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Abstract
Despite its benefits, free cooling may expose servers to high
absolute temperatures, wide temperature variations, and high
humidity when datacenters are sited at certain locations. Prior
research (in non-free-cooled datacenters) has shown that high
temperatures and/or wide temporal temperature variations
can harm hardware reliability.

In this paper, we identify the runtime management strate-
gies required to limit absolute temperatures, temperature vari-
ations, humidity, and cooling energy in free-cooled datacen-
ters. As the basis for our study, we propose CoolAir, a system
that embodies these strategies. Using CoolAir and a real free-
cooled datacenter prototype, we show that effective manage-
ment requires cooling infrastructures that can act smoothly.
In addition, we show that CoolAir can tightly manage tem-
perature and significantly reduce temperature variation, often
at a lower cooling cost than existing free-cooled datacenters.
Perhaps most importantly, based on our results, we derive
several principles and lessons that should guide the design of
management systems for free-cooled datacenters of any size.

Categories and Subject Descriptors C.m [Computer Sys-
tems Organizations]: Miscellaneous; D.4.m [Operating sys-
tems]: Miscellaneous

Keywords Thermal management, energy management, free
cooling, datacenters.
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1. Introduction
Recently, datacenter operators have started building their
datacenters in cold and dry climates, where outside air
can be used to cool the servers [14, 18]. In this approach,
known as “air-side economizer” or simply “free” cooling,
fans blow the cool outside air into the datacenter so that it
reaches the server inlets, while the warm air heated up by the
servers is guided back outside [33]. Free cooling significantly
reduces energy consumption, and may obviate the need for
water chillers, cooling towers, and air conditioners (ACs)
in many geographical locations. Free cooling can be useful
across the spectrum of datacenter sizes, from small enterprise
datacenters to warehouse-scale datacenters run by large
Internet companies.
Motivation. In recent years, free cooling has received at-
tention in the popular media [28, 29] and in the scientific
literature [2, 12, 15, 22, 23, 27, 41]. There is a consensus
that free cooling reduces cooling costs and should be used
whenever and wherever possible. However, the potential im-
pact of free cooling on hardware reliability is not yet fully
understood. For example, researchers have recently studied
the impact of temperature on hardware (especially, hard disk
drive) reliability in non-free-cooled datacenters [10, 34, 36]
with conflicting results. Pinheiro et al. [34] studied Google
datacenters and observed the impact of absolute disk temper-
ature on reliability to be small up to roughly 50◦C. El-Sayed
et al. [10] studied a variety of datacenters (including some
from Google) and reached a similar conclusion, but found
wide temporal temperature variations to increase sector er-
rors more significantly and consistently. Sankar et al. [36]
studied Microsoft datacenters and observed that absolute disk
temperature has a significant impact on reliability, whereas
wide temperature variation does not.

Regardless of how these conflicting results will be rec-
onciled, it is clear that free-cooled datacenters may expose
servers to high absolute temperatures and/or wide temporal
temperature variations at locations where outside temper-
atures are high and/or highly variable. At these locations,
free-cooled datacenters would exhibit higher temperatures



and wider temperature variations than those shown in the disk
reliability papers we cite above. However, for latency reasons
or other restrictions on siting (e.g., an enterprise’s desire to
build its datacenter next to its offices), it may be desirable to
build free-cooled datacenters at such locations.

To the best of our knowledge, there has been no publicly
available study of the temperatures and variations to which
servers are exposed in free-cooled datacenters. Similarly,
there has been no study of techniques that can manage
absolute temperature and temperature variations in those
datacenters. Importantly, such techniques should keep the
cooling energy consumption low, as many locations exhibit
a tradeoff between the cooling energy savings due to free
cooling and hardware maintenance and replacement costs.

This paper fills these large gaps in the literature. Specif-
ically, we propose CoolAir, a workload and cooling man-
agement system for free-cooled datacenters. As a case study,
we apply CoolAir to our real free-cooled datacenter proto-
type, called Parasol [17]. Parasol combines free cooling with
a direct-expansion (DX) AC, and embodies a commercial
feedback-driven cooling controller that periodically selects
the cooling regime (e.g., free cooling at 50% fan speed, or
free cooling off with AC on). Despite this controller, Para-
sol exhibits high inlet air temperatures and wide daily inlet
air temperature variations. We refer to Parasol running this
controller as the “baseline” system.
CoolAir. CoolAir manages absolute temperature, tempera-
ture variation, relative humidity, and cooling energy in free-
cooled datacenters. It uses machine learning, simulation, and
weather forecasts to model and predict temperatures, humid-
ity, and cooling energy. To achieve its goals, CoolAir manages
the workload placement and schedule, the servers’ power
state, as well as the cooling regime. In contrast, the baseline
system only controls the cooling regime and does so in a
more limited fashion (e.g., without concern for future outside
temperatures or internal temperature variations).

Although we study CoolAir for Parasol and Hadoop work-
loads, it can be easily adapted to other cooling infrastructures
and software systems. Interestingly, our multiple day-long
real experiments with CoolAir on Parasol show that it is
impossible to control temperature variation with Parasol’s
cooling infrastructure; the cooling units react too abruptly
during certain regime transitions.
Evaluation. To evaluate CoolAir for an entire year, we
build a simulator of Parasol and validate it against multiple
(day-long) real experiments on Parasol. To study a more
controllable setup, we simulate a free cooling unit with fine-
grained fan speed ramp up, and a variable-speed AC. These
types of cooling units are available commercially [7, 11, 37].
Using the simulator, we study CoolAir in detail for five
locations: Iceland (cold year-round), Chad (hot year-round),
Santiago de Chile (mild year-round), Singapore (hot and
humid year-round), and Newark (hot in the summer, cold in

the winter). Like Newark, Parasol is located in New Jersey,
USA. We also explore 1500+ locations world-wide.

