Learning Generative Models of Sentences and Images

Richard Zemel

A woman with a Mohawk mask is in front of her.
A blonde woman with a colorful costume.
A female performer with a rainbow wig.
Learning Generative Models of Sentences and Images

Richard Zemel
July 8, 2015
Microsoft Faculty Summit

A woman with a Mohawk mask is in front of her.
A blonde woman with a colorful costume.
A female performer with a rainbow wig.
Building Strong Models

Current successes of *deep networks*: classification problems (object recognition, speech recognition)

Standard supervised learning scenario with single correct response (class) for given input example
Current Models are Brittle

Szegedy, et al., ICLR, 2014
Building Strong Models

Current successes of deep networks: classification problems (object recognition, speech recognition)

Key aim: learn high quality generic representations, of images and text

Devise new objectives, based on image/text statistics, co-occurrence
Objective 1: Predict Context

When input consists of pairs (sets) of items, a sensible objective is to predict one item from the other.

Standard setup:
- **encoder** maps first input to a vector
- **decoder** maps vector to second input

Example: each word predicts the two words before and two words after it in a sentence (skip-gram [Mikolov et al., 2013])
Skip-Thought Vectors

Abstract the encoder-decoder model to whole sentences

Decode by predicting next word given generated words

[Kiros et al, 2015]
Skip-Thought Vectors

Train on sentence triplets extracted from books

<table>
<thead>
<tr>
<th># of books</th>
<th># of sentences</th>
<th># of words</th>
<th># of unique words</th>
<th>mean # of words per sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,038</td>
<td>74,004,228</td>
<td>984,846,357</td>
<td>1,316,420</td>
<td>13</td>
</tr>
</tbody>
</table>

Demonstrate utility on 5 different NLP tasks (semantic relatedness, paraphrase detection)

[Kiros et al, 2015]
Image Captioning as Context Prediction

Minimize the following objective:

\[
\sum_x \sum_k \max\{0, \alpha - s(x, v) + s(x, v_k)\} + \\
\sum_v \sum_k \max\{0, \alpha - s(v, x) + s(v, x_k)\}
\]

[Kiros et al, 2014]
Objective 2: Learning Generative Models

Another objective is to construct a model that can generate realistic inputs – ideally generalize beyond the training set.

Difficult to formulate: cannot just directly match the training examples (over-fitting)
Learning Adversarial Models

One recently popular option: train model to fool adversary

The adversary attempts to discriminate samples from the model from data samples

Problem: min-max formulation makes optimization difficult
Generative Moment Matching Networks

Make model codes close to data codes

Uniform Prior

\[h \]

Samples

Data

\[\text{MMD} \]

\[\text{Li, Swersky, Zemel, 2015} \]
• Suppose we have access to samples from two probability distributions $X \sim P_A$ and $Y \sim P_B$, how can we tell if $P_A = P_B$?

• **Maximum Mean Discrepancy (MMD)** is a measure of distance between two distributions given only samples from each. [Gretton 2010]

\[
\left\| \frac{1}{N} \sum_{n=1}^{N} \phi(X_n) - \frac{1}{M} \sum_{m=1}^{M} \phi(Y_m) \right\|^2
\]

\[
= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \phi(X_n)^\top \phi(X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \phi(Y_m)^\top \phi(Y_{m'}) - \frac{2}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \phi(X_n)^\top \phi(Y_m)
\]

\[
= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} k(X_n, X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} k(Y_m, Y_{m'}) - \frac{2}{MN} \sum_{n=1}^{N} \sum_{m=1}^{M} k(X_n, Y_m)
\]

• **Our idea:** learn to make two distributions indistinguishable

⇒ small MMD!
Generative Moment Matching Networks

Direct backpropagation through MMD, no adversary required!
GMNN: Experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>MNIST</th>
<th>TFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBN</td>
<td>138 ± 2</td>
<td>1909 ± 66</td>
</tr>
<tr>
<td>Stacked CAE</td>
<td>121 ± 1.6</td>
<td>2110 ± 50</td>
</tr>
<tr>
<td>Deep GSN</td>
<td>214 ± 1.1</td>
<td>1890 ± 29</td>
</tr>
<tr>
<td>Adversarial nets</td>
<td>225 ± 2</td>
<td>2057 ± 26</td>
</tr>
<tr>
<td>GMMN</td>
<td>147 ± 2</td>
<td>2085 ± 25</td>
</tr>
<tr>
<td>GMMNN+AE</td>
<td>282 ± 2</td>
<td>2204 ± 20</td>
</tr>
</tbody>
</table>
GMNN: Generalizing?

