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Challenges

Networks are a critical part of our 
computing infrastructure... 

...they have grown dramatically in 
size and complexity... 

... and are quickly becoming 
unwieldy for operators to manage!



Network Management

Operators use a variety of techniques 
to keep networks running such as: 

• Generating low-level configurations 
from high-level policies 

• Scraping configurations using 
command-line interfaces 

• Diagnosing errors using ping and 
traceroute



Toward Design Automation

Run-Time System

Application

Programming Language

1. Design high-level languages that 
model essential network features

2. Develop semantics that enables 
reasoning precisely about behavior

3. Build tools to synthesize low-level 
implementations automatically



Focus on reachability properties that capture 
the essential function of a network: moving 
data from one location to another



Match Actions
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A machine model describes 
behavior in terms of concepts like 
pipelines of hardware lookup tables
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A programming model describes 
behavior in terms of concepts like 
mathematical functions on packets p⟨pk,..⟩ {⟨pk,..⟩}

packet 
history

set of packet 
histories



Two essential features: 
• Packet classifiers 
• Forwarding paths

What should a network programming language provide?



NetKAT Language
  pol ::=  false 

| true 
| field = val 
| pol1 + pol2 

| pol1 ; pol2 

| !pol 
| pol* 

| field := val 
| S⇒T

[POPL ’14]
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⟨pk,..⟩

Sequential composition pol1 ; pol2 runs the input 
through pol1 and then runs every output through pol2

;
pol1

pol2

{⟨pk1,..⟩,..}

pol ::= false 
  | true 
  | field = val 
  | pol1 + pol2 

   | pol1 ; pol2 

   | !pol 
  | pol* 

   | field := val 
  | S⇒T

           | pol1 ; pol2



Encodings
Switch forwarding tables and network topologies can 
be represented in NetKAT using simple encodings

Pattern Actions
dstport=22 Drop

srcip=10.0.0.1 Forward	  1

* Forward	  2

if dstport=22 then false 
else if srcip=10.0.0.1 then port := 1 
else port := 2

A B C

A ⇒ B + B ⇒A + B ⇒ C + C ⇒ B



Networks
The behavior of an entire network can be encoded in NetKAT 
by interleaving steps of processions by switches and topology

policy 
+ 

(policy; topo); policy 
+ 

(policy; topo; policy; topo); policy 
⋮

(policy; topo)*; policy

policy

topo



Reachability

Given a network, want to be able to answer questions like:  

“Does the network forward from ingress to egress?

Can reduce this question (and many others) to equivalence

in; (policy; topo)*; policy; out ≡ in; out

φ⊨



Reachability

Given a network, want to be able to answer questions like:  

“Does the network forward from ingress to egress?

Can reduce this question (and many others) to equivalence

in; (policy; topo)*; policy; out ≡ in; out

φ⊨
`

Other properties: 
• Access control 
• Traffic Isolation 
• Loop freedom 
• Blackhole freedom



NetKAT Proof System
Boolean Algebra Axioms 
a + (b ; c) ≡ (a + b) ; (a + c) 
a + true ≡ true 
a + ! a ≡ true 
a ; b ≡ b ; a 
a ; !a ≡ false 
a ; a ≡ a

Packet Axioms 
f := n; f ’ := n’ ≡ f ’ := n’ ; f := n      if f ≠ f ’ 
f := n; f ’ = n’ ≡ f ’ = n’; f := n         if f ≠ f ’ 
f := n; f = n ≡ f := n 
f = n; f := n ≡ f = n 
f := n; f := n’ ≡ f := n’ 
f = n; f = n’ ≡ false                 if n ≠ n’ 
A⇒B; f = n ≡ f = n; A⇒B     if f ≠ switch