Our results for the manageable version of Parasol demon-
strate that CoolAir can limit temperatures and significantly
reduce daily variations, while keeping Power Usage Efficien-
cies (PUEs) low, compared to the baseline system. Interest-
ingly, managing temperature variation incurs a substantial
cooling energy penalty. Nevertheless, CoolAir’s management
of cooling energy produces cooling costs that are often even
lower than those of the baseline system. In fact, CoolAir is
broadly useful: at locations where it reduces variations signifi-
cantly, it does so at little or no cost in PUE; at locations where
it tends to reduce variations less substantially, it lowers PUEs.
Importantly, our results quantify the energy cost of lowering
absolute temperature and temperature variation, as a function
of location. Overall, our results demonstrate that CoolAir
can effectively manage temperatures (and consequently disk
reliability) and cooling energy all over the world.
Principles and lessons. From our case study, we derive gen-
eral lessons that should apply to free-cooled datacenters
of any size. For example, we find that effective manage-
ment requires fine-grain management knobs, and temperature
setpoints based on outside temperature. Moreover, we find
that existing energy-driven spatial and temporal workload
scheduling techniques (e.g., [2, 22, 27, 30, 32]) have a neg-
ative impact on variation, suggesting that these techniques
should be avoided in free-cooled datacenters.
Contributions. In summary, our main contributions are:
1. We show that free cooling may expose servers to high
absolute temperatures and wide daily temperature variations.
2. We propose CoolAir, a general workload and cooling man-
ager for free-cooled datacenters. No prior work has consid-
ered temperature variation or future outside temperatures in
managing internal temperatures. Moreover, some existing
thermal management techniques actually increase variation.
3. As a case study, we evaluate CoolAir using day-long
experiments on a real free-cooled datacenter prototype, and
on a simulated system with a more sophisticated cooling
infrastructure for a year at more than 1500 locations.
4. We derive principles and lessons for the management
systems of free-cooled datacenters of any size.

2. Background
Datacenters have traditionally used different cooling infras-
tructures depending on their sizes. Large datacenters have
often used water chillers and cooling towers outside the dat-
acenter, and air handlers inside of it. Medium datacenters
often forgo the cooling tower, but retain the chiller and air
handling units. Small datacenters often replace the chiller and
air handler with in-datacenter DX ACs. These ACs utilize
compressors to remove heat. All datacenters now create “cold
aisles” in front of the servers, and isolate them from the “hot
aisles” behind the servers.
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Figure 1. Disk, inlet, and outside temps under free cooling.

Recently, datacenters of all sizes have started to leverage
free cooling by using fans to blow cool (filtered) outside air
into the datacenter. Again using fans, the warm return air is
guided back out of the datacenter. When outside temperature
and humidity are appropriate, free cooling obviates the need
to run power-hungry water chillers or compressors. In fact,
in cool climates, free cooling enables the forgoing of chillers
and compressors altogether. In warmer climates, some free-
cooled datacenters also apply adiabatic cooling (via water
evaporation, within the humidity constraint) to lower the
temperature of the outside air before letting it reach the
servers. Another approach (the one we study in this paper) is
to combine free cooling with more power-hungry, “backup”
cooling (e.g., ACs), for use when outside air temperature or
humidity is too high.
Free cooling operation. Typically, the cooling system uses
a (feedback-based) controller that modulates the fan speed to
keep the inside temperature below a setpoint. The controller
is also responsible for (turning free cooling off and) activating
the backup cooling system when necessary.

3. CoolAir
The main goal of CoolAir is to manage absolute temperatures
and daily temperature variations in free-cooled datacenters,
while keeping energy consumption low. In addition, CoolAir
manages relative humidity and the rate of air temperature
change per hour. CoolAir achieves its goals by intelligently
(1) selecting the best setpoint for the inlet air temperatures
on a daily basis (leverages predictions of outside tempera-
tures); (2) placing the offered workload around the datacenter
(spatial placement); (3) possibly scheduling the workload for
later execution (temporal scheduling, when the workload is
deferrable); and (4) periodically selecting the best cooling
regime according to all air temperature and humidity sensors.
It also decides how many servers to keep active. We refer to
datacenter “utilization” as the fraction of active servers; e.g.,
50% utilization means that half of the servers are active and
the other half is asleep (in ACPI’s S3 state).

CoolAir assumes: at least one air temperature sensor
and at least one humidity sensor outside the datacenter;
the datacenter is organized into “pods” of servers (i.e., sets
of servers that are spatially close) [30]; at least one air
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Figure 2. Architecture. Rectangles with square corners rep-
resent modules, whereas round corners represent derived or
input data.

temperature sensor representing the inlet temperature of each
pod; and a humidity sensor in one of the cold aisles.

Importantly, CoolAir manages air temperatures and hu-
midity to prevent disk reliability from suffering under free
cooling. Disks are the most sensitive components to tem-
perature and temperature variation. Figure 1 illustrates the
relationship between outside air temperature, inside inlet air
temperature, and disk temperature during Parasol’s free cool-
ing operation. The figure plots the lowest and highest disk
temperatures on July 6th and 7th 2013, when we ran a work-
load that constantly left the disk 50% utilized. Clearly, there
is a strong correlation between air and disk temperatures. Any
datacenter exposed to outside temperatures would exhibit this
same correlation.

Figure 2 overviews the CoolAir architecture. It comprises
three main components: the Cooling Modeler, the Cooling
Manager, and the Compute Manager. The following subsec-
tions describe each component in detail.

3.1 Cooling Modeler
The Cooling Modeler is responsible for modeling tempera-
tures and the cooling system. It collects air temperature and
humidity for each available sensor, the utilization of each
server, the current status of the cooling infrastructure, and
the cooling power currently being consumed. The Cooling
Learner then executes a linear regression algorithm to learn
a model (the Cooling Model) for the thermal behavior in
multiple locations of the cold aisles and the humidity in one
location of the cold aisles, as a function of many parameters.
The Cooling Modeler runs offline and only once, after enough
data has been collected under the default cooling controller.
Temperature. We model the thermal behavior of each area of
interest inside a datacenter, i.e. the location of a temperature
sensor, using a set of equations of the form T = F (I), where
the predicted temperature T is a linear function of the inputs
I . The inputs are the current and last inside air temperature
(at the sensor’s location), the current and last outside air
temperature, the current and last fan speed of the free cooling
system, the current datacenter utilization, the product of the
current fan speed and the current inside air temperature, and



the product of the current fan speed and the current outside air
temperature. Note that we use composed inputs (e.g., current
fan speed × current temperature) to allow linear regression.

