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ABSTRACT

To develop speaker adaptation algorithms for deep neural network
(DNN) that are suitable for large-scale online deployment, it is de-
sirable that the adaptation model be represented in a compact form
and learned in an unsupervised fashion. In this paper, we propose
a novel low-footprint adaptation technique for DNN that adapts the
DNN model through node activation functions. The approach intro-
duces slope and bias parameters in the sigmoid activation functions
for each speaker, allowing the adaptation model to be stored in a
small-sized storage space. We show that this adaptation technique
can be formulated in a linear regression fashion, analogous to other
speak adaptation algorithms that apply additional linear transforma-
tions to the DNN layers. We further investigate semi-supervised on-
line adaptation by making use of the user click-through data as a
supervision signal. The proposed method is evaluated on short mes-
sage dictation and voice search tasks in both unsupervised and semi-
supervised setups. Compared with the singular value decomposi-
tion (SVD) bottleneck adaptation, the proposed adaptation method
achieves reasonable accuracy improvements with much smaller foot-
print.
Index Terms: automatic speech recognition, deep neural network,
speaker adaptation

1. INTRODUCTION

Recent progress in deep learning has attracted a lot of interest in au-
tomatic speech recognition (ASR) [1], [2], [3], [4]. The discovery
of the strong modeling capabilities of deep neural networks (DNN)
and the availability of high-speed hardware has made it feasible to
train large networks with tens of millions of parameters. In the
framework of context-dependent DNN hidden-Markov-models (CD-
DNN-HMM) [1], the conventional Gaussian Mixture Model (GMM)
is replaced by a DNN to evaluate the senone log-likelihood.

However, the outstanding performance of CD-DNN-HMM re-
quires huge number of parameters, which makes adaptation very
challenging, especially with limited adaptation data. Several meth-
ods for DNN adaptation have previously been proposed. The most
popular approach to adapting DNNs is applying a linear transfor-
mation to the certain DNN layer to account for the mismatch be-
tween the training and testing conditions. In [5], [6], [7], [8], [9],
an additional layer is defined between the input observations and the
first hidden layer, similar to the conventional feature space maximum
likelihood linear regression (fMLLR) [10] in CD-GMM-HMM. The
linear transformation has been further applied to the hidden layers
[11], and to the top layer [8], [12]. One main issue in these adapta-
tion techniques is that they typically need to update and store a large
amount of adaptation parameters due to the high dimensionality of
the DNN layers. Feature discriminative linear regression (fDLR) [9]
introduces a small-sized adaptation model by sharing each of the

input frames with the same transform. Nevertheless, all these tech-
niques define the transforms on one or a few DNN layers, and the
potential of deeply adapting the DNN model across many layers has
not yet been fully explored. In [13], we have proposed the SVD bot-
tleneck adaptation by adapting all the linear bottleneck layers in the
SVD-restructured model. This technique involves much less adapta-
tion parameters, while providing significant accuracy improvement.

The aforementioned adaptation methods either adapt or add ma-
trices to characterize the target speaker or environment. There has
been few efforts in the literature to adjust the node activation func-
tions. In [14], a very complicated Hermitian polynomial function
is used as the hidden node activation function of the shallow neural
network. The complexity of Hermitian polynomial function makes it
very easy to change the activation shape by adjusting its parameters.
However, there is no conclusion whether the discovery in [14] with
the shallow Hermitian polynomial neural network can be applied to
DNN adaptation.

In this study, we propose to adapt the DNN model by adjust-
ing the node activation functions. The proposed approach intro-
duces slope and bias parameters in the activation functions for each
speaker. One advantage of adapting the node activation function is
that the number of adaptation parameters is much smaller than those
used for matrix adaptation. Therefore, it is very suitable for low-
footprint adaptation or personalization. We show that this adaptation
method can also be formulated in a linear regression fashion. The
unified view facilitates the implementation of a general framework
for adapting the DNN model.

