24 mph
59 mph
GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(PrevLocn, Location);
double Speed = Dist / 5;
GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(PrevLocn, Location);
double Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");
Keep it up!
Uncertain<$T>$

an abstraction for reasoning about noise [ASPLOS’14]

adding domain knowledge

language constructs to make data more accurate
GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist = Distance(PrevLocn, Location);
double Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");
Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(PrevLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4) // Hypothesis test
 Alert("Keep it up!");
Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(PrevLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");
Pragmatics

- **Uncertain<T>** encapsulates probability distributions and hides statistical complexity
 - Computing over distributions
 - Deciding conditionals
Computations: Represent distributions by random samples
Operators build a Bayesian network rather than evaluating immediately.

\[D = A / B \]
\[E = D - C \]
Deciding at Conditionals

```java
if (Speed > 4)
    Alert("Keep it up!");
```
Deciding at Conditionals

```java
if (Speed > 4)
    Alert("Keep it up!");
```

More likely than not that Speed > 4?
Deciding at Conditionals

\[\text{if } ((\text{Speed} > 4).\Pr(0.9)) \]
\[\text{Alert("Keep it up!")} ; \]

At least 90% likely that \(\text{Speed} > 4 \)?

\[\Pr[\text{Speed} > 4] \]
GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist = Distance(PrevLocn, Location);
double Speed = Dist / 5;

if (Speed > 4)
 Alert("That’s crazy!");
Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(PrevLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4)
 Alert("That’s crazy!");
Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(PrevLocn, Location);
Uncertain<double> Speed = Dist / 5;

if ((Speed > 4).Pr(0.9))
 Alert("That’s crazy!"),
Data and Inference Driven Programming Challenges

• What do we do when things go wrong?
 • Debugging large probabilistic systems is hard!
• How do developers easily express domain knowledge?
GPS Driving Application
Driving Application

- GPS
- Location = GPS # roads

Driving on a road (or not!)
Adding Domain Knowledge

--- GPS
Adding Domain Knowledge

--- GPS

--- roads
Adding Domain Knowledge

\[\Pr[H \mid E] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]} \]

--- GPS
--- roads
--- location = GPS # roads
Uncertain<\(T\>
Programming with estimates

Thank you