Kleene Algebra Axioms 
p + (q + r) ≡ (p + q)  + r 
p + q ≡ q + p 
p + false ≡ p 
p + p ≡ p 
p; (q; r) ≡ (p; q); r 
p; (q + r) ≡ p; q + p; r 
(p + q);  r ≡ p;  r + q;  r 
true; p ≡ p  
p ≡ p; true 
false; p ≡ false  
p; false ≡ false 
true + p; p* ≡ p* 
true + p*; p ≡ p* 
p + q; r  + r ≡ r ⇒ p*; q + r ≡ r 

p +  q; r + q ≡ q ⇒ p; r* + q ≡q
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Soundness: If ⊢ p ≡ q, then ⟦p⟧ = ⟦q⟧ 

Completeness: If ⟦p⟧ = ⟦q⟧, then ⊢ p ≡ q



NetKAT Automata

x=1
·∙x:

=2

x=2·∙x:=1

x=2·∙x:=1 x=
1·∙

x:
=2

(x=1; x:=2; A⇒B + 

 x=2; x:=1; B⇒A)*

Can exploit NetKAT’s regular structure 
to build equivalent finite automata

Automata provide a practical way to 
decide program equivalence

[POPL ’15]
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Prototype implementation performs 
well on Topology Zoo benchmarks



Other Applications

•Network Virtualization 
•Traffic Engineering 
•Fault Tolerance 
•Application Intent
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Abstract
NetKAT is a domain-specific language and logic for specifying
and verifying network packet-processing functions. It consists
of Kleene algebra with tests (KAT) augmented with primitives
for testing and modifying packet headers and encoding network
topologies. Previous work developed the design of the language
and its standard semantics, proved the soundness and completeness
of the logic, defined a PSPACE algorithm for deciding equivalence,
and presented several practical applications.

This paper develops the coalgebraic theory of NetKAT, includ-
ing a specialized version of the Brzozowski derivative, and presents
a new efficient algorithm for deciding the equational theory using
bisimulation. The coalgebraic structure admits an efficient sparse
representation that results in a significant reduction in the size of the
state space. We discuss the details of our implementation and opti-
mizations that exploit NetKAT’s equational axioms and coalgebraic
structure to yield significantly improved performance. We present
results from experiments demonstrating that our tool is competi-
tive with state-of-the-art tools on several benchmarks including all-
pairs connectivity, loop-freedom, and translation validation.

Categories and Subject Descriptors F.4.3 [Formal Languages]:
Classes defined by grammars or automata

Keywords Coalgebra; Kleene algebra with tests; Brzozowski
derivatives; automata; network verification; NetKAT.

1. Introduction
Networks have received widespread attention in recent years as
a target for domain-specific language design. The emergence of
software-defined networking (SDN) as a popular paradigm for
network programming has led to the appearance of a number of
SDN programming languages including Frenetic, Nettle, NetCore,
Pyretic, Maple, and PANE, among others [10–12, 26, 27, 39, 40].
The details of these languages differ, but each seeks to provide
high-level abstractions to simplify the task of specifying the packet-
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright c� 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2676726.2677011

processing behavior of a network. In addition to SDN languages,
a number of verification tools including HSA, VeriFlow, FlowLog,
and VeriCon are also being actively developed [2, 16, 17, 28]. As
SDN is being deployed in production enterprise, data center, and
wide-area networks [14, 19, 20], it is becoming clear that SDN is
the next major step in the evolution of network technology and is
destined to have a significant impact.

Previous work by Anderson et al. [1] introduced NetKAT, a lan-
guage and logic for specifying and verifying the packet-processing
behavior of networks. NetKAT provides general-purpose program-
ming constructs such as parallel and sequential composition, con-
ditional tests, and iteration, as well as special-purpose primitives
for querying and modifying packet headers and encoding network
topologies. The language allows the desired behavior of a network
to be specified equationally. In contrast to competing approaches,
NetKAT has a formal mathematical semantics and an equational
deductive system that is sound and complete over that semantics,
as well as a PSPACE decision procedure. It is based on Kleene al-
gebra with tests (KAT), an algebraic system for propositional pro-
gram verification that has been extensively studied for nearly two
decades [22]. Several practical applications of NetKAT have been
developed, including algorithms for testing reachability and non-
interference and a syntactic correctness proof for a compiler that
translates programs to hardware instructions for SDN switches.

