
Leveraging Actor Frameworks for the Cloud

Gul Agha
University of Illinois at Urbana-Champaign

Gul Agha Leveraging Actor Frameworks for the Cloud 1 / 41



Introduction

Introduction

The actor model is a natural fit for programming cloud-based systems

outgoing messages

incoming messages

Gul Agha Leveraging Actor Frameworks for the Cloud 2 / 41



Introduction

Actor Model of Computation

Actors are autonomous agents which respond to messages

Actors operate asynchronously, potentially in parallel with each other

Each actor has a unique name (address) which cannot be guessed

Actor names may be communicated

Actors interact by sending messages, which are by default
asynchronous (and may be delivered out-of-order)

Gul Agha Leveraging Actor Frameworks for the Cloud 3 / 41



Introduction

Actor Behavior

Upon receipt of a message, an actor may:

create a new actor with a unique name (address)

use message contents to perform some computation and change state

send a message to another actor

Gul Agha Leveraging Actor Frameworks for the Cloud 4 / 41



Introduction

Constructing Actor Languages and Frameworks

Add to a sequential language:

actor creation (local or remote): create(node, class, params)

message sending: send(actor, method, params)

ready (to process the next message)

Other typical constructs:

request-reply messages

local synchronization constraints (e.g., message pattern matching)

Gul Agha Leveraging Actor Frameworks for the Cloud 5 / 41



Actor Languages and Frameworks

A Proliferation of Actor Implementations and Applications

Erlang (Ericsson): web services, telecom, Cloud Computing

E-on-Lisp, E-on-Java: P2P systems

SALSA, SALSA Lite (UIUC/RPI): multicore, Cloud Computing

Charm++ (UIUC): scientific computing

Ptolemy (UCB): real-time systems

ActorNet (UIUC): sensor networks

ActorFoundry (UIUC): multicore, Cloud Computing

Akka/Scala (EPFL/Typesafe): multicore, web services, banking, ...

Kilim (Cambridge): multicore and network programming

Orleans (Microsoft): multicore programming, Cloud Computing

DART (Google): Cloud Computing

Retlang/Jetlang: multicore programming, Cloud Computing

Gul Agha Leveraging Actor Frameworks for the Cloud 6 / 41



Actor Languages and Frameworks

Actors: Scalable Concurrency

Large-scale concurrent systems such as Twitter, LinkedIn, Facebook Chat
are written in actor languages and frameworks.

Facebook

“[T]he actor model has worked really well for us, and we
wouldn’t have been able to pull that off in C++ or Java. Several
of us are big fans of Python and I personally like Haskell for a lot
of tasks, but the bottom line is that, while those languages are
great general purpose languages, none of them were designed
with the actor model at heart.” –Facebook Engineering ∗

∗https://www.facebook.com/notes/facebook-engineering/
chat-stability-and-scalability/51412338919

Gul Agha Leveraging Actor Frameworks for the Cloud 7 / 41

https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919
https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919


Actor Languages and Frameworks Actors

Actors: Scalable Concurrency II

Large-scale concurrent systems such as Twitter, LinkedIn, Facebook Chat
are written in actor languages and frameworks.

Twitter

“When people read about Scala, it’s almost always in the
context of concurrency. Concurrency can be solved by a good
programmer in many languages, but it’s a tough problem to
solve. Scala has an Actor library that is commonly used to solve
concurrency problems, and it makes that problem a lot easier to
solve.” – Alex Payne, “How and Why Twitter Uses Scala”†

†http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_
uses_scala.html

Gul Agha Leveraging Actor Frameworks for the Cloud 8 / 41

http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html
http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html


