Probabilistic programming languages

Noah D. Goodman
Stanford University
Microsoft Faculty Summit
July 9, 2015
Probabilistic Models

$P(H|d)$

- A powerful representation of uncertain knowledge and reasoning.
- Specification is a heterogeneous mess of math, English, dependence diagrams, etc.
Programming languages

- Uniform, universal specification of process, with high-level abstractions.
- No intrinsic ability to represent and reason about uncertainty.
Probabilistic programs

\[P(H|d) + \lambda \]
Probabilistic programming languages

- Build a formal language for describing probabilistic models starting from a universal programming language.

- Probabilistic programming language =
 - Deterministic language +
 - primitive distributions (ERPs) +
 - sample and factor operators +
 - marginal inference operators.
Probabilistic programming languages

webppl is a small but feature-rich probabilistic programming language embedded in Javascript.

```javascript
print(
  Enumerate(
    function()
    {
      var a = sample(bernoulliERP, [0.3])
      var b = sample(bernoulliERP, [0.1])
      factor(a|b ? 0 : -100)
      return a & b
    }));
)
```
Probabilistic programming languages

• See also:
 • Church, IBAL, Figaro, Venture, Hansei, Anglican, Fun, etc.
 • Infer.net, MLNs, BLOG, JAGS, Stan, Factorie, etc.
Deterministic language: a (purely functional) subset of Javascript

primitive distributions: ERP objects can sample, score, etc.

sample operator: draw random sample from an ERP

factor operator: re-weight an execution (to encode observations, etc)

marginal inference operators:…

print(Enumerate(
 function(){
 var a = sample(bernoulliERP, [0.3])
 var b = sample(bernoulliERP, [0.1])
 factor(a | b ? 0 : -100)
 return a & b
 }
))
Marginal inference

• erp is the marginal distribution on \(\text{val} \), weighted by factors.

\[
P(\text{val}) \propto \sum_{\text{leaves}} \delta_{\text{return}=\text{val}} \prod_{\text{sampled } x} e^{\text{erp.score}(x)} \prod_{\text{factor(s)}} e^s
\]

• Inference: How do we explore the tree of executions?
Marginal inference

- Enumeration (with caching)
- Sequential Monte Carlo
- Markov chain Monte Carlo
- Hamiltonian Monte Carlo
- Variational inference

See dippl.org for a tutorial on implementation.
Reference games

Speaker: Imagine you are talking to someone and want to refer to the middle object. Would you say “blue” or “circle”?

Listener: Someone uses the word “blue” to refer to one of these objects. Which object are they talking about?

Frank and Goodman (2012)
Recursive reasoning

```javascript
var literalListener = function(property)
{
    Enumerate(function()
    {
        var object = refPrior(context)
        factor(object[property]?0:-Infinity)
        return object
    })
}
```
Recursive reasoning

```javascript
var literalListener = function(property) {
  Enumerate(function() {
    var object = refPrior(context)
    factor(object[property] ? 0 : -Infinity)
    return object
  })
}

var speaker = function(object) {
  Enumerate(function() {
    var property = propPrior()
    factor(object ==
       sample(literalListener(property))
       ? 0 : -Infinity)
    return property
  })
}
```
Recursive reasoning

var literalListener = function(property) {
 Enumerate(function() {
 var object = refPrior(context)
 factor(object[property] ? 0 : -Infinity)
 return object
 })
}

var speaker = function(object) {
 Enumerate(function() {
 var property = propPrior()
 factor(object ==
 sample(literalListener(property))
)
 return property
 })
}

var listener = function(property) {
 Enumerate(function() {
 var object = refPrior(context)
 factor(utterance ==
 sample(speaker(world))
 ? 0 : -Infinity)
 return object
 })
}
Look at the following set of objects:

A B C

How many square objects are there?
How many blue objects are there?

Now imagine someone is talking to you and uses a word you don’t know to refer to one of the objects.

Your job is to decide which object he is talking about. Imagine that you have $100. You should divide your money between the possible objects — the amount of money you bet on each option should correspond to how confident you are that it is correct. Bets must sum to 100!

Which object do you think he is talking about?

A: B: C:
Results

- Model explains 98% of variance in data.
Probabilistic programming languages

• A formal language for describing probabilistic models starting from a universal programming language.
• With universal inference algorithms.
• Makes it easy to:
 • prototype and explore probabilistic models
 • evaluate different inference strategies
 • make complexly structured models

\[P(H|d) + \lambda \]