC theory: for instance, it was mentioned in Paphos that
Chervonenkis knew that the expected error of the generalized portrait algorithm is
roughly bounded by the fraction of support vectors found in the training set [16,
15]. This bounds depends on the number of support vectors, an empirical quantities
measured a posteriori.

The purpose of this contribution is to explore the gap between these two style
of bounds using only simple mathematics and a simple empirical case study. This
simplicity results from an apparently bold step: instead of assuming that the ex-
amples are independently drawn from an unknown distribution, we will reason on
random partitions of an arbitrary data set into equally sized training and testing
sets. Deviation estimates then result from the combinatorial argument that forms
the central part of the traditional Vapnik-Chervonenkis proofs. Avoiding the sym-
metrization lemma (see point iii above) also provides a simple way to obtain data–
and algorithm–dependent bounds (points i and ii) and to define empirical data–
and algorithm–dependent capacities (point iv) [3, 4, 24]. The union bound (point
v above) then remains the main source of quantitative problems.

Although refined bounding techniques have been proposed to address all these
issue [6, 8, 12, 7, 5, 13], their sophistication often obscures their connection to the
practical reality. We believe that the simple framework described in this contribution
provides useful intuitions.

The following discussion is organized as follows. After presenting the random
split paradigm, we explain how to easily derive bounds in the style of Vapnik-
Chervonenkis and make them take into account the specificities of the data dis-
tribution and of the learning algorithm. We then estimate the performance of these
bounds on a simple case study and show that more refinements are necessary to
obtain a bound with a reasonable amount of computation.

2 Setup

Let Q(z,w) be a loss function that measures the correctness on sample z of the
answer produced by a learning machine parameterized by w ∈F . In this paper we
only consider the case of binary loss functions that take the value one if the answer
is wrong and zero if it is correct. For instance, in the case of a pattern recognition
system, each sample z is a pair (x,y) composed pattern x and a class label y. Given a
classifier fw(x) parametrized by w, the loss function Q(z,w) is zero when fw(x) = y
and is one otherwise.

Let S be a set of 2` labeled examples z1, · · · ,z2`. There are C`
2` ways to split

this set into equally sized training and testing sets, S1 and S2, containing each `
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examples. For each choice of a training set S1 and a test set S2, and for each value of
the parameter w, we define the training error ν1, the test error ν2 and the total error
ν as:

ν1(w) =
1
` ∑

z∈S1

Q(z,w) , ν2(w) =
1
` ∑

z∈S2

Q(z,w)

ν(w) =
1
2` ∑

z∈S
Q(z,w)

Consider a deterministic learning algorithm A that processes the training set S1
and produces a parameter wS1 . This parameter value usually performs well on the
training set S1 in the hope that it will also perform well on the testing set S2. For
instance, the empirical risk minimization principle suggests to design an algorithm
that minimizes ν1(w) in the hope to ensure that ν2(wS1) is small.

All results presented here concern the distribution of the deviation between the
training error ν1(wS1) and the testing error ν2(wS1) when one considers all possible
splits S1∪S2 of the dataset S and obtain wS1 by running the learning algorithm A ,

Pr
{ ∣∣ν2(wS1)−ν1(wS1)

∣∣> ε
}
. (1)

The notation Pr(H ) denotes the ratio of the number of splits for which condition
H is true over the total number C`

2` of possible splits S1∪S2 of the dataset S. We use
this notation instead of the traditional probability notation to emphazise the purely
combinatorial nature of this problem.

We argue that the real life behavior of learning algorithms is well characterized
by the tail of this distribution. Thousands of machine learning papers are in fact
supported by experimental studies that follow the same protocol: randomly holding
out testing data, applying the learning algorithm to the remaining data, and assess-
ing its performance on the testing data. A good testing set performance is widely
accepted as convincing evidence supporting the use of a specific learning algorithm
for a specific learning problem. Bounding the tail of the distribution (1) provides as
strong an evidence.