The accuracy of the hypothesized transcripts in the adaptation
set plays an important role in training the SD model. It is desirable
to adapt the models in an unsupervised or semi-supervised manner.
In this work, we leverage the abundance of implicitly labeled voice
search queries that are logged in search engines. We investigate
semi-supervised adaptation by making use of the user click-through
data as a supervision signal.

The rest of this paper is organized as follows. We will first
briefly introduce the DNN adaptation from linear regression per-
spective in Section 2. In Section 3, we propose the DNN adaptation
method by adjusting node activation functions. Section 4 describes
the strategies to train the adaptation model. Then, we evaluate our
proposed method and compare it with the existing adaptation meth-
ods in Section 5, and conclude the study in Section 6.

2. DNN ADAPTATION USING LINEAR REGRESSION

A deep neural network (DNN) [1] can be considered as a conven-
tional multi-layer perceptron (MLP) with many hidden layers, where
the input feature is concatenated from multiple consecutive frames
and the output predicts the posterior probabilities of thousands of
senones. Given a DNN with L hidden layers, the output at the l-th



hidden layer, hl, is recursively defined as the nonlinear transforma-
tion of the (l − 1)-th layer:

hl = σ(vl) = σ(W lhl−1 + bl) (1)

where W l is the weight matrix, bl is the bias vector, and σ(·) is the
sigmoid activation function defined element-wise

σ(v) = 1/(1 + e−v) (2)

Note hl and vl correspond to the activations and excitations of the
l-th layer, respectively. h0 = x is the input observation vector. For
CD-DNN-HMM [1], the output layer is normalized by the softmax
function to produce the posterior probability of senone id s, p(s|x).

Many DNN adaptation techniques have been developed in the
past. The most popular approach to adapting DNNs is applying a
linear transformation to the certain DNN layer to account for the
mismatch between the training and testing conditions. In [5], [6],
[7], [8], [9], an additional layer is defined between the input obser-
vations and the first hidden layer, similar to the conventional feature
space maximum likelihood linear regression (fMLLR) [10] in CD-
GMM-HMM. The linear transformation has been further applied to
the hidden layers [11], and to the top layer [8]. The basic idea of
this model is illustrated in Fig. 1a. Note that the parameters corre-
sponding to the red dashed links are trained using the adaptation set,
keeping other weights of the original DNN fixed.

One main issue in these adaptation techniques is that they typi-
cally need to update and store a large amount of adaptation param-
eters due to the high dimensionality of the DNN layers. Feature
discriminative linear regression (fDLR) [9] introduces a small-sized
adaptation model by sharing each of the input frames with the same
transform. Nevertheless, all these techniques define the transforms
on one or a few DNN layers, and the potential of deeply adapting the
DNN model across many layers has not yet been fully explored.

2.1. SVD bottleneck adaptation
We recently presented a SVD-based method in [15] to restructure
the DNN model in a significantly small size while maintaining the
recognition accuracy. Given anm×nweight matrix W in DNN, we
approximate it as the product of two low-rank matrices by applying
SVD

Wm×n ≈ Um×kNk×n (3)

IfW is a low-rank matrix, k will be much smaller thanm and n, and
the number of parameters is reduced from mn to (m+ n)k. Apply-
ing this decomposition to the weight matrix, it acts as if inserting a
linear bottleneck layer of fewer units between the original nonlinear
layers. Thus, the original large full-rank DNN model is converted to
a much smaller low-rank model without loss of accuracy.

Furthermore, we propose the SVD bottleneck adaptation in [13]
to produce low-footprint SD models by making use of the SVD-
restructured topology. The linear transformation is applied to each
of the bottleneck layer by adding an additional layer of k units, as
illustrated in Fig. 1b. We have

W s,m×n = Um×kSs,k×kNk×n (4)

where Ss,k×k is the transformation matrix for speaker s and is ini-
tialized to be identity matrix Ik×k. The advantage of this approach
is that only a couple of small matrices need to be updated for each
speaker. This dramatically reduces the deployment cost for speaker
personalization.