This paper develops the coalgebraic theory of NetKAT, defines
a new algorithm for deciding equivalence based on this technology,
and presents a full implementation in OCaml. The new algorithm
is significantly more efficient than the previous naive algorithm [1],
which was PSPACE in the best case and the worst case, as it was
based on the determinization of a nondeterministic algorithm.

The contributions of this paper are both theoretical and practi-
cal. On the theoretical side, we introduce a new coalgebraic model
of NetKAT, including a specialized version of the Brzozowski
derivative in both semantic and syntactic forms. We prove a ver-
sion of Kleene’s theorem for NetKAT that shows that the coal-
gebraic model is equivalent to the standard packet-processing and
language models introduced previously [1]. A highlight of our the-
oretical development is a representation theorem showing that the
Brzozowski derivative can be concisely encoded in matrix form. On
the practical side, we develop a new coalgebraic decision procedure
for term equivalence based on our theoretical results, along with a
full implementation in OCaml. The algorithm constructs a bisimu-
lation between coalgebras built from NetKAT expressions via the
Brzozowski derivative. The matrix representation enables us to ex-
ploit sparseness to obtain a significant reduction in the size of the
state space. The implementation is very efficient in practice—it can
verify reachability in a real-world campus network in less than a
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Abstract
High-level programming languages play a key role in a growing
number of networking platforms. Languages such as nlog and
Pyretic are being used in systems such as VMware NVP and SDX
to streamline application development and enable formal reasoning
about network behavior. But the use of high-level languages comes
with a cost: current compilers can take tens of minutes to generate
the forwarding state for the network, even on relatively simple
programs and small topologies. This forces programmers to waste
time working around performance issues or even revert to using
hardware-level APIs.

This paper presents a compiler pipeline for the NetKAT pro-
gramming language that is orders of magnitude faster than previous
compilers for high-level network languages. The compiler is based
on new algorithms that use a generalization of binary decision di-
agrams (BDDs) as an intermediate representation and symbolic au-
tomata to generate optimized forwarding state. It also handles pro-
grams that use network-wide features such as regular paths and
virtual topologies. We describe the design and implementation of
three essential compiler stages: from local programs (which spec-
ify single-switch behavior) to forwarding tables, from global pro-
grams (which specify network-wide behavior) to local programs,
and from virtual programs (which specify behavior in terms of vir-
tual topologies) to global programs. We also discuss our implemen-
tation and present results from experiments on real-world bench-
marks that quantify performance in terms of compilation time and
forwarding table size.

1. Introduction
Over the past few years, high-level programming languages have
started to play a key role in a number of networking platforms be-
ing developed in academia and industry. There are many examples:
VMware NVP is based on nlog, a declarative language based on
Datalog [15]; SDX uses Pyretic to combine policies provided by
different participants at Internet exchange points [12, 21]; PANE
uses NetCore constructs to allow end-hosts to participate in net-
work management [8, 20]; Flowlog provides “tierless” abstractions
in Datalog that are implemented using NetCore [20, 22]; Maple al-
lows packet-processing functions to be specified directly in Haskell
or Java [28]; OpenDaylight supports group-based policies, which
describe the state of the network in terms of application connectiv-
ity requirements [25]; and ONUS is based on an “intent” framework
that encodes constraints on end-to-end forwarding paths [24].

The specific details of these languages differ, but they all pro-
vide abstractions that enable thinking about the behavior of a net-
work in terms of high-level constructs such as packet-processing
functions rather than low-level device configurations. To bridge the
gap between these abstractions and hardware, the implementations
of these systems include compilers that map source programs into
rules that can be installed in the forwarding tables maintained by
software-defined networking (SDN) switches.