Actor Semantics

Core Actor Semantic Properties

1 State encapsulation: no direct access to state of other actors

2 Safe messaging: messages have call-by-value semantics

3 Fair scheduling: messages are eventually delivered unless recipient is
permanently disabled

4 Location transparency: sender need not concern itself with actual
location of message recipient

5 Mobility: actors can move across network nodes

Gul Agha Leveraging Actor Frameworks for the Cloud 9 / 41



Actor Semantics

Core Actor Semantic Properties

1 State encapsulation: no direct access to state of other actors

2 Safe messaging: messages have call-by-value semantics

3 Fair scheduling: messages are eventually delivered unless recipient is
permanently disabled

4 Location transparency: sender need not concern itself with actual
location of message recipient

5 Mobility: actors can move across network nodes

Gul Agha Leveraging Actor Frameworks for the Cloud 9 / 41



Actor Semantics

Core Actor Semantic Properties

1 State encapsulation: no direct access to state of other actors

2 Safe messaging: messages have call-by-value semantics

3 Fair scheduling: messages are eventually delivered unless recipient is
permanently disabled

4 Location transparency: sender need not concern itself with actual
location of message recipient

5 Mobility: actors can move across network nodes

Gul Agha Leveraging Actor Frameworks for the Cloud 9 / 41



Actor Semantics

Core Actor Semantic Properties

1 State encapsulation: no direct access to state of other actors

2 Safe messaging: messages have call-by-value semantics

3 Fair scheduling: messages are eventually delivered unless recipient is
permanently disabled

4 Location transparency: sender need not concern itself with actual
location of message recipient

5 Mobility: actors can move across network nodes

Gul Agha Leveraging Actor Frameworks for the Cloud 9 / 41



Actor Semantics

Core Actor Semantic Properties

1 State encapsulation: no direct access to state of other actors

2 Safe messaging: messages have call-by-value semantics

3 Fair scheduling: messages are eventually delivered unless recipient is
permanently disabled

4 Location transparency: sender need not concern itself with actual
location of message recipient

5 Mobility: actors can move across network nodes

Gul Agha Leveraging Actor Frameworks for the Cloud 9 / 41



Actor Semantics

Actor Semantics vs. Actor Implementations

Semantics does not prescribe mapping actors to objects or threads

Many frameworks do not enforce encapsulation and lack mobility

Some frameworks lack fairness and location transparency

Programmers must adapt to each framework’s design choices

Workarounds: type systems, middleware, testing, ...

thread

methods

fields

mail queue

thread

methods

fields

mail queue

references?

immutable data?

Gul Agha Leveraging Actor Frameworks for the Cloud 10 / 41



Actor Semantics

Properties of Some Actor Implementations‡

SALSA Akka Kilim AF Jetlang Erlang

State encapsulation X X X X X X
Safe messaging X X X X X X
Fair scheduling X X X X X X

Location transparency X X X X X X
Mobility X X X X X X

‡Karmani et al. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ’09
Gul Agha Leveraging Actor Frameworks for the Cloud 11 / 41



Actor Semantics

Properties of Some Actor Implementations∗

Implementation Actor mapping

SALSA JVM threads

Akka JVM threads or light-weight tasks

Kilim continuations

ActorFoundry continuations

Jetlang light-weight tasks

Erlang light-weight tasks

∗Karmani et al. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ’09
Gul Agha Leveraging Actor Frameworks for the Cloud 12 / 41



Actor Semantics

Fairness and Performance∗

Overhead of Fairness for (a) Threadring (b) Chameneos-redux (c) Näıve Fibonacci

∗Karmani et al. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ’09
Gul Agha Leveraging Actor Frameworks for the Cloud 13 / 41



Actor Semantics

Copying for Safe Messaging in a Single Node ∗

Threadring performance without optimizations. 107 message sends in a token ring of
503 concurrent entitles.

∗Karmani et al. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ’09
Gul Agha Leveraging Actor Frameworks for the Cloud 14 / 41



Actor Semantics

Local Message Send by Reference∗

Threadring performance with optimizations

∗Karmani et al. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ’09
Gul Agha Leveraging Actor Frameworks for the Cloud 15 / 41



Actor Semantics

Improving Local Messaging Performance∗

Using deep copying to achieve safe messaging is expensive

Many messages have an ownership transfer semantics

Passing references in such cases is safe for shared memory

Conservative static analysis can reveal if message contents is
compatible with ownership transfer

∗Negara et al. Inferring Ownership Transfer for Efficient Message Passing. PPOPP’11
Gul Agha Leveraging Actor Frameworks for the Cloud 16 / 41



Actor Semantics

Improving Messaging Performance†

Program Parameters Improvement Speed up

threadring 504 actors, 1 mil passes 92.7% 13.76
concurrent 601 actors 91.5% 11.73

copymessages 31810 actors, 10000 elements 52.0% 2.08
sor 6402 actors, 80 x 80 matrix 19.9% 1.25

chameneos 14 actors, 100000 rendezvous 35.6% 1.55
leader 30001 actors 41.7% 1.72

philosophers 60001 actors, 30000 philosophers 85.5% 6.92
pi 3002 actors, 30000 intervals 7.6% 1.08

quicksortCopy 200002 actors, 100000 elements 81.6% 5.44
quicksortCopy2 200002 actors, 100000 elements 70.2% 3.35

Performance improvements achieved by static inference of ownership transfer

†Negara, Karmani, and Agha, Inferring Ownership Transfer for Efficient Message Passing.

