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ABSTRACT

While ensemble models have proven useful for sequence
learning tasks there is relatively fewer work that provide
insights into what makes them powerful. In this paper, we in-
vestigate the empirical behavior of the ensemble approaches
on sequence modeling, specifically for the semantic tagging
task. We explore this by comparing the performance of com-
monly used and easy to implement ensemble methods such as
majority voting, linear combination and stacking to a learning
based and rather complex ensemble method. Next, we ask
the question: when models of different learning methods such
as predictive and representation learning (e.g., deep learning)
are aggregated, do we get performance gains over the individ-
ual baseline models. We explore these questions on a range
of datasets on syntactic and semantic tagging tasks such as
slot filling. Our findings show that a ranking based ensemble
model outperforms all other well-known ensemble models.

Index Terms— ensemble learning, conditional random
fields, slot tagging, spoken language understanding

1. INTRODUCTION

Ensemble learning typically refers to combining a collection
of diverse and accurate models into a single one, which is
more powerful than its base models. While ensemble learning
has been successfully employed to improve sequence learn-
ing models for many speech and language processing tasks,
less attention has been paid to laying out the characteristics of
a reasonably good performing ensemble model for sequence
tagging. In this paper, we provide insights into the complex-
ity of the ensemble learning methods that relatively few pa-
pers have investigated for sequence learning tasks, but can
affect their performance. Various research has shown that en-
semble approaches based on scoring [1], linear combination
[2] and stacking [3, 4] perform well over individual models.
On the other hand, a recent study in information retrieval [5]
has shown superior performance using an arbitrary structure
Conditional Random Fields (CRF) method (which is different
than a linear-chain CRF [6]) to aggregate the predicted rank-
ings of the base models. In this paper, we investigate whether
a more complex and smart ensemble learning method such as
the one in [5] is more beneficial than commonly used easy
to implement and simpler methods. Because [5]’s approach
is not specifically designed for sequence learning tasks, we

present a new approach to tailor it for sequence models. In
experiments we show up to 2% relative improvement in F-
score in semantic tagging and up to 1% in syntactic tagging
compared to the best performing voting, scoring and stacking
baseline embedding models.

Among several popular ensemble methods are “bagged”
ensembles [7], boosting [8, 9], random forests [10], etc. How-
ever, a broader term of multiple classifier systems (referred as
ensemble learning in NLP research), covers multiple hypoth-
esis that are not induced by the same base learner. The ma-
jority voting, linear combination and stacking are examples
of such ensemble approaches. In this paper, we focus only on
the latter ensembles and use a variety of learning algorithms
to build the base models. We first summarize the earlier CRF
based ensemble method and provide details of our approach
for tailoring it for sequence tagging. In the experiments, we
empirically investigate the ensemble models from different
aspects and finally draw conclusions.

2. SUPERVISED SEQUENCE LEARNING

Research on sequence learning can be categorized into two:
the predictive and representation learning. It is nearly stan-
dard to stage sequence learning tasks of NLP as a predictive
learning (PL) problem, where we are interested in predicting
some aspect of a given observed data. We model the condi-
tional distribution p(t|w) of a tag sequence t given the input
word sequence w. On the other hand, representation learning
(RL) (also known as feature learning) is based on single to
multiple levels of representation of the observed data to ex-
tract useful information when later building classifiers or se-
quence learners [11]. Deep learning is the most common RL
method, which is formed by the composition of multiple non-
linear transformations of the data, with the goal of yielding
more abstract - and more useful - representations [11, 12].

Evidence shows that the RL methods are consistently
better than the PL counterparts on several sequence learning
tasks including syntactic POS tagging, NER recognition task,
chunking [13], semantic parsing [14], slot filling [15, 16], etc.
However, a recent benchmark for comparing the strengths of
PL and RL methods have shown that RL methods, such as
deep learning, is effective with low dimensional continuous
features, whereas not as much as the PL counterparts with
high dimensional discrete features [17]. In this work, we



are asking: would aggregating the predictions from PL and
RL-based base sequence models with an ensemble approach
perform even better ? We start with two different predictive
learning methods to train the base models:

(1) CRF++: A linear chain CRF that captures the linear
relation between input and output sequences and uses quasi
Newton Methods for optimization [6, 18].

(2) CRFSGD: A linear chain CRF that uses stochas-
tic gradient descent, an on-line learning algorithm [19] and
known for its fast convergence [20]. We use L2 regularizer,
R(θ)=λ2 ||θ||

2
2, which can be numerically optimized.

We also use two different neural network based represen-
tation learning methods:

(3) CNF: Conditional Neural Fields extends linear chain
CRF’s by a single layer of hidden units between input and out-
put layers to model the non-linear relationship between them
as well as learn a representation from observed data [21]. It
was shown that the CNF’s outperform CRF methods on hand-
writing recognition and gene sequence learning tasks.