(a) Adaptation of one DNN layer

(b) SVD bottleneck adaptation

(c) Adapting slopes and biases in activation functions

Fig. 1: Illustration of network structures of different adaptation
methods. Shaded nodes denote nonlinear units, unshaded nodes for
linear units. Red dashed links indicate the transformations that are
introduced during adaptation.

3. DNN ADAPTATION THROUGH ACTIVATION
FUNCTION

The aforementioned adaptation methods either adapt or add trans-
formation matrices to characterize the target speaker. In this section,
we propose to adapt the DNN model by adjusting the node activation
functions. We modify the sigmoid function (2) in a general form

σ̃(v) = 1/(1 + e−(αv+β)) (5)

where α is slope and β is bias. The slopes and biases are initialized
to 1 and 0, respectively, and updated for each speaker. The main
advantage of adapting through activation functions is that the total
number of adaptation parameters is much small, two times of the
total number of hidden units.

Substituting (5) into (1), we have

hls = σ̃s
(
vl
)
= σ

(
Al
sv
l + bls

)
(6)

where As is the diagonal matrix with activation slopes α on the di-
agonal, and bs is the activation bias vector. We can see that adapting



the slopes and biases through the activation functions amounts to
adding a linear layer right before the activation functions with the
one-to-one correspondence, as shown in Fig. 1c.

3.1. Generalized linear regression
We have shown that many adaptation techniques introduced above
belong to the family of the linear regression. Motivated by the
widely used MLLR [16] and fMLLR [10] in the conventional CD-
GMM-HMM, linear transformation matrices are inserted between
the DNN layers to account for the mismatch between the training
and testing conditions. Various such adaptation schemes are il-
lustrated in Fig. 1. The unified view from the generalized linear
regression (GLR) perspective facilitates the implementation of a
general framework for adapting the DNN model, and these adapta-
tion techniques can be readily combined for potentially improved
performance.

4. TRAINING ADAPTATION MODELS

The parameters of DNNs are usually trained to maximize the nega-
tive cross entropy

D =
1

N

N∑
t=1

S∑
st=1

p̃(st|xt) log p(st|xt) (7)

where S is the total number of senones, andN is the number of sam-
ples in the training set. With the above objective function, a DNN
can be trained with the method introduced in [1], which consists
of unsupervised pre-training and supervised fine-tuning. The algo-
rithm used in the fine-tuning stage is error back propagation (BP).
The BP procedure updates the parameters by propagating the error
signal backwards from the top layer to bottom as follows:

el =
∂D

∂vl
=
(
W l+1)Tel+1 ◦ (hl)′ (8)

where the operator ◦ denotes an element-wise product. When the
l-th layer is nonlinear with the sigmoid function, we have (hl)′ =
σ′
(
vl
)
= σ

(
vl
)
◦ σ
(
1 − vl

)
. When the layer is linear, such as the

SVD bottleneck layer and the inserted adaptation layer, (hl)′ = 1.
This also indicates the normal BP algorithm can be directly used

to train the DNN adaptation models that employ the generalized lin-
ear regression. Given the adaptation data, we typically train the lin-
ear transforms from an identity matrix and zero bias, keeping the
weights of the original DNN fixed.

4.1. KLD regularized adaptation
A straightforward approach to adapt a DNN is to estimate the SD pa-
rameter with the adaptation data using the regular cross entropy cri-
terion in (1). However, doing so may over-fit the model to the adapta-
tion data, especially when the adaptation set is small and the super-
vision hypotheses are erroneous. A regularized adaptation method
was proposed to address this issue [17]. The idea is that the poste-
rior senone distribution estimated from the adapted model should not
deviate too far from the one estimated with the SI model. By adding
the KullbackLeibler divergence (KLD) as a regularization term to
(1), we get a regularized optimization criterion, which has the same
form as (1) except that the target probability distribution p̃(st|xt) is
substituted by

p̂(st|xt) = (1− ρ)p̃(st|xt) + ρpSI(st|xt) (9)

where ρ is the regularization weight, and pSI(st|xt) is the poste-
rior probability estimated from the SI model. It can be seen that

p̂(st|xt) is a linear interpolation of the distribution estimated from
the SI model and the ground truth alignment of the adaptation data.
This interpolation constraints the adapted model not to deviate far
away from the SI model, when the adaptation data are limited.