In contrast, traditional statistical approaches of the learning problem assume that
the training examples are drawn independently from an unknown distribution. The
expected error IE(Q(z,wS1)) then represents the future performance of the system on
new examples drawn from this same distribution. Bounding the difference between
the training error and the expected error provides a stronger guarantee because the
assumed existence of the ground truth distribution provides a means to reason about
the algorithm performance on arbitrarily large training sets. Consider for instance
a binary classification algorithm that relies on a polynomial discriminant function
whose degree grows linearly with the number of training examples. Running such
an algorithm on a training set S1 of a sufficiently small size ` could conceivably
give acceptable performance on the testing set S2 of the same size. However this
acceptable performance does not guarantee that running the algorithm on all 2`
available examples would not overfit.
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Avoiding the ground truth assumption is attractive for philosophical reasons. Al-
though epistemology frequently relies on the idea that the world is ruled by simple
universal truths waiting to be uncovered, it can be argued that the only thing that
is available to us for sure is the finite set of examples. From this point of view, the
ground truth distribution is a metaphysical concept because there is no statistical test
to determine whether or not our dataset is composed of independent and identically
distributed examples and no hope to identify their distribution.

Avoiding the ground truth assumption is also attractive for technical reasons.
Working with the combinatorial distribution (1) affords simple ways to derive tail
bounds that leverage specific properties of the data or of the learning algorithm.

3 Misclassification Vectors

For each value of the parameter w, the loss function Q(z,w) maps the full set of
examples S onto a binary vector q(w) = (Q(z1,w), . . . ,Q(zn,w)) of length 2` that
we shall call misclassification vector. The ordering of its coefficients does not de-
pend on the dataset split: the i-th component of q(w) indicates whether the learning
system parametrized by w processes the example zi incorrectly, regardless of its
appartenance to either the training set or the testing set.

The misclassification vector q(w) encapsulates all that we need to know about
the performance of the system parametrized by vector w. Parameter values that lead
to the same misclassification vector will also lead to the same total error, training
error, and the testing error. Therefore we often write them as ν(q), ν1(q) and ν2(q)
instead of ν(w), ν1(w) and ν2(w).

The function η(q,ε) =Pr{|ν2(q)−ν1(q)|> ε} does not depend on the ordering
of the coefficients in the misclassification vector q because all possible splits are
considered and because the quantities ν1(q) and ν2(q) do not depend on the ordering
of the coefficients within each subset. We therefore write η(q,ε) = η(`,ν(q),ε).

Consider an urn containing 2ν` red marbles and 2(1− ν)` white marbles. Out
of the C`

2` possible ways to draw ` marbles without replacement, there are ex-
actly Ck

2ν`C
`−k
2(1−ν)`

ways to draw exactly k red marbles. The analytic expression of
η(`,ν ,ε) is obtained by summing this quantity for all values of k that ensure that the
difference between the number k of red marbles drawn from the urn and the number
2ν`− k of red marbles left in the urn exceeds `ε:

η(`,ν ,ε) =
1

C`
2`

∑
2|ν`−k|>`ε

Ck
2ν`C`−k

2(1−ν)` (2)

There are efficient numerical methods for computing this hypergeometric tail [14].
Since the function η(`,ν ,ε) is monotonically decreasing with ε , we define the

inverse function ε(`,ν ,η) and write

∀q Pr{ |ν2(q)−ν1(q)|> ε(`,ν(q),η) } = η . (3)
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Although there is no known analytic form for the inverse function ε(`,ν ,η), its
exact values can be directly read from a table of its inverse η(`,ν ,ε). This function
is also well described by relatively accurate bounds and approximations such as
those derived by Vapnik and Chervonenkis [17, inequality A5, page 176].

ε(`,ν ,η) ≤

√
4
(

ν +
1
2`

)(
1−ν +

1
2`

)
log(2/η)

`+1
(4)

≈
√

4ν(1−ν) log(2/η)

`
. (5)

4 Data– and Algorithm–Independent Bounds

Let ∆F (S) = {q(w) : w∈F} be the set of misclassification vectors associated with
all potential values of the parameter w. Bounds on the deviation (1) are then derived
from the following chain of inequalities.

Pr
{ ∣∣ν2(wS1)−ν1(wS1)

∣∣> ε(`,ν(wS1),η)
}

= Pr
{ ∣∣ν2(qS1)−ν1(qS1)

∣∣> ε(`,ν(qS1),η)
}

≤ Pr
{
∃q ∈ ∆F (S) : |ν2(q)−ν1(q)|> ε(`,ν(q),η)|

}
≤ ∑

q∈∆F (S)
Pr{ |ν2(q)−ν1(q)|> ε(`,ν(q),η) } = η Card∆F (S) . (6)

The first inequality above majorizes (1) by a uniform bound. The second inequality
is an application of the union bound Pr(A∪B)≤ Pr(A)+Pr(B), and the final result
is obtained by applying equation (3).