Unfortunately, most current compilers are based on naive al-
gorithms that perform poorly at scale. For example, the NetKAT,

NetCore, PANE, Flowlog, and Pyretic compilers are based on sim-
ple translations to forwarding tables in which primitive constructs
are mapped directly to forwarding tables and other constructs are
implemented using algebraic operators on forwarding tables—an
approach that quickly becomes impractical as the size of the gen-
erated tables can grow exponentially with the size of the program!
This is a serious problem for platforms that rely on high-level lan-
guages to express control application logic, as a slow compiler can
hinder the ability of the controller to effectively monitor and react
to changing network state.

Indeed, to work around performance issues in the current
Pyretic compiler, the developers of SDX [12] extended Pyretic in
several ways, including adding a new low-cost composition op-
erator that was intended to implement a disjoint union of packet-
processing functions. The idea was that this operator could be im-
plemented using a linear algorithm that simply concatenated the
forwarding tables for each function rather than using the usual
quadratic algorithm that does an all-pairs intersection between the
entries in each table. However, even with these optimizations, the
Pyretic compiler still took tens of minutes to generate the for-
warding state for inputs of modest size. Even worse, the proposed
optimization was actually wrong for the application and caused the
compiler to produce incorrect output on several benchmarks.

Another limitation of current compilers is that they mostly fo-
cus on local programs in which the intended behavior of the net-
work is specified in terms of hop-by-hop processing on individ-
ual switches. Although a few systems support richer features such
as end-to-end forwarding paths and virtualization [15, 24, 28], to
the best of our knowledge, no previous work has provided a com-
plete description of the algorithms one would use to generate the
forwarding state needed to implement these features. In particu-
lar, although the NetKAT language includes primitives that can be
used to succinctly specify global behaviors including regular paths,
the existing compiler only handles the local fragment of the lan-
guage [4]. This means that programmers can only use a restricted
subset that is strictly less expressive than the full language and they
must manually manage the state needed to implement end-to-end
forwarding paths, virtual networks, and other similar features.

This paper presents a new compiler for NetKAT that addresses
both of these limitations. We develop a complete compiler pipeline
that handles local programs executing on a single switch, global
programs that leverage the full expressive power of the language,
and even programs written against virtual topologies. The algo-
rithms used in this pipeline are orders of magnitude faster than pre-
vious approaches. For example, our system takes two seconds to
compile large SDX benchmarks versus several minutes in Pyretic.
We have also performed extensive benchmarks which demonstrate
that our compiler is able to handle large inputs far beyond the scope
of its competitors.

Our results stem from a few key insights. First, to compile lo-
cal programs, we exploit a novel intermediate representation based
on binary decision diagrams (BDDs). This representation avoids the
combinatorial explosion inherent in approaches based on forward-
ing tables and allows our compiler to leverage well-known tech-
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ABSTRACT
This paper presents Merlin, a new framework for managing re-
sources in software-defined networks. With Merlin, administra-
tors express high-level policies using programs in a declarative lan-
guage. The language includes logical predicates to identify sets
of packets, regular expressions to encode forwarding paths, and
arithmetic formulas to specify bandwidth constraints. The Merlin
compiler maps these policies into a constraint problem that deter-
mines bandwidth allocations using parameterizable heuristics. It
then generates code that can be executed on the network elements
to enforce the policies. To allow network tenants to dynamically
adapt policies to their needs, Merlin provides mechanisms for del-
egating control of sub-policies and for verifying that modifications
made to sub-policies do not violate global constraints. Experiments
demonstrate the expressiveness and effectiveness of Merlin on real-
world topologies and applications. Overall, Merlin simplifies net-
work administration by providing high-level abstractions for spec-
ifying network policies that provision network resources.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems
; D.3.2 [Language Classifications]: Specialized application lan-
guages

Keywords
Software-defined networking, resource management, delegation,
verification, Merlin.