Using machine learning and extensive monitoring data,
CoolAir generates a distinct function F for each possible
cooling regime and transition between regimes, including
neither free cooling nor air conditioning, free cooling at
different speeds, AC compressor-on, and transition from free
cooling to AC compressor-on. For simplicity, we assume that
a given datacenter utilization always causes the same servers
to be active.
Humidity. We similarly model absolute humidity inside the
datacenter using a set of equations H = G(I ′), where the
humidity H is a linear function of the inputs I ′. The inputs
are the current inside air humidity, the current outside air
humidity, the current fan speed of the free cooling system,
the product of the fan speed and the inside humidity, and the
product of the fan speed and the outside humidity. Again,
CoolAir produces a function G for each cooling regime and
transition between regimes. It uses the predicted inside air
temperature (at a chosen location) to convert the predicted
absolute inside air humidity to a relative inside air humidity.
Cooling power. We model it as a constant amount drawn
in each regime: (1) per each fan speed during free cooling
operation; and (2) when free cooling is off and backup cooling
is on (possibly in different operating modes).

3.2 Cooling Manager
The Cooling Manager selects the best operating region,
selects and installs good cooling configurations, and produces
cooling predictions for the Compute Manager. Since CoolAir
seeks to limit variation, it uses a target range (or band) of
temperatures within which it tries to keep inlet temperatures.
Temperature band selection. The Cooling Manager first
selects the band that would be easiest to maintain throughout
the day while limiting temporal variation. For example, on
a cool day, it can maintain a relatively low temperature
range by alternating between free cooling and simply closing
the datacenter (i.e., using neither free cooling nor backup
cooling). On a warm day, it can maintain a relatively higher
temperature by using free cooling, and backup cooling only
if necessary.

CoolAir selects the band by querying a Web-based weather
forecast service to find the hourly outside temperature predic-
tions at the datacenter’s location for the rest of the day. With
these predictions, it selects a band of temperatures Width
degrees wide around the average predicted outside tempera-
ture for the day plus an Offset. Intuitively, the width of the
band should be selected based on the expected temperature
variations over any one day, and how much energy one wants
to spend limiting temperature variations. Since the outside
air naturally heats up before arriving at the server inlets, the
Offset corresponds to the typical difference between outside
and inside air temperatures (e.g., see Figure 1, where Offset
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Figure 3. Temperature band selection in CoolAir.

is 2.5◦C). Figure 3 illustrates the band selection. However,
no part of the band can be higher than the Max temperature
or lower than the Min temperature; the band slides back just
below Max or just above Min in those cases.

Selecting a temperature band for each day independently
of other days could contribute to increases in long-term
temperature variation. However, this is not a problem since:
(1) variation is most harmful to reliability when it happens
quickly (e.g., ASHRAE recommends a temperature change
rate of at most 20◦C/hour [3]); and (2) we set Width wide
enough that transitions between days are smooth, i.e. bands
for consecutive days almost always overlap.
Cooling Optimizer. This module periodically (every 10
minutes) selects the best cooling regime to use for the
next period. It uses the Cooling Predictor (described below)
and information about the current datacenter utilization, air
temperatures, and humidity to predict the thermal behavior
that would result from using each of the regimes for the
next period (10 minutes). To select one of these choices, the
Cooling Optimizer uses a simple utility function.

The utility function considers the predictions for: (1) ab-
solute temperature; (2) temperature variation; (3) relative
humidity; and (4) cooling energy. To guide the system to-
wards the CoolAir goals, we assign a penalty to any violation
of these goals. Specifically, the following violations all carry
the same penalty: each 0.5◦C higher than the maximum tem-
perature threshold, each 1◦C of temperature variation higher
than 20◦C/hour, each 0.5◦C outside of the temperature band,
each 5% of relative humidity outside of the humidity band,
and turning on the AC at full speed. The overall function
value for each cooling regime is the sum of the penalties
for the sensors of all active pods. In Section 5, we also con-
sider simplified versions of CoolAir that disregard certain
components of the utility function.
Cooling Predictor. The Cooling Optimizer calls the Cooling
Predictor when it needs temperature and relative humidity
predictions for a cooling regime it is considering. The Predic-
tor then uses the Cooling Model to produce the predictions.
However, as the Cooling Model predicts temperatures for
a short term, the Cooling Predictor has to use it repeatedly
(each time passing the results of the previous use as input).



Cooling Configurer. This is the only module that interacts
directly with the cooling infrastructure, according to the
behavior the Cooling Optimizer wants to achieve.

3.3 Compute Manager
The Compute Manager is responsible for the execution of the
workload, and for activating and deactivating servers.
Compute Optimizer. This module optimizes the set of active
servers and the spatial placement of the workload. To do so,
it uses a ranking of pods in terms of their potential for heat
recirculation.1 This ranking comes from the Cooling Modeler,
which creates it by observing changes in inlet temperature
when load is scheduled on each pod.

CoolAir selects the set of servers that are most prone to
heat recirculation as targets for the current workload. Al-
though this may seem counter-intuitive, this approach makes
it easier to manage temperature variation. The reason is that
lower recirculation pods tend to be more exposed to the effect
of the cooling infrastructure and, thus, may experience wider
variations. In Section 5, we consider simplified versions of
CoolAir that make different activation/placement decisions.

For deferrable workloads, CoolAir also performs temporal
scheduling, i.e. it schedules the jobs that have already arrived
24 hours into the future. This scheduling may determine
that certain jobs should be delayed. However, CoolAir will
not delay any job beyond its user-provided start deadline.
Within these deadlines, CoolAir tries to place as much load
as possible during periods when the hourly predictions of
outside air temperature for the day are within its temperature
band. It does not temporally schedule jobs for a day, if (1) the
band needs to slide back below Max or above Min, or (2) the
band does not overlap with predicted outside temperatures
(outside temperatures will constantly be higher than Max or
lower than Min). Temporal scheduling provides no benefits
for such days.
Compute Configurer. This module configures the number
of active servers and is the only one that interacts with the
system running on the datacenter (Hadoop in this paper).

4. CoolAir for Parasol
CoolAir can be adapted to any free-cooled datacenter. In this
section, we describe its implementation for Parasol.