Independent Samples

Generated faces vs. Nearest Neighbors in Training Set
Exploring Latent Space

Interpolating between 5 random points (highlighted in red)
Exploring Latent Space

Interpolating between 5 random points (highlighted in red)
Objective 3: Learning One:Many Problems

Interesting tasks are often inherently ambiguous:

Segmenting image into coherent regions: What level of granularity?
Objective 3: Learning One:Many Problems

Interesting tasks are often inherently ambiguous:
 Segmenting image into coherent regions: What level of granularity?
 Generating caption for an image: What is relevant content?

A car on a beach with a boat in the background.

Two hilly islands in the water.

Can think of problem as one of diversity – what is the appropriate level of diversity in one \(\rightarrow\) many mapping?

Luckily, data becoming available – can learn appropriate level of diversity for given input
Conditional Generative Moment Matching Networks

Include input as bias during generation
- Makes generation image-dependent
- Apply MMD on model/data samples per input

Idea: Generate outputs whose statistics match the statistics of multiple outputs for given input

[Li, et al, 2015]
Train joint embedding on Flickr8K dataset:

- 8000 images, 5 captions each
- 6000 training, 1000 each validate/test
- Images & sentences encoded in sentence space (skip-thought vectors)

Projected down to 300 dimensional space

- CGMMN: 10-256-256-1024-300
- Minimize multiple kernel MMD loss

Aim: capture multi-modal distribution in code space
CGMMN: Image Captioning

(a) F1
(b) precision
(c) recall

(a) F1
(b) precision
(c) recall
CGMMN: Image Captioning

<table>
<thead>
<tr>
<th>Image</th>
<th>Method</th>
<th>Captions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CGMMN</td>
<td>A small dog chases a ball in a green yard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A small dog plays with a yellow ball ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A brown dog plays with a ball on the green grass.</td>
</tr>
<tr>
<td></td>
<td>cond&nn</td>
<td>A black dog jumping to get a soccer ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a small dog with a blue color fetching a yellow ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A dog catching a tennis ball at sunset in a yard.</td>
</tr>
<tr>
<td></td>
<td>mean&nn+noise</td>
<td>A brown dog chasing a red ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A brown dog chasing a ball.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A brown dog chasing a ball.</td>
</tr>
<tr>
<td></td>
<td>cond+noise</td>
<td>Brown dog with orange ball over chasing chasing each other.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown dog chasing after jumping to catch orange balls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown dog chasing after jumping in orange hoop.</td>
</tr>
<tr>
<td>Method</td>
<td>Caption</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>CGMMN</td>
<td>A woman with a Mohawk mask is in front of her.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A blonde woman with a colorful costume.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A female performer with a rainbow wig.</td>
<td></td>
</tr>
<tr>
<td>cond&nn</td>
<td>An Asian woman holds her fur scarf.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A person with face paint is staring at something from within a crowd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A young woman with a pink mask over her face.</td>
<td></td>
</tr>
<tr>
<td>mean&nn+noise</td>
<td>A woman wears a red and white necklace, smile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A woman wears a red, black and white headscarf, scarves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A woman dressed in a white dress and purple beads.</td>
<td></td>
</tr>
<tr>
<td>cond+noise</td>
<td>A woman with red hair and making makeup getting off.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two women with red hair and a crowd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two women with red hair and a crowd of them.</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Caption Description</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>CGMMN</td>
<td>A man with a basketball player is about to make the back.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A basketball player takes a shot from the opposite team.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A man playing a basketball, one has his arm around the number seven.</td>
<td></td>
</tr>
<tr>
<td>cond&nn</td>
<td>A basketball player wearing a white uniform is dribbling the ball on the court.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A school basketball game is in progress.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A basketball player wearing a red and white jersey while running down the court.</td>
<td></td>
</tr>
<tr>
<td>mean&nn+noise</td>
<td>An SMU basketball player in a white jersey dribbles the basketball.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The basketball player dribbles the basketball in a Miami.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The basketball player is dropping the basketball in a game.</td>
<td></td>
</tr>
<tr>
<td>cond+noise</td>
<td>Basketball player in uniform.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basketball player in uniform.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basketball player with arms turned.</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions & Open Problems