1. INTRODUCTION
Network operators today must deal with a wide range of man-

agement challenges from increasingly complex policies to a prolif-
eration of heterogeneous devices to ever-growing traffic demands.
Software-defined networking (SDN) provides tools that could be
used to address these challenges, but existing APIs for SDN pro-
gramming are either too low-level or too limited in functionality
to enable effective implementation of rich network-wide policies.
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As a result, there is widespread interest in academia and indus-
try in higher-level programming languages and “northbound” (i.e.,
application-facing) APIs that provide convenient control over the
full set of resources available in a network.

Unfortunately, despite several notable advances, there is still a
wide gap between the capabilities of existing SDN APIs and the
realities of network management. Current programming languages
focus mostly on packet forwarding and largely ignore functionality
such as bandwidth and packet-processing functions that can only
be implemented on middleboxes, end hosts, or with custom hard-
ware [20, 46, 65, 3, 50]. Network orchestration frameworks pro-
vide powerful mechanisms that handle a larger set of concerns in-
cluding middlebox placement and bandwidth [22, 34, 55, 58], but
they either fail to provide a programmable API to those mecha-
nisms, or expose APIs that are extremely simple (e.g., sequences
of middleboxes). Overall, the challenges of managing real-world
networks using existing SDN APIs remain unmet.

This paper presents a new SDN programming language designed
to fill this gap. This language, called Merlin, provides a collection
of high-level programming constructs for (i) classifying packets;
(ii) controlling forwarding paths; (iii) specifying packet-processing
functions; and (iv) provisioning bandwidth in terms of maximum
limits and minimum guarantees. These features go far beyond what
can be realized just using SDN switches or with existing languages
like Frenetic [20], Pyretic [47], and Maple [65]. As a result, imple-
menting Merlin is non-trivial because it involves determining allo-
cations of network-wide resources such as bandwidth—the simple
compositional translations used in existing SDN compilers cannot
be readily extended to handle the new features provided in Merlin.

The Merlin compiler uses a variety of techniques to determine
forwarding paths, map packet-processing functions to network el-
ements, and allocate bandwidth. These techniques are based on a
unified logical representation of the network that encodes the con-
straints of the physical topology as well as the constraints expressed
by the policy. For traffic with bandwidth constraints, the com-
piler uses a mixed-integer program formulation to solve a variant of
the multi-commodity flow optimization problem. For traffic with-
out bandwidth constraints, Merlin leverages properties of regular
expressions and finite automata to efficiently generate forwarding
trees that respect the path constraints encoded in the logical topol-
ogy. Handling these two types of traffic separately allows the com-
piler to provide a uniform interface to programmers while reducing
the size and number of expensive constraint problems it must solve.
The compiler also generates configurations for a variety of network
elements including switches, middleboxes, and end hosts.

Although the configurations emitted by the Merlin compiler are
static, the system also incorporates mechanisms for handling dy-
namically changing policies. Run-time components called negotia-
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ABSTRACT
This paper presents FatTire, a new language for writing
fault-tolerant network programs. The central feature of this
language is a new programming construct based on regu-
lar expressions that allows developers to specify the set of
paths that packets may take through the network as well
as the degree of fault tolerance required. This construct is
implemented by a compiler that targets the in-network fast-
failover mechanisms provided in recent versions of the Open-
Flow standard, and facilitates simple reasoning about net-
work programs even in the presence of failures. We describe
the design of FatTire, present algorithms for compiling Fat-
Tire programs to OpenFlow switch configurations, describe
our prototype FatTire implementation, and demonstrate its
use on simple examples.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
D.3.2 [Language Classifications]: Specialized application
languages

Keywords
Fast failover, fault tolerance, NetCore, Frenetic, OpenFlow

1. INTRODUCTION
“To find fault is easy, to do better may be di�cult.”

—Plutarch

Networks are expected to operate without disruption, even
in the presence of device or link failures. Accordingly, many
networks employ advanced mechanisms that allow routers
and switches to rapidly respond to failures, restoring connec-
tivity in 10s of milliseconds [20]. At the same time, networks
are expected to do much more than provide connectivity—
they must also provide rigorous security and performance
guarantees, even while recovering from failures. For exam-
ple, if a switch diverts tra�c along a backup path due to a
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link failure, packets must not be allowed to circumvent the
firewall, thereby violating the network’s security policy.