Traditional data– and algorithm–independent deviation bounds control ε(`,ν ,η)
by the more convenient expression (4) and then invoke the landmark combinatorial
lemma of Vapnik and Chervonenkis [19, theorem 1], which states that Card∆F (S)
is either equal to 22` or smaller than (2`e/h)h for some positive integer h that does
not depend on the data S and is now called the VC-dimension of the family of
indicator functions { z 7→ Q(w,z) : w ∈F }. Simple algebraic manipulations then
yield data– and algorithm–independent bounds for both the absolute and the relative
deviation.

Pr

 ∣∣ν2(wS1)−ν1(wS1)
∣∣>
√

h(1+ log `
h )− log η

2
`−1

≤ η ,

Pr


∣∣ν2(wS1)−ν1(wS1)

∣∣√
ν(wS1)+ 1

2`

> 2

√
h(1+ log `

h )− log η

2
`

≤ η .
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5 Data– and Algorithm–Dependent Bounds

There are several obvious ways to make these bounds tighter. Instead of using the
bound (4), we can tabulate the exact values of ε(`,ν ,η) as suggested in section 3.
Instead of bounding Card∆F (S), we can design empirical procedures to measure its
value [22, 3]. The only remaining causes of inaccuracy are then the two inequalities
appearing in the derivation (6), namely the uniform bound and the union bound.

The first source of concern is the majorization of the error deviation by a uniform
bound. Many elements of ∆F (S) are misclassification vectors that no reasonable
learning algorithm would produce. Realistic learning algorithms tend to produce
solutions that perform well on the training examples and also contain critical ca-
pacity control aspects. For instance one can argue that multilayer network training
often achieve good performance because their poor optimization algorithm is un-
able to find solutions far away from the initialial point. All these aspects severely
restricts the set of misclassification vectors.

Therefore, instead of considering the set ∆F (S) of the misclassification vectors
associated with all potential parameter w ∈F , we can consider the set ∆A (S) of
the misclassification vectors associated with the parameters produced by applying
algorithm A to all training set S1 extracted from data set S:

∆A (S) =
{

q(A (S1)) ∀S1 ⊂ S s.t.Card(S1) = `
}
.

Replicating the derivation (6) leads to a data– and algorithm–dependent deviation
bound,

Pr
{ ∣∣ν2(wS1)−ν1(wS1)

∣∣> ε(`,ν(wS1),η)
}
≤ η Card∆A (S) . (7)

The second source of concern is the union bound which, in (6), majorizes the
probability of the union of K events A1 . . .AK of probability η by the sum Kη of
their probabilities. Let us tentatively assume that the events Ai can be considered
pairwise independent. We can then write

Kη−Pr (∪kAk) ≤ ∑
i< j

Pr(Ai∩A j) ≈
K2

2
η

2 (8)

and show that the majorization error is much smaller than Kη . The deviation
bound (7) is likely to be quite accurate if this assumption holds. Whether this is
true will be clarified in section 7.

6 Empirical Study

In order to illustrate the performance of bound (7), we report on a simple experimen-
tal study using 1000 examples of MNIST handwritten digit recognition dataset [2].
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Fig. 1 Bounds on the median
relative deviation (top) and
median testing error ν2
(bottom) as a function of
Card∆A (S). The dotted line
indicates the observed values. 0
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The classifier is a medium-size convolutional network Lenet5 described in [10] with
60,000 adjustable parameters. Training is performed using mean square error back-
propagation with learning rates periodically adjusted by estimating the diagonal of
the Hessian matrix [11]. This case study should be viewed as a typical example
of multilayer neural network training technology using a proven implementation.
In particular, this learning algorithm should not be seen as a simple empirical risk
minimization algorithm because the cost function is nonconvex and because the
first-order nature of the algorithm favors solutions that are relatively close to the
initial conditions.

We train this classifier on 1000 random splits of the examples into equally sized
training and testing sets containing `= 500 examples each. We always use the same
weight initialization. The observed median training error, median testing error and
median relative deviation are, respectively,

Median
[
ν1(wS1)

]
≈ 0.075 , Median

[
ν2(wS1)

]
≈ 0.14 ,

Median

[
|ν2(wS1)−ν1(wS1)|√

ν(wS1)(1−ν(wS1)

]
≈ 0.21 .