Claim: Strong representation is not only capable of recognizing objects and words, but can model inputs themselves and their context.

Developed 3 objectives for learning strong representations:
- Predict context (sentence-sentence; sentence-image)
- Generate distribution of images
- Generate distribution of sentences, specific to an image

Leverage generative models?
- Gain insight into model behavior
- Improve standard classification tasks, esp. when labels scarce
- Generalize beyond static images to video
Generating Captions with Attention

1. Input Image
2. Convolutional Feature Extraction
3. RNN with attention over the image
4. Word by word generation

[Xu et al, 2015]
A woman with a Mohawk mask is in front of her. A blonde woman with a colorful costume. A female performer with a rainbow wig.
Extra Slides
CGMMN: Image Segmentation

• Ambiguity in segmentation important
 – Different attentional foci, granularity
 – Valuable in interactive setting: user can choose from candidate segmentations to suit need

• Formulate problem: generate edge maps
 – CGMMN produces distribution over edge maps, sample to get different maps
 – Post-processing system constructs region hierarchy, threshold to form output regions

• Compare to strong baselines that produce single edge map
 – sample to get diverse map, sampling distribution optimized
 – apply same post-processing
CGMMN: Image Segmentation

Image Ground-Truth Segmentations
CGMMN: Image Segmentation

CGMMN gPb Boykov-Jolly
CGMMN: Image Segmentation

(a) F1
(b) precision
(c) recall
Developed new Question/Answer dataset:

- Based on descriptions in COCO (COCO-QA)
- Use parse tree to make coherent questions
- Single word answers
- ~80K Q&A pairs (Object, Number, Color, Location)

• Developed a variety of models, baselines

[Ren, Kiros, Zemel, 2015]
Image Q&A

COCOQA 4018
What is the color of the bowl?
- Ground truth: blue
- IMG+BOW: blue (0.49)
- 2-VIS+LSTM: blue (0.52)
- BOW: white (0.45)

COCOQA 4018a
What is the color of the vest?
- Ground truth: red
- IMG+BOW: red (0.29)
- 2-VIS+LSTM: orange (0.37)
- BOW: orange (0.57)

DAQUAR 1522
How many chairs are there?
- Ground truth: two
- IMG+BOW: four (0.24)
- 2-VIS+BLSTM: one (0.29)
- LSTM: four (0.19)

DAQUAR 1520
How many shelves are there?
- Ground truth: three
- IMG+BOW: three (0.25)
- 2-VIS+BLSTM: two (0.48)
- LSTM: two (0.21)
COCOQA 14855
Where are the ripe bananas sitting?
Ground truth: basket
IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)
BOW: bowl (0.48)

COCOQA 14855a
What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585
What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a
Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)
Multiple Ground Truths: Caption Generation

Reference Sentences

R1: A bicyclist makes a gesture as he rides along.
R2: A cyclist posing on his bicycle while riding it.
R3: A disabled biker rides on the road.
R4: A man in racing gear riding a bike and making a funny face.
R5: The man is riding his bike on the street.
R6: A man riding his bike outside.
R7: A man riding his bike.

Candidate Sentences

C1: A man rides a bike with one hand.
C2: A male biker dressed in white rides on pavement with a landscape of tree and grass behind him.

Triplet Annotation

Which of the sentences, B or C, is more similar to sentence A?

Sentence A: Anyone from R1 to R50
Sentence B: C1
Sentence C: C2
Multiple Ground Truths: Image Segmentation

Berkeley Segmentation Dataset: Test Image #229036 [color]

7 Color Segmentations
Multiple Ground Truths:
Image Segmentation