The promise of software-defined networking (SDN) is to
enable network designers to construct networks that meet
their specific, end-to-end requirements, rather than forcing
them to stitch together existing protocols, each with their
own capabilities, features, and limitations. Although there
has been some work on deploying failure-recovery mecha-
nisms in SDN [7, 18], programmers today lack abstractions
for specifying failure-recovery policies, as well techniques for
automatically integrating those mechanisms into network
programs. In practice, developers today must either add
complicated failure-handling code to programs by hand, or
throw correctness guarantees to the wind when failures oc-
cur.

We argue that SDN programmers should have high-level
constructs that allow them to specify distinct policy con-
cerns, such as forwarding, performance, security, and fault-
tolerance. In addition, SDN programmers should be able
to reason about the interactions between those constructs
when they are combined in a single program. To this end,
we present the design and implementation of a new language
called FatTire that provides the following features:

1. Expressive: natural and orthogonal programming con-
structs that make it easy to describe forwarding and
fault-tolerance policies.

2. E�cient: a proof-of-concept implementation based on
translation to the fast-failover mechanisms provided in
recent versions of OpenFlow.

3. Correct: a methodology for reasoning about the be-
havior of the system during periods of failure recovery,
which enables verification of network-wide invariants.

The central feature of FatTire is a new programming con-
struct based on regular expressions that allows program-
mers to declaratively specify sets of legal paths through the
network, along with fault-tolerance requirements for those
paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch
configurations that automatically respond to link failures
without controller intervention. Compiling FatTire turns
out to be significantly more challenging compared to other
SDN languages like NetCore [4, 12] for several reasons: (i)
FatTire programs are non-deterministic due to the use of
regular expressions; (ii) the translation to individual switch
configurations requires a global analysis, and (iii) there can
be tricky interactions between paths when failures occur.
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Abstract
Recent years have seen growing interest in high-level languages for
programming networks. But the design of these languages has been
largely ad hoc, driven more by the needs of applications and the
capabilities of network hardware than by foundational principles.
The lack of a semantic foundation has left language designers with
little guidance in determining how to incorporate new features, and
programmers without a means to reason precisely about their code.

This paper presents NetKAT, a new network programming lan-
guage that is based on a solid mathematical foundation and comes
equipped with a sound and complete equational theory. We describe
the design of NetKAT, including primitives for filtering, modifying,
and transmitting packets; union and sequential composition oper-
ators; and a Kleene star operator that iterates programs. We show
that NetKAT is an instance of a canonical and well-studied mathe-
matical structure called a Kleene algebra with tests (KAT) and prove
that its equational theory is sound and complete with respect to its
denotational semantics. Finally, we present practical applications of
the equational theory including syntactic techniques for checking
reachability, proving non-interference properties that ensure isola-
tion between programs, and establishing the correctness of compi-
lation algorithms.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

Keywords Software-defined networking, Frenetic, Network pro-
gramming languages, Domain-specific languages, Kleene algebra
with tests, NetKAT.

1. Introduction
Traditional network devices have been called “the last bastion of
mainframe computing” [9]. Unlike modern computers, which are
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implemented with commodity hardware and programmed using
standard interfaces, networks have been built the same way since
the 1970s: out of special-purpose devices such as routers, switches,
firewalls, load balancers, and middle-boxes, each implemented
with custom hardware and programmed using proprietary inter-
faces. This design makes it difficult to extend networks with new
functionality and effectively impossible to reason precisely about
their behavior.