The median deviation can also be estimated by setting the right hand side of (7)
to 0.5 and using the approximation (5),

Median

[
|ν2(wS1)−ν1(wS1)|√
ν(wS1)(1−ν(wS1))

− 2

√
log(4Card∆A (S))

l

]
?≈ 0 (9)

Figure 1 (top plot) shows how the bound on the relative deviation (9) depends on
the value Card∆A (S). Figure 1 (bottom) plots a corresponding bound on the median
testing error ν2, obtained by setting the training error ν1 = 0.075 and numerically
solving (9) for ν2 with ν = (ν1 +ν2)/2. Both plots show that Card∆A (S) must be
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as low as 62 for the bounds to match empirical observations. However these plots
also show that values as large as 108 still provide reasonable estimates.

In contrast, since it is clear that the VC dimension of such a large multilayer
neural network exceeds the total number of examples, Card∆F (S) = 22` ≈ 10301,
leading to a vacuous bound on the median testing error, ν2 ≤ 1.25.

We can attempt to directly measure Card∆A (S) by counting the number N0(t)
of distinct misclassification vectors seen after training the classifier on t random
splits. Such an attempt was unsuccessful because we lack the computing resources
to process a large enough number of splits. We stopped after processing 18,000 ran-
dom splits and producing 18,000 distinct misclassification vectors. Birthday prob-
lem considerations [1] show that Card∆A (S) > 108 with confidence greater than
80%. As illustrated in Figure 1, even such large values of Card∆A (S) can still lead
to reasonable estimates, within a factor two of the observed deviations.

Since directly counting Card∆A (S) is computationally too expensive, we must
design simpler empirical procedures to characterize the properties of the set ∆A (S)
of misclassification vectors.

7 Coverings

The solid curve in figure 2 shows the histogram of the Hamming distances measured
between the misclassification vectors associated with pairs of random splits. This
histogram shows a very peaky distribution. We can accurately determine the location
of this peak by processing a moderate number of pairs. All our misclassification
vectors appear to be located at or around Hamming distance 75 of each other.

Fig. 2 Histogram of
Hamming distances between
misclassification vectors.
The solid curve shows the
histogram of the Hamming
distances separating random
pairs of misclassification
vectors. The dashed
curve shows what this
histogram would have been
if the coefficient of the
misclassification vectors were
independently sampled from
a Bernoulli distribution. 0
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It is well known that the distribution of the Hamming distance separating two d-
dimensional binary vectors follows a very peaky distribution centered on 2d p(1− p)
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where p is the probability of nonzero coefficients [9]. The dotted curve figure 2 rep-
resents the histogram obtained by randomly shuffling the coefficient of each mis-
classification vectors before computing the Hamming distances. This curve verifies
the theoretical prediction with a peak centered at 4`ν(1− ν) ≈ 180. The actual
misclassification vectors q(wS1) therefore appear considerably less dispersed than
random binary vectors. This observation invalidates the independence assumption
that could have given us confidence in the accuracy of the union bound (8).

This peaky Hamming distance distribution suggests to characterize the set ∆A (S)
of misclassification vectors using covering numbers. Let Bc(q) represent a Ham-
ming ball of radius c centered on q. The covering number Nc(∆) is the smallest
number of Hamming balls of radius c necessary to cover the set ∆ :

Nc(∆) = min
C⊆∆

Card(C) such that ∆ ⊆ ∪
q∈C

Bc(q) .

Let us consider an arbitrary split of the data set into training and testing sets and as-
sume that there exists q′ ∈ Bc(q) such that |ν2(q′)−ν1(q′)|> ε . A simple derivation
then establishes that |ν2(q)−ν1(q)|> ε− c/`.

Combining this observation with (3) gives

∀q Pr
{
∃q′ ∈ Bc(q) :

∣∣ν2(q′)−ν1(q′)
∣∣> c

`
+ ε(`,ν(q),η)

}
= η ,

and a chain of inequality similar to (6) gives

Pr
{ ∣∣ν2(wS1)−ν1(wS1)

∣∣> c
`
+ ε(`,ν(wS1),η)

}
≤ η Nc(∆A (S)) . (10)

Fig. 3 Empirical covering
sizes. Each curve shows how
many Hamming balls (of size
40 to 100) are needed to cover
the misclassification vectors
obtained using the number of
splits specified on the X axis.
These curves should reach
the corresponding convering
number when the number of
splits increases to infinity.
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We construct coverings with the following greedy algorithm. Let q1,q2, . . . be the
misclassification vectors associated with successive random splits of our dataset. We
construct a covering Ct of the first t vectors using the following recursive procedure:
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Fig. 4 Covering-based
bounds on the median testing
error ν2(qS1 ) as a function of
the Hamming ball radius c.
The dotted line indicates the
observed median testing error. 0
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if qt belongs to one of the Hamming balls centered on an element of Ct−1, we set
Ct =Ct−1, otherwise we set Ct =Ct−1∪{qt}.