4.1 Parasol and Its Cooling Infrastructure
We built Parasol for research on several topics, including free
cooling and wimpy servers. Parasol combines free cooling
with DX air conditioning, allowing it to be used in a wide
range of climates, as we study in this paper.
Internal view. Parasol comprises a small custom container
(7’×12’) that houses the servers. Figure 4 shows the internal

1 Heat recirculation is a feature (not a bug) in free-cooled datacenters, and is
used to increase temperature (when the outside air is too cold) and decrease
humidity (when the outside air is too humid).
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Figure 4. Internal layout of Parasol.

layout of the container in scale. The free cooling unit (Dan-
therm Flexibox 450) and its controller (TKS 3000) appear on
the left, the servers in the two racks in the middle, the exhaust
damper on the right, and the AC (Dantherm iA/C 19000) at
the top-right part of the figure. Using simple partitions (the
dashed line), we create a small, sealed cold aisle in front of
the servers, and a “wind-tunnel” effect between the free cool-
ing unit, the servers, and the damper. To seal the cold aisle,
we also place a partition at the top of the racks (not shown).
The location of the AC is not ideal, requiring an air duct (the
snake-like shape across the figure) into the cold aisle. The
AC’s hot air intake is above the end of the duct in the hot
aisle. The sealed cold aisle minimizes hot air recirculation
during free cooling or AC operation. When the container is
closed and both cooling units are off, recirculation occurs
around the partitions and through any sleeping servers.
System operation. The TKS controller manages Parasol’s
cooling. It selects the cooling mode based on how the outside
temperature relates to a configurable setpoint SP (25◦C by
default). Below the setpoint, it operates in the Low Outside
Temperature (LOT ) mode, and uses free cooling as much as
possible. Above the setpoint, the TKS starts operating in the
High Outside Temperature (HOT ) mode. It then closes the
damper, turns the free cooling unit off, and turns the AC on.
The TKS uses hysteresis (1◦C) around the setpoint. The AC
operates in cycles: it stops the compressor when the inside
temperature is lower than SP − 2◦C, and starts it when the
inside temperature is higher than SP . The AC consumes
either 135W (fan only) or 2.2kW (compressor and fan on).

In LOT mode, the TKS operates based on the temperature
of a control sensor located in a typically warmer area in the
cold aisle. When the temperature at this sensor is low, the
TKS turns free cooling off and closes the container, which
increases temperatures via recirculation. When the internal
temperature is between SP and SP − P (P is set to 5◦C
by default), the TKS uses free cooling, and selects the fan
speed based on the difference between the outside and the
inside temperatures. The closer the two temperatures are,
the faster the fan blows. The minimum speed is 15% of the
maximum speed. If the outside temperature is much lower
than the inside temperature, the fan blows slowly but the



inside temperature still drops fast due to the cold outside
air. The free cooling unit draws between 8W and 425W,
depending on fan speed.

The above description identifies the main cooling regimes
in Parasol: (1) free cooling with a fan speed above 15%; (2)
air conditioning with the compressor on or off; or (3) neither
(the datacenter is closed).

Though a successful commercial product, the TKS lacks
key CoolAir features: daily temperature setpoint selection
based on future outside temperature; all-sensor temperature,
variation, and humidity control; spatial and temporal work-
load management; and energy management. In the absence of
these features, Parasol’s disk reliability could suffer severely.
Our evaluation compares CoolAir to a baseline that extends
the TKS control scheme, as we describe in Section 5.1.

4.2 CoolAir Implementation
Monitoring Parasol. Parasol has one air temperature sensor
for each server pod, which includes the servers that behave
similarly (e.g., same temperature changes, same potential for
recirculation) in response to the cooling regimes. Parasol
also monitors humidity with one sensor in each aisle. It
uses the periodic temperature and humidity measurements in
modeling the thermal behavior (Section 3).
Cooling Configurer for Parasol. CoolAir translates its de-
sired actions into changes to the TKS temperature setpoint
SP . To translate the temperature band, it sets the top of the
band to be SP and Width to be the P value. By changing the
TKS setpoint, we can also turn off the free cooling (which
stops the flow of air into and out of Parasol), change the free
cooling fan speed, and activate the AC (turning free cooling
off). When the AC is on, we can also control its internal
setpoint, and whether the compressor should be off.
Compute Configurer for Hadoop. In our implementation,
CoolAir manages a slightly modified version of Hadoop [17].
The modification enables energy management by implement-
ing three server power states: active, decommissioned, and
sleep. Active and sleep (the S3 state) are self-explanatory.
The decommissioned state is an intermediate state that pre-
vents new jobs from starting on the server. We configure our
Hadoop setup to the Covering Subset scheme [24], i.e. we
store a full copy of the dataset on the smallest possible num-
ber of servers; any server out of the Covering Subset can be
sent to sleep without affecting data availability.

The Compute Configurer transitions servers between the
server power states in three ways: (1) it transitions any active
server that need not be active but still stores (temporary) data
required by running jobs to the decommissioned state. In a
following iteration, if the data stored at the decommissioned
server is no longer needed, the Configurer transitions it to the
sleep state; (2) it transitions any active server that need not be
active and does not store relevant data to the sleep state; and
(3) it transitions sleeping servers to the active state if they are

required for computation during an iteration. The Configurer
keeps the Covering Subset active at all times.

In the absolute worst case, by transitioning power states,
the Compute Configurer could cause a set of disks to power-
cycle every 20 minutes, i.e. 3 times per hour. Fortunately,
modern disks use load/unload technology [21], which enables
them to power-cycle at least 300,000 times without failure.
This means that disks can be power-cycled 8.5 times per
hour on average, during their 4-year typical lifetime. For our
workloads, no disk gets power-cycled more than 2.2 times
per hour on average.
Data collection and model learning. To create our models,
we collected temperature, humidity, power consumption data
from Parasol for 1.5 months. To get a richer dataset within this
period of time, we intentionally generated extreme situations
by changing the cooling setup (e.g., temperature setpoint),
and monitored the resulting behaviors. We then use regression
on this dataset to generate the specific set of functions F
and G that together comprise the models (one model per
cooling regime or transition between regimes) for predicting
air temperature and humidity (Section 3.1). We use a similar
approach to build the power model. We use Weka [19] to
generate these regressions. For behaviors that are non-linear
(e.g., power consumption as a function of free cooling speed),
we generate piece-wise linear models using M5P. For linear
behaviors, we try linear and least median square approaches
and pick the one with the lowest error. Prior works [25, 31]
have shown regressions to work well for this problem.
Validation of the temperature and humidity models. We
compare the predicted temperatures to measured values in
Parasol, during two entire (and non-consecutive) days that
were not in the learning dataset. Figure 5 plots the CDFs
for the prediction error (in ◦C) for four cases: (1) 2-minutes:
the absolute value of the difference between the predicted
temperature 2 minutes into the future and the measured
temperature; (2) 2-minutes no-transition: same as (1) except
that we consider only 2-minute intervals that did not involve
a transition in cooling regime; (3) 10-minutes: the absolute
value of the difference between the predicted temperature
10 minutes into the future and the measured temperature;
and (4) 10-minutes no-transition: same as (3) except that
we consider only 10-minute intervals that did not involve a
regime transition.