PPOPP’11
Gul Agha Leveraging Actor Frameworks for the Cloud 17 / 41



Actors and the Cloud

Leveraging Actor Frameworks for the Cloud

Actor Frameworks
(Orleans, Akka, ...)

Abstract Languages
(relational, event-based, ...)

Object-oriented Languages
(C#, Java, ...)

Cloud Platforms

(Azure, AWS, ...)

New Applications

Legacy Programs

type systems,
conversion tools

semantics-preserving translations

optimization,
deployment

Gul Agha Leveraging Actor Frameworks for the Cloud 18 / 41



Actors and the Cloud The Sunny Language

Example: Cloud-based Web Programming with Sunny

Developing web applications using the Sunny language requires only:

defining a data model (records), and
client-server interactions (events).

Events can be augmented by security policies to prevent unauthorized
data access, represented at runtime with low overhead.

Gul Agha Leveraging Actor Frameworks for the Cloud 19 / 41



Actors and the Cloud The Sunny Language

Chat Application in the Sunny Language

record Room {
name: String,
members: set User,
msgs: set Msg

}

record Msg {
text: String,
time: Timestamp,
sender: User

}

event JoinRoom(r: Room, u: User)
on (not u in r.members) {
r.members += u

}

event SendMsg(r: Room, m: Msg)
on (m.sender in r.members) {
r.msgs += m

}

Gul Agha Leveraging Actor Frameworks for the Cloud 20 / 41



Actors and the Cloud The Sunny Language

Chat Application After Deployment?

Client

SendMsg(..) JoinRoom(..)

web/application servers, databases, ...

· · ·Room 1 Room n

Msg Msg Msg

Gul Agha Leveraging Actor Frameworks for the Cloud 21 / 41



Actors and the Cloud The Sunny Language

Chat Application Using Abstract Actors

Actor 1

Room 1

Msg Msg

· · ·

Client

Actor n

Room n

Msg

SendMsg(..) JoinRoom(..)

Gul Agha Leveraging Actor Frameworks for the Cloud 22 / 41



Actors and the Cloud The Sunny Language

Twitter-like Application in the Sunny Language

record Peep {
text: String,
time: Timestamp

}

record User {
handle: String,
peeps: set Peep,
followers: set User

}

event Follow(u: User, f: User)
on (not f in u.followers) {
u.followers += f

}

event AddPeep(s: String, u: User) {
u.peeps += new Peep(s, time())

}

Gul Agha Leveraging Actor Frameworks for the Cloud 23 / 41



Actors and the Cloud The Sunny Language

Twitter-like Application using Abstract Actors

Actor 1

User 1

Peep Peep

· · ·

Client

Actor n

User n

Follower

Follow(..) AddPeep(..)

Gul Agha Leveraging Actor Frameworks for the Cloud 24 / 41



Scalability

Application Scalability

Data model decomposition allows for scalable data storage

Events represented as client/server message exchanges at runtime

Concurrency/communication abstracted from application programmer

Distributing event processing among services, represented as mobile
actors, allows scaling event throughput horizontally by adding more
cloud servers

Mapping to services and compilation to actors enables trading
availability for consistency

Gul Agha Leveraging Actor Frameworks for the Cloud 25 / 41



Scalability

Application Stack

Records & Events

record Room ...

record Msg ...

event JoinRoom ...

event SendMsg ...

Programmer input

Abstract Actors
Decomposition of data

and computationsactor RoomService ...