This empirical covering size Nc(t)=Card(Ct) should converge to an upper bound
on N (∆A (S)) when t increases. Figure 3 plots the empirical covering sizes for
several values of the Hamming ball radius c. When the radius is smaller than peak of
the Hamming distance histogram, this convergence cannot be observed in practice.
When the radius is larger than the peak, Nc(t) converges to a small value.

In the intermediate regime, the empirical covering size appears to converge but
its limit is hard to determine. We can work around this difficulty by writing

Pr
{ ∣∣ν2(wS1)−ν1(wS1)

∣∣> c
`
+ ε(`,ν(wS1),η)

}
≤ η Nc(T )+Pr(RT ) , (11)

where Rt ⊆ ∆A (S) denotes the set of misclassification vectors that are not covered
by any of the Hamming balls centered on the elements of CT . Let qt+1, . . . ,qt+s
denote the longest sequence of misclassification vectors such that Ct+s = Ct . None
of these vectors belongs to Rt . Since they are obtained by considering random splits
independent from the t previous random splits, the probability that none of this
vectors belongs to Rt is (1−Pr(Rt))

s. We can therefore write with confidence 1− ε

that Pr(RT )≤Pr(Rt)≤ 1− s
√

ε ≤− log(ε)/s. Empirical covering sizes Nc(T ) were
collected for T = 10,000. They range from N120(10000) = 1 to N50(10000) = 3317.
We cannot ensure that Pr(RT ) is small enough when c < 50.

Setting the right-hand side of (11) to 0.5, using approximation (5), and solving
for ν2(wS1) yields a bound on the median testing error. Figure 4 plots this bound as
a function of the Hamming ball radius c. Although their empirical accuracy is far
from ideal, these covering-based bounds are within a factor of two of the observed
testing error. This is clearly better than the vacuous bounds usually afforded by the
data– and algorithm–independent bounding technique.



Making Vapnik-Chervonenkis bounds accurate 11

Fig. 5 Empirical variance
of the loss function. Only
a fraction of the examples
zi have losses Q(zi,wS1 ) that
vary from one split to the next.
The other examples are either
always correctly classified or
always misclassified.
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8 Discussion

There is still a significant margin to improve the accuracy of these empirical bounds.
The most interesting effect revealed by our empirical study certainly is the low dis-
persion of the misclassification vectors (figure 2) because it implies that the union
bound is very inaccurate. Although relying on empirical covering numbers should
in principle reduce the negative impact of this low dispersion, Dudley’s chaining
technique [6, 13] is a much more refined way to improve on the union bound.
Vorontsov’s recent work [23] is therefore very interesting because it leverages a
more refined characterization of the distribution of misclassification vectors in a
manner related to Dudley’s chaining.

It is also interesting to investigate the cause of the low dispersion of the mis-
classification vectors. The observed Hamming distance histogram (figure 2) looks
strikingly like the Hamming distance histogram separating random binary vectors
of lower dimensionality. Could it be that only a subset of the examples are respon-
sible for the misclassification vector variations? This would mean that most of the
examples are always correctly recognized (or misrecognized when their label is in-
correct) regardless of the dataset split. This hypothesis is confirmed by figure 5
which plots the observed variance of the loss Q(zi,wS1) for all examples zi ordered
by decreasing variance. This observation is interesting because it established a con-
nection with sample compression bounds: the only examples that matter are those
that switch from being correctly classified to being misclassified when one changes
how the data is split into training and testing sets. The connection between capac-
ity and compression therefore appears to be a manifestation of the subtleties of the
union bound.

Finally, one of the main criticisms against the approach outlined in this paper is
its computational requirement. Why spend time characterizing the set of misclassi-
fication vectors to produce a mediocre bound on the testing error while a fraction of
this time is sufficient to compute the testing error itself? This is a valid criticism of
this work as an empirical measuring technique. However this work also has value
because it helps us understand the subtleties of the learning mathematics. Measuring
and understanding are two equally important aspects of the scientific approach.
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