1 Traffic Engineering

We describe a Traffic Engineering (TE) solution which can incorporate non-linear link costs. TE decides on the actual assignment of requests’ flow to (time, path) pairs.

Formulation. A byte request, indexed by \(i\), has a quantity of data \(d_i\) to be routed, and a value per byte \(v_i\). The request indicates the source \(S_i\) and target \(T_i\); data must be transmitted along a path from \(S_i\) to \(T_i\). Write \(R_i\) for the set of admissible paths (or *routes*) for request \(i\). Let \(X_{irt}\) denote the number of bytes from request \(i\) transmitted along route \(r \in R_i\) at time \(t\). The quantities \(X = (X_{irt})\) fully describe a schedule of transfers. The objective of TE is to maximize welfare (values minus costs). Formally, the objective is

\[
\text{maximize} \quad -C(X) + \sum_{i} \sum_{t=1}^{T} \sum_{r \in R_i} X_{irt} \cdot v_i
\]

subject to

\[
\sum_{t=1}^{T} \sum_{r \in R_i} X_{irt} \leq d_i \quad \forall i
\]

\[
\sum_{i} \sum_{e \in r, r \in R_i} X_{irt} \leq c_{e,t} \quad \forall t, e,
\]

where \(c_{e,t}\) is the available capacity in link \(e\) at time \(t\).

The term \(C(X)\) is non-convex. It typically corresponds to the sum of all link costs, where a link’s cost is linearly proportional to a high-percentile utilization.
over time (we use the 95th percentile1). This non-linear relation makes the optimization challenging. Formally,

Theorem 1. Maximizing (1), where \(C(X) \) is linearly proportional to the sum of 95th-percentile utilization in each link, is an NP-hard optimization problem.

The proof follows by a reduction from the NP-hard subset-sum problem [2].

Before describing our solution, we note that we use the above formulation as an exemplar setting for non-convex costs. That is, the techniques we develop here would be useful even for other objective functions/constraints.

Solution. We deal with the above challenge by using an alternative metric, which serves as a proxy for 95th percentile. We use the average of the top \(k \) utilization values; e.g., if costs are computed over a time horizon of \(T = 100 \) time-steps, and we are interested in the 95th percentile, then we choose \(k = 10 \). Note that if utilization values are uniformly distributed, the two metrics coincide2. We have verified experimentally that the two metrics are highly correlated, see Figure 1 for scatter plots of several links.

In principle we can “code” the sum (hence, the average) of the top \(k \) by adding a linear term to (LP), and a new set of linear inequalities, which result in a new linear program. Formally, the objective is3

\[
\sum_{i} \sum_{t} \sum_{r \in R_i} X_{irt} \cdot v_i - \sum_{e} C_e S_e,
\]

where \(C_e \) is the per-unit cost, and \(S_e \) is an upper bound on the \(k \) largest utilization values

195-th percentile costs are often used nowadays by operators to lower burst usage.

2We may consider choosing different values of \(k \) for heavily-skewed distributions. We have not yet fully investigated this direction.

3We assume without loss of generality that there are only \(95 \) links, although we could change the number of links later. We replace \(X_{irt} \) with \(X_{irt} \cdot v_i \).
(since we are minimizing \(\sum_e C_e S_e \) the upper bound becomes tight at an optimal solution). The constraints are as follows:

\[
S_e \geq \sum_{i \in T} f_{e,i} \quad \forall T \subset \{1, \ldots, T\}, \ |T| = k, \tag{2}
\]

where \(f_{e,t} = \sum_i \sum_{r \in R_i} X_{irt} \) is the flow on edge \(e \) at time \(t \). A difficulty is that the number of constraints in (2) is exponential in \(T \) (more precisely, \(\binom{T}{k} \) for each link). The resulting LP is then intractable. We address this by using sorting-network inequalities (see [1] and references therein), which reduces the number of constraints to \(O(kT) \) per link, without any loss in accuracy. Formally,

Theorem 2. There exists a set of \(O(kT) \) linear constraints which expresses an upper bound on sum of top \(k \) values from the set \(f_{e,1}, \ldots f_{e,T} \).

In a nutshell, the sorting network mimics the operation of the bubble sort algorithm: each iteration \(i \) of the algorithm is mapped to a set of equalities/inequalities which bubble up (an upper bound of) the sum of the largest \(i \) elements. See appendix for the construction and proof.

References

A Constructing the Sorting Network

Inspired by the bubble sort algorithm, we construct a set of \(O(kT) \) constraints and show that the construction results in an upper bound \(S_e \) on the sum of the \(k \) largest utilization levels in each link. Since we are maximizing \(\sum_i \sum_{r,r \in R_i} X_{irt} \cdot p_i - \sum_e c_e S_e \), we are minimizing each \(S_e \) and the upper bound becomes tight as required. We will omit subscript \(e \) from our notation. We proceed in \(k \) iterations:
in the first, we “bubble” the largest element, then the second largest, etc.. Our constraints mimic the bubbling operations – for each two numbers \(x, y\) to be compared, we have a linear comparator, which is manifested through the following inequalities: \(x + y = m + M, m \leq x, m \leq y\). Note this implies \(M \geq \max\{x, y\}\) and \(m \leq \min\{x, y\}\).