Concrete Actors
Replication, caching,

and further decomposition
Actor 1 · · · Actor n

Cloud
Mobility, monitoring

Actor 1 Actor 2 · · · Actor n

Gul Agha Leveraging Actor Frameworks for the Cloud 26 / 41



Scaling at Runtime

Scaling at Runtime

Location independence and mobility enables resource management by
spreading out actors over nodes and cores

Through knowledge of state invariants, an actor can be fissioned into
several actors, increasing parallelism

Strategies for actor placement on cloud servers to minimize
communication can be inferred by observing communication patterns

Node 1

a1

Node 2

a2 a3 a4

Node 3

a5

Gul Agha Leveraging Actor Frameworks for the Cloud 27 / 41



Scaling at Runtime

Scaling at Runtime

Location independence and mobility enables resource management by
spreading out actors over nodes and cores

Through knowledge of state invariants, an actor can be fissioned into
several actors, increasing parallelism

Strategies for actor placement on cloud servers to minimize
communication can be inferred by observing communication patterns

Node 1

a1 a2

Node 2

a3

Node 3

a4 a5

Gul Agha Leveraging Actor Frameworks for the Cloud 27 / 41



Scaling Legacy Code Through Actors

Legacy Object-oriented Programs and Actors

If an object-oriented program’s concurrency semantics is known, one
or more objects can be encapsulated in an actor

Interaction between objects in different actors must be via
call-by-value messages

Many different object-actor decompositions are possible

Libraries such as Akka’s Typed Actors for Java can seamlessly mix
actors and objects

Gul Agha Leveraging Actor Frameworks for the Cloud 28 / 41



Scaling Legacy Code Through Actors

Concurrency Semantics via Data-centric Synchronization

Data-centric synchronization‡ has been proposed as an alternative to
control-centric locks and monitors

Class invariants are made explicit as atomic sets containing one or
more fields

Fields in an atomic set are implicitly accessed atomically

Aliases and unit of work annotations extend atomic sets across class
boundaries

‡Vaziri et al. Associating Synchronization Constraints with Data in an
Object-oriented Language. POPL’06

Gul Agha Leveraging Actor Frameworks for the Cloud 29 / 41



Scaling Legacy Code Through Actors

The Need for Inference of Concurrency Semantics

Conversion of legacy programs to use atomic sets requires understanding:

class invariants

existing synchronization

Conversion Experience of Dolby et al.§

Takes several hours for rather simple programs

2 out of 6 programs lack synchronization of some classes

2 out of 6 programs accidentally introduced global locks

§Dolby et al. A Data-centric Approach to Synchronization. TOPLAS, 2012

Gul Agha Leveraging Actor Frameworks for the Cloud 30 / 41



Scaling Legacy Code Through Actors

The Need for Inference of Concurrency Semantics

Conversion of legacy programs to use atomic sets requires understanding:

class invariants

existing synchronization

Conversion Experience of Dolby et al.§

Takes several hours for rather simple programs

2 out of 6 programs lack synchronization of some classes

2 out of 6 programs accidentally introduced global locks

§Dolby et al. A Data-centric Approach to Synchronization. TOPLAS, 2012
Gul Agha Leveraging Actor Frameworks for the Cloud 30 / 41



Scaling Legacy Code Through Actors

Synopsis of a Probabilistic Algorithm for Dynamically
Inferring Atomic Sets, Aliases, and Units of Work

Assumptions about Input Programs

Methods perform meaningful operations (convey intent)

Fields that a method accesses are likely connected by invariant

Algorithm Idea

Observe which pairs of fields a method accesses atomically and their
distance in terms of basic operations

This is (Bayesian) evidence that fields are connected through an
invariant

Store current beliefs for all field pairs in affinity matrices

Gul Agha Leveraging Actor Frameworks for the Cloud 31 / 41



Scaling Legacy Code Through Actors

Synopsis of a Probabilistic Algorithm for Dynamically
Inferring Atomic Sets, Aliases, and Units of Work

Assumptions about Input Programs

Methods perform meaningful operations (convey intent)

Fields that a method accesses are likely connected by invariant

Algorithm Idea

Observe which pairs of fields a method accesses atomically and their
distance in terms of basic operations

This is (Bayesian) evidence that fields are connected through an
invariant

Store current beliefs for all field pairs in affinity matrices

Gul Agha Leveraging Actor Frameworks for the Cloud 31 / 41



Scaling Legacy Code Through Actors

Actorizing Programs Annotated with Atomic Sets

Key property: messages to actors are processed one at a time

Fields in one atomic set should not span two actors at runtime

An actor encapsulates one or more objects with atomic sets

Gul Agha Leveraging Actor Frameworks for the Cloud 32 / 41



Scaling Legacy Code Through Actors

Proposed Tool Chain for Actorization

Program Annotations

Annotated

Program

Actor

Program

Program Using

Actor Library

tool

Gul Agha Leveraging Actor Frameworks for the Cloud 33 / 41



Scaling Legacy Code Through Actors

Example Java Legacy Program

public class List {
private int size;
private Object[] elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

public class DownloadManager {
private List urls;

public synchronized URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
return url;