However, a revolution has taken place with the recent rise of
software-defined networking (SDN). In SDN, a general-purpose con-
troller machine manages a collection of programmable switches.
The controller responds to network events such as new connec-
tions from hosts, topology changes, and shifts in traffic load by
re-programming the switches accordingly. Because the controller
has a global view of the network, it is easy to use SDN to imple-
ment a wide variety of standard applications such as shortest-path
routing, traffic monitoring, and access control, as well as more so-
phisticated applications such as load balancing, intrusion detection,
and fault-tolerance.

A major appeal of SDN is that it defines open standards that
any vendor can implement. For example, the OpenFlow API [21]
clearly specifies the capabilities and behavior of switch hardware
and defines a low-level language for manipulating their configura-
tions. However, programs written directly for SDN platforms such
as OpenFlow are akin to assembly: easy for hardware to implement,
but difficult for humans to write.

Network programming languages. In recent years, several dif-
ferent research groups have proposed domain-specific languages
for SDN [5–7, 23–25, 31, 32]. The goal of these network pro-
gramming languages is to raise the level of abstraction of net-
work programs above hardware-oriented APIs such as OpenFlow,
thereby making it easier to build sophisticated and reliable SDN
applications. For example, the languages developed in the Frenetic
project [30] support a two-phase programming model: (i) a general-
purpose program responds to network events by generating a static
forwarding policy; and (ii) the static policy is compiled and passed
to a run-time system that configures the switches using OpenFlow
messages. This model balances expressiveness—dynamic policies
can be expressed by having the general-purpose program generate
a sequence of static policies—and simplicity—forwarding policies
are written in a simple domain-specific language with a clear se-
mantics, so programs can be analyzed and even verified using au-
tomated tools [7, 26].

Still, it has never been clear what features a static policy lan-
guage should support. The initial version of Frenetic [6] used sim-
ple lists of predicate-action rules as policies, where the actions in-
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Regular paths have many uses:



NetKAT

Flow tables

OpenFlow Messages

Featherweight OpenFlow

Compiler

Run-time system
•Formalize source and target 
languages in Coq 

•Prove that transformations 
preserve semantics 

•Extract code to OCaml and 
execute on real hardware

Verified Implementation [PLDI ’13]

Question: How can we know the 
NetKAT compiler is correct?

Answer: implement it in 
a proof assistant!
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Featherweight OpenFlow

(outp0, outm 0) = JRT K(lp)

S(sw , pts,RT , {|lp|} ] inp, outp, inm, outm)
lp�! S(sw , pts,RT , inp, outp0 ] outp, inm, outm 0 ] outm)

(Pkt-Process)

S(sw , pts,RT , inp, {|(sw , pt, pk)|} ] outp, inm, outm) | L((sw , pt), pks, loc0)
�! S(sw , pts,RT , inp, outp, inm, outm) | L((sw , pt), [pk] ++pks, loc0)

(Send-Wire)

L(loc, pks ++ [pk] , (sw , pt)) | S(sw , pts,RT , inp, outp, inm, outm)
(sw ,pt,pk)�! L(loc, pks, (sw , pt)) | S(sw , pts,RT , {|(sw , pt, pk)|} ] inp, outp, inm, outm)

(Recv-Wire)

RT

0 = apply(�RT ,RT )

S(sw , pts,RT , inp, outp, {|FlowMod �RT |} ] inm, outm) �! S(sw , pts,RT 0, inp, outp, inm, outm)
(Switch-FlowMod)

pt 2 pts

S(sw , pts,RT , inp, outp, {|PktOut pt pk|} ] inm, outm) �! S(sw , pts,RT , inp, {|(sw , pt, pk)|} ] outp, inm, outm)
(Switch-PktOut)

f
out

(�) (sw ,SM ,�0)