These results show that the temperature models are quite
accurate, especially for periods without transitions between
cooling regimes. Specifically, without transitions, 95% of the
2-minutes and 90% of the 10-minutes predictions are within
1◦C of measured values. Even when including transitions,
over 90% of the 2-minutes and over 80% of the 10-minutes
predictions are within 1◦C of measured values.

We used the same approach to validate our relative humid-
ity models. Again, the results show that the models are quite
accurate: 97% of our predictions are within 5% (in absolute
terms) of the measured humidities.



CoolAir version Workload type Utility function Spatial placement Temporal scheduling
Temperature Non-deferrable Lower max temp + energy + humidity Low recirculation No

Variation Non-deferrable Adaptive band (max 30◦C) + humidity High recirculation No
Energy Non-deferrable Max temp (30◦C) + energy + humidity Low recirculation No
All-ND Non-deferrable Adaptive band (max 30◦C) + energy + humidity High recirculation No
All-DEF Deferrable Adaptive band (max 30◦C) + energy + humidity Low recirculation Yes

Table 1. CoolAir versions. All-ND: CoolAir for non-deferrable workloads. All-DEF: CoolAir for deferrable workloads.
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Figure 5. Modeling errors for 5/1/13 and 6/20/13.

4.3 Example Behavior
As an example of the behavior of CoolAir for Parasol, con-
sider Figures 7(a) and 7(b). Figure 7(b) illustrates how
CoolAir tried to keep the inlet temperatures between 24
and 29◦C, given the workload described in Figure 7(a), on
06/15/2013. For example, around 7:30am, the inlet tempera-
tures were starting to exceed 29◦C and the outside tempera-
ture was low enough, so CoolAir opened up Parasol for free
cooling (lightly shaded area labeled FC). CoolAir did not re-
act to lower the temperatures sooner because this would have
caused a higher utility function penalty. It then modulated the
fan speed to regulate temperature until around 5:45pm, when
the workload increased and inlet temperatures again started to
exceed 29◦C. At that point, it activated the AC (darkly shaded
area labeled AC), since the workload was too heavy for it to
lower temperatures enough with free cooling. As we show
in Section 5, CoolAir can do an even better job of managing
temperatures when the cooling infrastructure can react more
smoothly to changes in cooling regime (Figure 7(d)).

5. Evaluation
5.1 Methodology
CoolAir and baseline system configurations. We configure
CoolAir with Offset = 8◦C, which is the offset that we
normally observe in Parasol. We set Width = 5◦C, as narrower
bands tend to make it harder to control temperature variations
(higher cooling energy and more regime changes) and wider
bands needlessly allow temperatures to vary. We set Min and
Max to 10◦C and 30◦C, respectively. We configure CoolAir
to keep the relative humidity below 80% and air temperature

changes below 20◦C/hour. These settings roughly correspond
to the “allowable” values suggested by ASHRAE [3].

We study multiple versions of CoolAir, called Tempera-
ture, Variation, Energy, All-ND, and All-DEF. The Temper-
ature version only focuses on limiting absolute air temper-
atures below a low setpoint. This version represents what
energy-aware thermal management systems do in non-free-
cooled datacenters today. We set the setpoint to the lowest
value that achieves the same PUE as the baseline system
(described below). The Variation version focuses solely on
limiting the amount of air temperature variation. The Energy
version manages absolute temperatures, while attempting to
conserve cooling energy. However, it does not manage temper-
ature variation. This version is the same as Temperature, but
it targets a higher maximum temperature to lower the cooling
energy further. The All-ND version is the complete CoolAir
implementation, which manages absolute temperatures, tem-
perature variation, and cooling energy. All versions above
are for non-deferrable workloads. We also study All-DEF,
which manages absolute temperatures, temperature variation,
and cooling energy for deferrable workloads. Table 1 lists the
characteristics of each version.

We compare these versions to a baseline system that
extends Parasol’s default control scheme (Section 4.1) in
two ways: (1) we set the setpoint to 30◦C, instead of the
default 25◦C; and (2) we add humidity control to it, with a
maximum limit of 80% relative humidity. These extensions
make the baseline more efficient and comparable to CoolAir.
Parasol setup. Parasol currently hosts 64 half-U servers,
each of which has a 2-core Atom D525MW CPU, 4GB of
DRAM, a 250GB hard disk, and a 64GB solid-state drive.
CoolAir’s Compute Manager runs on one of these servers.
Each server draws from 22W to 30W. Parasol also hosts a
4-core Xeon server, which runs Cooling Modeler and Cooling
Manager. Parasol’s sensors are accurate to within 0.5◦C.
Workloads. We run our modified version of Hadoop on the
64 servers. We use a remote client to submit the Hadoop jobs.
Each real experiment runs for a full day.

We study two widely different Hadoop traces, called
“Facebook” and “Nutch”. Facebook comes from a larger trace
of 600 machines at Facebook [8]. We use Statistical Workload
Injector for MapReduce (SWIM) [9] to generate a day-long,
scaled-down version of the trace for 64 machines. In the
resulting trace, each job comprises 2–1190 map tasks and 1–
63 reduce tasks. There are roughly 5500 jobs and 68000 tasks.
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Figure 6. Real (a) and Real-Sim (b) baseline runs on 7/2/13.

The map phase of each job takes 25–13000 seconds, whereas
the reduce phase takes 15–2600 seconds. Jobs have inputs of
64MB–74GB and outputs of up to 4GB. These characteristics
lead to an average datacenter utilization of 27%.

Nutch is the indexing part of the Web search system in
CloudSuite [13]. The day-long trace consists of 2000 jobs
that index groups of pages previously fetched from our Web
domain. Each job runs 42 map tasks and 1 reduce task. Each
map phase takes 15–40 seconds, whereas the reduce phase
takes 150 seconds. On average, each job touches 85MB of
data. Jobs arrive according to a Poisson distribution with
mean inter-arrival time of 40 seconds. These characteristics
lead to an average utilization of 32%.

We study both non-deferrable and deferrable (all jobs have
6-hour start deadlines) versions of these workloads.
Simulation and validation. Though we built CoolAir for
real datacenters, we need to use simulations for multiple
reasons, including (1) we cannot compare two real executions,
because the same weather conditions never repeat exactly;
(2) we want to run CoolAir multiple times, each time for an
entire year, which is not feasible in real time; and (3) we want
to study many geographical locations.

