Computer vision for autonomy

Martial Hebert
The Robotics Institute
CMU

car

sign_symbol

fence

RCTA Semantic Navigation

Jean Oh, Arne Suppé, Luis Navarro-Serment, Felix Duvallet, Abdeslam Boularias, Oscar Romero, Jerry Vinokurov, Christian Lebiere, Martial Hebert, Anthony Stentz Carnegie Mellon University Robert Dean, Terence Keegan, Chip DiBerardino General Dynamics Robotic Systems

Don't commit early

Possible interpretations

- Likely hypotheses
- Diverse hypotheses
- Complex, unobservable distribution

Microsoft

Debadeepta Dey et al. Vision and Learning for Deliberative Monocular Cluttered Flight. FSR 2015

Always give an answer?

Lennon et al. Performance Evaluation of a Semantic Perception Classifier. ARL-TR-6653

Input features

(e.g., RBF regressor, SVM with prob. output)

Accuracy

Use all available knowledge

Contextual information

User input

- Vehicle Position and Pose
- Camera Calibration
- Maps

Segmentation

Visual Words

Map prior

Final Detection

Scene

Semantic Segmentation

Priors for Structural Elements of Scene

- Data Mining and Machine Learning applied to find meaningful patterns in publicly available data
- Provides leads and crucial supporting evidence for sex trafficking investigations and victim rescue operations
- Deployed to hundreds of local, state, and federal law enforcement agencies and non-profits across the U.S. and Canada
- Dozens of victims rescued and successful prosecutions made
- Web interface accessible via computers, smart phones, tablets

Example:

Trail of a potential prostitution ring found migrating its operations from the West to the East coast

Find if there is an image of a similar scene

Meritan Apartments Sydney

From which hotel chain?

Sheraton Hotels (North America)

3D Structure

3D Model from Guo and Hoiem, ICCV13.

3D Structure

<u>Style</u>

<u>Image</u>

3D Structure

<u>Style</u>

Data

Domain knowledge

Element

Supermarket

<u>Laundromat</u>

Museum

Locker Room

Task-adapted loss function

 $Min_{\theta} Loss(y(\theta, x), \hat{y})$

- Multiple hypotheses
- Input filtering
- Knowledge
- Task-based loss
- •
- Anytime prediction
- Variable depth resolution
- Small sample adaptation
- Distributed computation
- •

 Jean Oh, Arne Suppe, Luis Navarro-Serment, Drew Bagnell, Debadeepta Dey, Shreyansh Daftry, Devi Parikh, Ali Farhadi, Peng Zhang, Jiuling Wang, Ankit Laddha, Abhinav Gupta, David Fouhey