4.2. Supervision from click-through data

The accuracy of the hypothesized transcripts in the adaptation set
plays an important role in training the SD model. Manually tran-
scribing the adaptation data for each speaker is infeasible for the
large-scale system deployment. It is desirable to adapt the models in
unsupervised and semi-supervised manners. One popular approach
is to generate better quality hypotheses using various offline decod-
ing techniques, such as the use of more powerful acoustic mod-
els and language models, and multiple system combination [18],
[19], [20], [21]. However, such an approach would be very time-
consuming and expensive when the system serves a huge amount of
users. An alternative approach is to reuse the online recognition re-
sults and select the utterances that are plausibly accurate [22]. Sim-
ple selection based on confidence measure may produce utterances
with high accurate hypotheses, but is not optimal, as it just rein-
forces well-known and less informative patterns to the system, and
limits the diversity of the data set. It has been observed that a good
strategy is to discard utterances with either a very low or a very high
confidence [21].

In this work, we leverage the abundance of implicitly labeled
voice search queries that are logged in search engines. The large-
scale search engines such as Bing or Google can be accessed through
voice interface. The user click for a voice query is a significant
indicator for the satisfaction of the voice search service, in which
the recognition accuracy plays an important part. As a preliminary
study, we simply select the user click-through data for adapting the
DNN models.

5. EXPERIMENTS AND RESULTS

The proposed methods were evaluated on two tasks, short message
dictation (SMD) and voice search (VS). The baseline SI models were
trained with 300 hours VS and SMD data. The input feature to CD-
DNN-HMM system is a 24-dimension mean-normalized log-filter
bank feature with up to second-order derivatives and a context win-
dow of 11 frames, forming a vector of 792-dimension (72 × 11)
input. On top of the input layer there are 5 hidden layers with 2,048
units for each. The output layer has a dimension of 5,976.

The proposed method is compared with the SVD bottleneck
adaptation method. We first convert the full-rank DNN model to
low-rank model by doing SVD on all the matrices except the one
between the input and the first hidden layer, and keep 40% of total
singular values. The numbers of units on the linear layers after SVD
are 208, 184, 176, 200, and 344 accordingly, from bottom to top.
We then retrained the low-rank model and obtained comparable ac-
curacy to the full-rank model. More details of SVD based low-rank
DNN model training can be found in [15].

Table 1: Comparison of the number of parameters for different adap-
tation methods.

Acoustic model # of parameters
Full-rank SI model 30M
Low-rank SI model 7.4M
SVD adaptation 266K
Sigmoid adaptation 20K



Table 1 compares the number of parameters for different meth-
ods. The baseline SI DNN has 30M parameters and the low-rank SI
DNN has 7.4M parameters. The SVD adaptation produces 266K
SD parameters for the introduced regression matrix on SVD lin-
ear layers. In contrast, The sigmoid adaptation methods adapts the
slopes and biases of activation functions on the hidden layers, requir-
ing 20K parameters, which is only 7.5% of parameters for the SVD
adaptation.

5.1. Results on SMD task
The initial experiments were conducted on an unsupervised SMD
task which consists of 9 speakers. The total number of test set words
is 26,433. There is no overlap among the development and testing
data. The DNN models are adapted in an unsupervised way, where
the SI model is used to decode the development data. The regular-
ization weight ρ is set to 0.5, and the WER shown is averaged on 9
speakers.