Thus, we built two simulators: Real-Sim and Smooth-
Sim. Real-Sim simulates Hadoop on Parasol with or without
CoolAir. Figure 6 compares a real execution of the baseline
system (a) and the Real-Sim execution (b) on 07/02/2013 for
the Facebook workload. Similarly, Figure 7 compares a real
execution of CoolAir (b) and the Real-Sim execution (c) on
06/15/2013 for this workload (a). On this day, CoolAir tried
to keep temperatures between 24 and 29◦C. It is clear from
the figures that Real-Sim is accurate. For the baseline system,
maximum temperatures, temperature variations, and cooling
energy are all within 8% of the real execution. For CoolAir,
these values are within 15% of the real execution. In absolute
terms, 89% of all real baseline measurements are within 2◦C
of its simulation, while 70% of the CoolAir measurements
are within 2◦C of its simulation. Overall, we validate Real-
Sim for 8 full random days, with average simulation errors of
3.3% (baseline) and 6.6% (CoolAir).

Figure 7(b) illustrates a problem with Parasol’s cooling
infrastructure: it reacts too abruptly to changes in regime,
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Figure 7. Workload (a), real (b), Real-Sim (c), and Smooth-
Sim (d) CoolAir runs on 6/15/13.

making it difficult to manage variations accurately. For ex-
ample, opening up Parasol to allow outside air to come in
(causing free cooling to start running at 15% of the maximum
speed) around 7:30am caused the inlet air temperature to
decrease 9◦C in only 12 minutes. Similarly, shutting down
free cooling and turning on the AC (causing the compressor
to run full-blast) caused a decrease of 7◦C in 10 minutes.

Due to this limitation of Parasol, Smooth-Sim simulates
CoolAir and Hadoop for a version of Parasol with a smoo-
ther, more controllable cooling infrastructure. Specifically,
we simulate (1) a free cooling unit with fine-grained fan speed
ramp up starting from 1% fan speed (ramp down still goes
from 15% directly to off); and (2) an AC with fixed fan speed
(ramp up is also fine-grained from 1% and settling at 100%),
and variable and fine-grained compressor speed. Both the
AC fan and compressor go straight from 15% to 0% when
shutting down. These types of cooling units are available
commercially [7, 11, 37]. Figure 7(d) shows the CoolAir
behavior with this smoother infrastructure. Clearly, CoolAir
keeps temperatures more stable with the new infrastructure.

Smooth-Sim cannot be validated in full, since we do not
have access to a real fine-grained cooling infrastructure. How-
ever, we expect its behavior to also be close to reality, since
the two simulators are almost exactly the same. To compute
temperatures and humidity over time, they repeatedly call the
same code implementing CoolAir’s Cooling Predictor. We
model the temperature, humidity, and power consumption
of the smooth free cooling unit by extrapolating the earlier
models to lower speeds. We model the temperature and hu-
midity of the smooth AC by interpolating the models for the
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AC with the compressor on and off. For the power model, we
assume the air conditioning fan consumes 1/4 of the power
of the entire unit, and that the compressor consumes power
linearly with speed. We base our assumptions, extrapolations,
and interpolations in Smooth-Sim on [26].

To limit the length of our year-long Smooth-Sim simula-
tions, we only simulate the first day of each week of the year.
We repeat the workload for each of those days. We collect
the typical meteorological year (TMY) temperature and hu-
midity data for those days from [38]. We have compared our
results for TMY and for actual temperatures for 2012 at two
locations and found similar behaviors. Newark is the closest
location to Parasol for which we found TMY data.

5.2 Results
Absolute internal temperatures. Figure 8 shows the aver-
age temperature “violations”, i.e. the number of ◦C by which
the systems exceed the desired maximum absolute air tem-
perature of 30◦C, during a year of running the non-deferrable
Facebook workload at the five locations we consider. We
compute this average by considering all sensor readings at
or below 30◦C to be a violation of 0◦C. Each reading above
30◦C contributes reading − 30 degrees to the overall sum.

These results show that the baseline system cannot limit
all absolute temperatures well at warmer locations, especially
in Singapore. As the other systems manage every sensor, they
are more successful, with average violations lower than 0.5◦C
in all cases. Note that the bars for the Temperature version
are not missing; this version is always able to keep average
temperatures below 30◦C (we set 29◦C as the setpoint for
Temperature at these locations) for the same PUE as the
baseline system. All-ND is not as good as Temperature, but
still leads to very low average violations. In fact, the CoolAir
results are so good that we do not consider violations further.
Internal temperature variations. We measure the daily
variation for each sensor as the difference between its maxi-
mum and minimum readings. From these variations, we select
the worst sensor variation for each day. In Figure 9, the bars
depict the average of these worst daily ranges over the year,
while the vertical lines connect the minimum worst daily
range to the maximum worst daily range. We also show the
outside temperature variations (measured the same way).
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These results show that the baseline system exhibits wide
daily temperature ranges. Its average daily ranges hover
around 9◦C, and its maximum daily ranges are even wider.
The maximum ranges are important because they represent
an upper-bound on how variable a system is. For example,
the maximum daily range for locations with cold or cool
seasons (Newark, Santiago, and Iceland) is at least 16.5◦C.
The Temperature and Energy versions make maximum ranges
even worse in some cases. As one would expect, Variation
and All-ND lower the average daily ranges consistently, with
respect to the baseline system. Most importantly, they lower
the maximum daily range by a significant amount, except
for Chad where it remains the same. For example, All-ND
cuts the maximum daily range in half for Iceland, and almost
half for Newark and Santiago. The most challenging days for
All-ND are those when the outside temperature exhibits little
overlap with CoolAir’s temperature band.

Interestingly, the average outside temperature ranges can
be lower than those inside under the baseline system (Iceland
and Singapore). The same is the case for maximum ranges
(Newark and Iceland). We mention the potential reasons for
such behaviors in the Introduction.
PUEs. Figure 10 shows the yearly PUEs, assuming the power
delivery losses of Parasol (0.08 in terms of PUE).