}
/* ... */

}

Gul Agha Leveraging Actor Frameworks for the Cloud 34 / 41



Scaling Legacy Code Through Actors

Example Java Legacy Program

public class DownloadThread extends Thread {
private DownloadManager manager;
public void run() {
URL url;
while((url = this.manager.getNextURL()) != null) {
download(url);

}
}
/* ... */

}
public class Download {
public static void main(String[] args) {
DownloadManager manager = new DownloadManager();
for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
DownloadThread t1 = new DownloadThread(manager);
DownloadThread t2 = new DownloadThread(manager);
t1.start();
t2.start();
}

}

Gul Agha Leveraging Actor Frameworks for the Cloud 35 / 41



Scaling Legacy Code Through Actors

Converted Program with Java 8 Type Annotations

@AtomicSets({"L"})
public class List {
private @Atomic("L") int size;
private @Atomic("L") Object[]

elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

@AtomicSets({"M"})
public class DownloadManager {
private @Atomic("M")

@Aliased("L") List urls;

public URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
return url;

}
/* ... */

}

Gul Agha Leveraging Actor Frameworks for the Cloud 36 / 41



Scaling Legacy Code Through Actors

Converted Program with Java 8 Type Annotations

public class DownloadThread extends Thread {
private @Actor DownloadManager manager;
public void run() {
URL url;
while((url = this.manager.getNextURL()) != null) {
download(url);

}
}
/* ... */

}
public class Download {
public static void main(String[] args) {
DownloadManager manager = new @Actor DownloadManager();
for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
DownloadThread t1 = new @Actor DownloadThread(manager);
DownloadThread t2 = new @Actor DownloadThread(manager);
t1.start();
t2.start();
}

}

Gul Agha Leveraging Actor Frameworks for the Cloud 37 / 41



Evolution and Adaptation

Adaptable Cloud-based Actor Programs

Atomic sets capture small-scale concurrency semantics

Session types can describe large-scale message passing behavior

Program monitoring output useful for inference of semantic properties

Inferred properties can be enforced through program synthesis

Gul Agha Leveraging Actor Frameworks for the Cloud 38 / 41



Evolution and Adaptation

A Control Loop for Adaptable Cloud-based Programs

Adaptive ProgramsMonitoring

Inference

Properties

Synthesis & Verification

Gul Agha Leveraging Actor Frameworks for the Cloud 39 / 41



Acknowledgements

Acknowledgements

OSL collaborators

Rajesh Karmani, Peter Dinges, Minas Charalambides, Karl Palmskog,¶

Amin Shali among many others.

Other current collaborators

Darko Marinov,, Daniel Jackson

Research partially funded by:

NSF grant number CCF-1438982

AFOSR contract FA 9750-11-2-0084

¶Slides prepared with assistance from Karl Palmskog
Gul Agha Leveraging Actor Frameworks for the Cloud 40 / 41



References

References I

Peter Dinges, Karl Palmskog, and Gul Agha.
Automated inference of atomic sets for safe concurrent execution.
http://www.sti.uniurb.it/events/sfm15mp/slides/agha.pdf.

Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and Jan
Vitek.
A data-centric approach to synchronization.
ACM TOPLAS, 34(1):4, 2012.

Rajesh K. Karmani, Amin Shali, and Gul Agha.
Actor frameworks for the jvm platform: a comparative analysis.
In PPPJ, pages 11–20, 2009.

Stas Negara, Rajesh K. Karmani, and Gul A. Agha.
Inferring ownership transfer for efficient message passing.
In PPOPP, pages 81–90, 2011.

Mandana Vaziri, Frank Tip, and Julian Dolby.
Associating synchronization constraints with data in an object-oriented language.
In POPL ’06, pages 334–345, 2006.

Gul Agha Leveraging Actor Frameworks for the Cloud 41 / 41


	Introduction
	Actor Languages and Frameworks
	Actors

	Actor Semantics
	Actors and the Cloud
	The Sunny Language

	Scalability
	Scaling at Runtime
	Scaling Legacy Code Through Actors
	Evolution and Adaptation
	Acknowledgements
	References