Table 2 compares the WERs for different adaptation methods
using 5 and 100 utterances of development data, respectively. The
baseline full-rank SI model has 25.21% WER and the low-rank
SI model has 25.12% WER. The SVD bottleneck adaptation and
the sigmoid adaptation obtain 8.8% and 6.3% relative WER reduc-
tion (WERR) with 100 utterances of adaptation data, respectively.
Though the sigmoid adaptation does not perform as well as the SVD
bottleneck adaptation, given its reduced adaptation model size, the
accuracy improvement is considered reasonable. For both methods,
adapting with 5 utterances is slightly better than the result obtained
with the SI model.

Table 2: Comparison of WER for different adaptation methods on
an unsupervised SMD task.

Acoustic model 5 utt. 100 utt.
Full-rank SI model 25.21
Low-rand SI model 25.12
SVD adaptation 24.91 22.73
Sigmoid adaptation 25.04 23.35

5.2. Results on VS task
The second experiment was conducted on a VS task to investigate
the performance of the adaptation techniques using the click-through
data as supervision signal. In this section, we report WERR as a
reference of system performance, as the click-through data are col-
lected from the deployed speech recognition service. To apprehend
the acoustic characteristics of the click-through data, we first pro-
filed a set of VS queries collected during a certain period of service,
as shown in Table 3. It is observed that around 1/3 of VS queries
are followed by the click actions. The user click to a voice query
acts as a significant indicator for the recognition correctness, as the
click-through data remarkably decrease the WER by 60.5% relative.
Moreover, the click-though data feature a higher confidence score
and more number of words per utterance than the ordinary data in
average.

Table 3: Profile of the user click-through data.

Utts WERR Conf. # words Speech SNR
(%) (%) score per utt. length (s) (dB)

All — — 0.724 3.99 1.49 16.65
Clicked 34.16 60.5 0.789 4.23 1.54 17.34

The evaluation was conducted on data from 30 speakers. Each
speaker uses 100 utterances as adaptation data. In the semi-
supervised setup, the utterances associated with the clicked queries
are selected for adaptation, and the online recognition results are
used as supervision hypotheses. In the unsupervised setup, the de-
velop data are randomly chosen. There is no overlap among the
development and testing data.

Table 4 compares the WERR for different adaptation methods
in unsupervised and semi-supervised setups, respectively. We can
see that the use of click-through data contributes significant gains
to the recognition performance. In particular, adapting using the
click-through data provides 15.08% and 11.35% WERR on the SVD
bottleneck adaptation and the sigmoid adaptation, respectively, com-
pared with 8.17% and 6.04% WERR for the standard unsupervised
adaptation.

Table 4: Comparison of WERR (%) for different adaptation methods
on a VS task.

Unsuper. Semi-super.
click-through

SVD adaptation 8.2 15.1
Sigmoid adaptation 6.0 11.4

6. CONCLUSION

In this paper we presented a low-footprint DNN adaptation tech-
nique that adapts the DNN model through node activation functions.
This technique requires only a small amount of parameters for each
speaker, two times of the total number of hidden units. We demon-
strated that this adaptation technique falls in the category of general-
ized linear regression. The sigmoid adaption reduces the WER by 6-
11% relative over the SI model in unsupervised and semi-supervised
setups. It performs a little worse than the SVD bottleneck adapta-
tion, which can been deemed as a trade-off between the accuracy
of the models and the amount of model parameters. The sigmoid
adaptation requires 20k parameters, only 7.5% of parameters for the
SVD adaptation. The small size of the SD model makes it appeal-
ing in deploying large-scale speech recognition service for possible
millions of users.

Our preliminary investigation showed that the semi-supervised
adaptation using click-through data outperformed the conventional
unsupervised adaptation. In the future, we plan to explore more
complicated methods to process the click-through data for the pur-
pose of the DNN training and adaptation. The click-through data
are still noisy. Often, the recognized query that partially matches
the speech input triggers user clicks, because it retrieves the search
results relevant to the user’s intent. Sometimes, they are just random
clicks. It is desirable to incorporate a confidence classifier to refine
the click-through data. Moreover, selecting the adaptation data at a
segment or frame level would be beneficial.
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