As one would expect, the baseline system exhibits high
PUEs in Chad and Singapore. The Energy version reduces
PUEs significantly at those locations. Interestingly, the Varia-
tion results show that trying to limit temperature ranges has a
significant cooling energy penalty. All-ND brings PUEs back
down to nearly the same values as the Energy version, except
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for Santiago. In this location, the baseline system does not
need to consume much energy to keep temperatures below
30◦C, whereas CoolAir does so to limit variation. However,
two factors contribute to this: the relatively high power draw
of air conditioning in our setup, and the low average IT power
(servers are sent to sleep when not needed).
Cost of managing temperature and variation. We now
quantify the yearly (energy) cost of controlling these mea-
sures. Lowering 1◦C of absolute temperature costs more than
reducing 1◦C of maximum daily range in Newark (232 vs
53kWh), Chad (1275 vs 131kWh), and Singapore (2145 vs
716kWh). In Santiago (110 vs 171kWh) and Iceland (7 vs
29kWh), the opposite is true. Clearly, managing absolute tem-
perature costs more than managing variation in places with
warmer seasons, and less in places with colder ones.
Spatial placement. To understand why CoolAir achieves
such large reductions in variation, we plot Figure 11. The
figure depicts the temperature ranges for the baseline system,
the Variation version of CoolAir, and two other systems: Var-
Low-Recirc and Var-High-Recirc. Var-Low-Recirc attempts
to keep temperatures between 25 and 30◦C and uses a spatial
placement that selects the pods with the lowest recirculation
first. This placement has been used in prior works on energy-
aware cooling in non-free-cooled datacenters [30, 32]. Var-
High-Recirc tries to keep the temperature in the same range,
but uses the same spatial placement as Variation. Var-High-
Recirc uses no temperature band or weather prediction.

Comparing Var-Low-Recirc and Var-High-Recirc isolates
the impact of the spatial placement. As the figure shows,
placing loads on pods with higher recirculation reduces
maximum temperature ranges somewhat; this tends to keep
those areas consistently warm, with low variation. This is
interesting because this spatial placement is the opposite as
prior research has identified as ideal for energy savings [30,
32]. Nevertheless, high-recirculation placement increases
PUE only slightly (not shown) in free-cooled datacenters.

However, the largest reductions in maximum range come
from our temperature band (and the weather prediction it
requires). Comparing Var-High-Recirc and Variation isolates
its impact. As we can see, the maximum range goes down
substantially for locations with cold or cool seasons when the

band is used. The average ranges for these locations also go
down but by smaller amounts.
Temporal scheduling. Now we consider whether the ability
to defer workloads would enable reductions in temperature
variation in All-DEF. Our results indicate that All-DEF
provides only minor reductions in both average range and
maximum range, compared to All-ND. The reason is that
the days when All-ND does poorly in terms of variation are
exactly those days when All-DEF decides to forgo temporal
scheduling; All-DEF would perform worse if it tried to
schedule for those days. For this reason, we argue that All-ND
is the best implementation of CoolAir.

Temporal scheduling has been proposed recently for con-
serving cooling energy in free-cooled datacenters [2, 22, 27].
Though these techniques do conserve energy, they also widen
temperature variations, compared to All-ND. We observe this
by studying Energy-DEF, a system that combines the Energy
version with temporal scheduling based solely on cooling en-
ergy. Like previous techniques, Energy-DEF schedules loads
for periods when the outside temperature is low, but still
within the jobs’ start deadlines. As a sampling of the results,
we find that the maximum range for Newark grows from 10
(All-ND) to 19◦C (Energy-DEF), in exchange for a reduction
in PUE from 1.17 to 1.13. For Santiago, the maximum range
grows from 10 to 18◦C, while PUE decreases from 1.25 to
1.10. For all five locations, the Energy-DEF maximum ranges
are even worse than those of the baseline system.
Impact of the desired maximum temperature. Now we
investigate the impact of trying to keep absolute temperatures
below different maximum values. For the baseline system,
this means setting the temperature setpoint to those values.
For CoolAir, this means not allowing the top of the adaptive
temperature band to exceed those values, which can be done
by setting Max to each of them.

We find that the CoolAir benefits tend to be greater when
datacenter operators are willing to accept higher maximum
temperatures (to allow for lower cooling costs). For example,
the reductions in maximum range achieved by CoolAir tend
to be greater for a desired maximum temperature of 30◦C
than 25◦C. For locations where PUE is high for a desired
maximum temperature of 30◦C, CoolAir tends to lower PUEs.
However, CoolAir tends to increase PUEs for those same
locations when the desired maximum temperature is 25◦C.
Impact of weather forecast accuracy. As we only have the
TMY data, our simulated predictions of average outside tem-
perature are perfectly accurate. Fortunately, weather services
predict daily average temperatures accurately. For example,
at our location, predictions are within 2.5◦C of the actual
daily averages 83% of the time, i.e. plenty accurate given
CoolAir’s 5◦C-wide temperature band.

Nevertheless, we next quantify the impact of inaccurate
outside temperature predictions on CoolAir. Specifically, we
consider scenarios in which average outside temperature
predictions are consistently too high by 5◦C, and consistently
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too low by 5◦C. For the former case, our results show
increases of the maximum ranges but always by less than 1◦C,
and reductions in PUE. For the latter case, our results show
reductions in the maximum ranges, and increases in PUE but
always by less than 0.01. Clearly, the impact of inaccuracies
is small, mostly because of CoolAir’s temperature band.
Impact of workload. The results above have been for the
Facebook workload. We now study the widely different Nutch
trace. The results with Nutch exhibit the exact same trends we
observe with the Facebook workload (Figures 9 and 10). For
example, All-ND cuts the maximum daily temperature range
in roughly half for Newark, Santiago, and Iceland, while
also lowering the average daily range for all locations. These
benefits come with significant PUE reductions for Chad and
Singapore, and a small PUE increase for Santiago.
More geographical locations. Finally, we now extend our
study to 1520 locations world-wide, assuming the Facebook
workload. We do not argue that datacenters could be built
at all locations, since there are other issues to consider [16];
rather, we quantify the potential impact of using CoolAir at
the locations were datacenters to be built there.

Compared to the baseline system, CoolAir reduces the
maximum range from 18.6 to 12.1◦C on average, for a slight
increase in yearly PUE from 1.08 to 1.09 on average. In more
detail, Figures 12 and 13 depict the reductions in maximum
range and PUE, respectively, compared to the baseline system.
The figures show that CoolAir can reduce maximum ranges
significantly in colder locations. Specifically, it can reduce
these ranges by between 2 and 14◦C in a large number of
locations in North America, Europe, and Asia. Similarly, it
can reduce the maximum ranges by between 2 and 8◦C in
many locations in the south of South America and Australia.
These reductions come with only a slight penalty in PUE. In
fewer than 2% of locations, CoolAir increases the maximum
range, but always by less than 1◦C.