C(�, f
in

, f
out

) | M(sw ,SMS ,CMS ) �! C(�0, f
in

, f
out

) | M(sw , [SM ] ++SMS ,CMS )
(Ctrl-Send)

f
in

(sw ,�,CM ) �0

C(�, f
in

, f
out

) | M(sw ,SMS ,CMS ++ [CM ]) �! C(�0, f
in

, f
out

) | M(sw ,SMS ,CMS )
(Ctrl-Recv)

SM 6= BarrierRequest n

M(sw ,SMS ++ [SM ] ,CMS ) | S(sw , pts,RT , inp, outp, inm, outm)
�! M(sw ,SMS ,CMS ) | S(sw , pts,RT , inp, outp, {|SM |} ] inm, outm)

(Switch-Recv-Ctrl)

M(sw ,SMS ++ [BarrierRequest n] ,CMS ) | S(sw , pts,RT , inp, outp, ;, outm)
�! M(sw ,SMS ,CMS ) | S(sw , pts,RT , inp, outp, ;, {|BarrierReply n|} ] outm)

(Switch-Recv-Barrier)

S(sw , pts ,RT , inp, outp, inm, {|CM |} ] outm) | M(sw ,SMS ,CMS )
�! S(sw , pts ,RT , inp, outp, inm, outm) | M(sw ,SMS , [CM ] ++CMS )

(Switch-Send-Ctrl)

Devices Switch S ::= S(sw , pts ,RT , inp.outp, inm, outm)
Controller C ::=C(�, f

in

, f
out

)
Link L ::=L(loc

src

, pks, loc
dst

)
OpenFlow Link to Controller M ::=M(sw ,SMS ,CMS )

Packets and Locations Packet pk ::= abstract

Switch ID sw 2 N
Port ID pt 2 N
Location loc 2 sw ⇥ pt
Located Packet lp 2 loc ⇥ pk

Controller Components Controller state � ::= abstract

Controller input relation f
in

2 sw ⇥ CM ⇥ �  �
Controller output relation f

out

2 �  sw ⇥ SM ⇥ �
Switch Components Rule table RT ::= abstract

Rule table Interpretation JRT K 2 lp ! {|lp1 · · · lpn|}⇥ {|CM 1 · · ·CM n|}
Rule table modifier �RT ::= abstract

Rule table modifier interpretation apply 2 �RT ! RT ! �RT

Ports on switch pts 2 {pt1 · · · ptn}
Consumed packets inp 2 {|lp1 · · · lpn|}
Produced packets outp 2 {|lp1 · · · lpn|}
Messages from controller inm 2 {|SM 1 · · ·SM n|}
Messages to controller outm 2 {|CM 1 · · ·CM n|}

Link Components Endpoints loc

src

, loc
dst

2 loc where loc

src

6= loc

dst

Packets from loc

src

to loc

dst

pks 2 [pk1 · · · pkn]
Controller Link Message queue from controller SMS 2 [SM 1 · · ·SM n]

Message queue to controller CMS 2 [CM 1 · · ·CM n]
Abstract OpenFlow Protocol Message from controller SM ::=FlowMod �RT | PktOut pt pk | BarrierRequest n

Message to controller CM ::=PktIn pt pk | BarrierReply n

Syntax Semantics

•Models all features related to 
packet forwarding and all 
essential asynchrony 

•Supports arbitrary controllers
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Network Updates

Initial Program 

Final Program

Question: how can we gracefully 
transition the network from one 
program to another?



Consistent Updates
Operationally: every packet (or flow) 
processed using a consistent version 
of the network-wide configuration 

Implementations: many different 
possibilities–e.g., one option is to use 
a two-phase distributed protocol

Semantically: guarantee preserves 
all safety properties 
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Conclusion
• Programming languages and formal methods have a key role to 

play in next-generation networking platforms 
• The NetKAT language offers expressive constructs  for specifying 

and verifying network functionality 
• Formal methods are ready for prime time!

• Probabilistic semantics 
• Stateful functions 
• Multi-packet properties

Ongoing Work
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