Let \(f^j_i\) denote the minimum of the two outputs of the \(j\)-th comparator at the \(i\)-th iteration, and let \(F^j_i\) denote the maximum of the two values. We use the convention \(f^0_j = f_j\) for all \(j \in \{1, 2, \ldots T\}\). Accordingly, our first comparator at the first iteration is given by \(f^1_0 = f^0_1 + F^1_1, f^1_1 \leq f^0_1, f^1_0 \leq f^0_0\). As in bubble sort, the maximum output is pushed to the next comparator, i.e., the rest of the constraints for this iteration have following form: \(f^0_j + F^1_{j-2} = f^1_{j-1} + F^1_{j-1}, f^1_{j-1} \leq f^0_j, f^1_{j-1} \leq F^1_{j-2}\), for every \(j \in \{3, 4, \ldots T\}\). Using all the above constraints, it can be easily shown that

\[
F^1_{T-1} \geq \max\{f^0_1, f^0_2, \ldots f^0_T\} \quad \text{(3)}
\]

\[
f^0_1 + f^0_2 + \cdots + f^0_T = f^1_1 + f^1_2 + \cdots f^1_{T-1} + F^1_{T-1} \quad \text{(4)}
\]

Indeed, (3) follows from a chain of inequalities \(F^1_j \geq f^0_{j+1}, F^1_j \geq F^1_{j-1}\) for any \(2 \leq j \leq T - 1\) and \(F^1_1 \geq f^0_1, f^0_2\), whereas summing all the above equalities and canceling out equal terms leads to (4).

The next iteration proceeds with variables \(f^1_1, f^1_2, \ldots f^1_{T-1}\) (one less comparator than previous iteration), which similarly leads to

\[
F^2_{T-2} \geq \max\{f^1_1, f^1_2, \ldots f^1_{T-1}\}
\]

\[
f^1_1 + f^1_2 + \cdots + f^1_{T-1} = f^2_1 + f^2_2 + \cdots f^2_{T-2} + F^2_{T-2}
\]

It follows from (4) and the last equality that \(f^0_1 + f^0_2 + \cdots + f^0_T = f^1_1 + f^2_2 + \cdots f^2_{T-2} + F^1_{T-1}\).

Proceeding iteratively, we use \((T - i)\) comparators in the \(i\)-th iteration (all outputs of iteration \(i\) excluding \(F^i_{T-i}\), are inputs for iteration \(i + 1\)). Using (4) inductively, we have the following equality after \(k\) iterations

\[
f^0_1 + \cdots + f^0_T = f^k_1 + \cdots f^k_{T-k} + F^k_{T-k} + F^{k-1}_{T-k+1} + \cdots + F^1_{T-1}.
\]

Finally, we add the constraint \(S \geq F^k_{T-k} + F^{k-1}_{T-k+1} + \cdots + F^1_{T-1}\). Note that we have a total of \(O(kT)\) equalities/inequalities.

In order to formally prove that \(S\) is not smaller than sum of \(k\) largest elements we need the following lemma:
Lemma 1. For any i and any set of indices $Y_i \subseteq \{1, 2, \ldots T - i\}$ we can find a subset of indices $Y_{i+1} \subseteq \{1, 2, \ldots T - i - 1\}$ such that $|Y_i| = |Y_{i+1}|$ and $\sum_{j \in Y_i} f_j^i \geq \sum_{j' \in Y_{i+1}} f_{j'}^{i+1}$.

Proof. The proof follows by a charging argument. Assume that $Y_i = \{a_1, a_2, \ldots, a_q\}$ and $a_1 < a_2 < \cdots < a_q$. Let p be a largest index such that Y_i can be represented as $\{1, 2, \ldots p\} \cup \{a_{p+1}, \ldots a_q\}$. It follows that $a_{p+1} > p + 1$. For Y_{i+1} we take $\{1, 2, \ldots p\} \cup \{a_{p+1} - 1, \ldots a_q - 1\}$. Inequality $\sum_{j \in Y_i} f_j^i \geq \sum_{j' \in Y_{i+1}} f_{j'}^{i+1}$ follows from $f_j^i \geq f_{j+1}^{i+1}$ and $f_1^i + f_2^i + \cdots + f_p^i = f_{i+1}^1 + f_{i+1}^2 + \cdots f_{p-1}^{i+1} + F_{p-1}^{i+1}$, where $F_{p-1}^{i+1} \geq f_1^i, \ldots, f_p^i$.

We are now ready to prove the theorem. We let Y_0 be the set of indices corresponding to the $T - k$ smallest elements among $f_1^0, f_2^0, \ldots f_T^0$. And then consequently construct $Y_1, Y_2 \ldots Y_k$. We obtain that $Y_k = \{1, 2, \ldots T - k\}$. It means that $f_1^k + f_2^k + \cdots f_{T-k}^k$ is not larger than the sum of $T - k$-smallest numbers from $f_1^0, f_2^0, \ldots f_T^0$. This together with (5) guarantees that $F_{T-k}^k + F_{T-k+1}^{k-1} + \cdots + F_{T-1}^1$ is greater or equal to sum of k largest elements from $f_1^0, f_2^0, \ldots f_T^0$. \qed