CoolAir is also useful for locations closer to the Equator,
which exhibit higher PUEs. For those locations, CoolAir low-
ers PUEs without increasing internal temperature variations.
Thus, CoolAir should be useful all over the world.

6. Principles and lessons
In summary, our results prompt many observations:
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Figure 13. World-wide reduction in yearly PUE.

1. If not managed explicitly in free-cooled datacenters, abso-
lute temperatures and variations can be high in many locations
(Figures 8 and 9), especially when temperature setpoints are
higher. In fact, internal variations can be higher than those
outside (Figure 9). These effects have been shown to degrade
disk reliability [10, 34, 36].
2. Effectively managing temperature variation requires fine-
grain cooling (Figures 7(b) and (d)) and workload control
(Figures 9 and 11).
3. Managing absolute temperature costs more than managing
variation in regions with warmer seasons, and less in regions
with colder ones (Cost of managing temperature and variation,
Section 5.2).
4. Adaptive temperature bands and smart spatial workload
placement are useful in managing temperature variation (Fig-
ure 11), whereas temporal workload scheduling is not (Tem-
poral scheduling, Section 5.2). Moreover, existing energy-
driven techniques for spatial and temporal thermal manage-
ment increase temperature variation (Figure 11 and Temporal
scheduling, Section 5.2).
5. Managing absolute temperature and temperature variation
is easier when internal temperatures can be higher (Impact of
the desired maximum temperature, Section 5.2).
6. The accuracy of weather forecast services is not a problem
when managing variations with temperature bands (Impact
of weather forecast accuracy, Section 5.2).
7. Managing temperature variation is most critical and suc-
cessful in cold climates (Figures 12 and 13).
8. Using CoolAir, it is possible to manage absolute tempera-
ture and variation at little or no energy cost even in very hot
climates (Figures 12 and 13). This significantly broadens the
set of locations where free cooling can be used.
Generalizing from the case study. Clearly, the results of
Section 5.2 are influenced by the characteristics of Parasol.
However, we expect that the observations above should apply
to any datacenter, as our modeling of air temperature and
cooling power is similar to that of very different datacenters
in the literature. Specifically, the model we learned for air
temperature is similar to that in [20]. The power model for
free cooling models power as a cubic function of fan speed, as
in [27]. Our AC power model was derived experimentally in
[26]. For datacenters that combine free cooling with chillers
(instead of DX AC), we can use [23] to strike the proper ratio



of power consumptions. For a large datacenter with multiple
independent “cooling zones” (e.g., containers), each of them
would have its own CoolAir-like manager.

Thus, applying our ideas to another datacenter would lead
to different temperatures, variations, and PUEs, but the trends
(e.g., impact of climate on variation) should be the same.
Practical considerations. CoolAir can be used in a variety of
real scenarios, from small-scale datacenters found in universi-
ties to large-scale datacenters operated by Internet companies.
Free-cooled datacenters, especially large-scale ones, embody
temperature, humidity, and power sensors. These sensors fa-
cilitate the creation of the corresponding CoolAir models
over time (e.g., 6 months or 1 year), during the normal op-
eration of the datacenter. (We explicitly generated scenarios
for Parasol simply to speedup our learning of the temperature
and humidity models.)

Selecting the CoolAir Offset and Width parameters can be
easily done via observation and experimentation, respectively,
for a desired tradeoff between ambient control and energy
consumption. In fact, our simulation infrastructure would
allow the datacenter operator to evaluate multiple settings
even before real deployment.

Finally, many real systems and workloads enable flexi-
bility in spatial and temporal scheduling. Spatial flexibility
needs to exist for fault tolerance and performance optimiza-
tion, whereas temporal flexibility exists in real deferrable
workloads (e.g., typical batch and data-processing loads).

7. Related Work
To our knowledge, this paper is the first publicly available
study of the internal absolute temperatures and temperature
variations in a real free-cooled datacenter. Though companies
like Google and Facebook use free cooling [14, 18], they have
not published data on temperature or humidity effects in these
datacenters or their disk reliability. Our paper is also the first
study of techniques for managing temperature and variation in
free-cooled datacenters. Finally, our paper is the first to argue
for (1) fine-grained control of the cooling infrastructure for
managing variation; and (2) selecting temperature setpoints
based on predictions of outside temperature. Nevertheless,
CoolAir does relate to works on the following three topics.
Disk reliability in datacenters. Our motivation to manage
absolute temperature and temporal temperature variation in
free-cooled datacenters came from papers on disk reliability
in non-free-cooled datacenters [10, 34, 36].
Energy-aware thermal management of non-free-cooled
datacenters. Similarly to CoolAir, previous efforts have used:
machine learning for modeling thermals (e.g., [25, 31]); pro-
grammatic control of the cooling infrastructure (e.g., [6, 40]);
simulations to predict thermal behavior into the future (e.g.,
[35]); energy-aware spatial placement of workloads (e.g.,
[1, 4, 5, 30, 32]); and energy-aware temporal scheduling of
workloads (e.g., [4, 32]). The CoolAir contributions here are

simulator-based predictions, spatial placement, and temporal
scheduling that seek to manage temperature variation pri-
marily, not cooling energy. In fact, our results show that the
best spatial placement for variation is the opposite of the best
placement for energy.
Energy-efficiency in free-cooled datacenters. Researchers
have studied free cooling and its impact on energy efficiency
(e.g., [15, 39]); programmatic control of it (e.g., [12, 41]);
techniques for temporal scheduling based on outside tem-
peratures (e.g., [2, 22, 27]); and geographical load balanc-
ing based on outside temperatures (e.g., [23]). However, as
mentioned above, none of these studies considered internal
temperature variations, selecting setpoints based on predicted
outside temperatures, or techniques for managing variations.
In fact, our results demonstrate that temporal scheduling for
energy [2, 22, 27] increases temperature variations signifi-
cantly compared to CoolAir.

8. Conclusions
We designed, implemented, and evaluated CoolAir, a system
for managing temperature, variation, humidity, and energy
in free-cooled datacenters. Though our case-study results are
based on Parasol, a real free-cooled datacenter prototype, we
derived lessons that apply to other datacenters as well. Impor-
tantly, these lessons are useful regardless of how researchers
eventually resolve the issue of whether absolute temperature
or temperature variation has the strongest impact on hardware
reliability. As CoolAir shows, it is possible to manage both
effects while keeping cooling energy consumption low.
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