(4) RNNSEQ: Recurrent Neural Network (RNN) for se-
quence learning represents utterances as observed input node
sequences connected to multiple layers of hidden nodes, a
fully connected set of recurrent connections amongst the hid-
den nodes, and a set of output nodes, which are the target
labels. [16] shows that RNNSEQ significantly improves the
performance over linear CRFs in semantic slot filling task.

3. ENSEMBLE LEARNING APPROACHES

Ensemble models combine a collection of baseline models
into a single one. Here, we provide background on most com-
mon ensemble methods used in the experiments.

Scoring Based Ensembles: The voting schema is the
most commonly used scoring method to combine a collection
of diverse and accurate models into a more powerful one. It
assigns scores to candidate sequences produced by base mod-
els based on the number of votes it receives from each model.
Linear combination is another commonly used scoring based
approach, where K base model predictions are combined as
features into a secondary regression or log-linear model.

Stacking Based Ensembles: They lie somewhere be-
tween scoring and learning algorithms [22]. Typically, the
estimations from base models at level-0 are augmented as
the base features of a level-1 model, which is considered the
ensemble model. Level-1 ensemble model is another learner,
which learns the errors of the base learners and corrects them.

Learning Based Ensembles: Because the majority pref-
erence may often be wrong, aggregation methods that aim to
satisfy the majority [1] may lead to suboptimal results. In a re-
cent work, [5] presents a supervised arbitrary structured CRF
based ensemble approach that learns to aggregate the rank-
ings of documents obtained from different search engines and
show superior performance over other ensemble models. We
adapt the CRF-based ensemble method for our task below.

s(i) →“time flies like an arrow”
↓ ↓ ↓ ↓ ↓

Truth t(i)→ NN VBZ IN DT NN p
(i)
n Accuracy

M(1)

t̂1 NN VBZ IN DT NN 0.98 1.00
t̂2 NN NN IN DT NN 0.87 0.80
t̂3 NN JJ IN DT NN 0.65 0.80

M(2)

t̂1 NN VBZ IN DT NN 0.98 1.00
t̂2 NN NN IN DT NN 0.75 0.80
t̂4 NN NN VBZ DT NN 0.46 0.60

Table 1. N-best tag sequences of sentence s(i) obtained from each
model M(k). p(i)

n is the posterior probability of the nth sequence
produced by each model. Accuracy shows how similar is the gener-
ated tag sequence t̂n to the truth t(i).

4. CRF BASED ENSEMBLE METHOD

Preference aggregation is the task of learning to aggregate the
rankings of each document returned by different search en-
gines based on a user query to generate a more comprehen-
sive ranking result [15]. The supervised CRF-based prefer-
ence aggregation method (CRF-ESB) [5] is designed for this
task. On top of the document ranks, it uses categorical valued
document-query relevance labels from annotators as supervi-
sion at training time. Similarly, our task is to rank the n-best
sequences produced by base models, so we can pose our en-
semble model as a posterior aggregation task similar to CRF-
ESB. But, we have the N-best tag sequence posteriors instead
of rankings, and do not have the sequence relevance labels.
We present below our method for tailoring the CRF-ESB for
sequence learning task. We map the posteriors into rankings
and obtain the accuracy of the n-best sequences, which are
used as the relevance labels of the N-best tag sequences.

Data: Let D={R(i),y(i)}|D|
i=1 represent |D| sentences in

dev. data. Below we explain how we construct D using POS
task as shown in Table 1:

The t(i) is the ground truth tag sequence of the ith sen-
tence s(i) in dev. data. Using each base model M (k), we
decode N-best (n=1. . .N) tag sequences t̂

(i)
n of each sen-

tence and obtain sentence level posteriors p(i)n (t̂
(i)
n |s(i), k),

later to construct N × K score matrix P(i), where each cell
P(i)(n, k)=pn(t̂

(i)
n |s(i), k) is the nth sequence tag posterior

from kth base model. (A combination of the N-best sequences
from base models reveals more sequences than N, but we only
take the top N total of sequences). The rank matrix R(i) is
the ranked order of N-best decoded sequences from each
model. Thus, we derive the ranking of each generated se-
quence R(i)(n, k) directly from score matrix by sorting the
scores {P(i)(n, k)}n=1...N of each base model that generated
N sequences and map to a rank. Because not all the mod-
els generate the same N-best tag-sequences, we set posterior
scores P(i)(n, k)=0, so as rank-scores R(i)(n, k)=0, when
model k does not predict a particular tag-sequence.

The y(i) in D are the relevance values characterizing how



relevant the generated tag sequence is to the ground truth.
Similar to categorical valued document-query relevance la-
bels in [5], we construct relevance labels y

(i)
n for each nth

predicted sequence as follows:

y(i)
n =


2 if Acc(t(i), t̂(i)n ) = 1.0

1 if Acc(t(i), t̂(i)n ) > Ā

0 otherwise.
(1)

To set the relevance values to predicted tag sequences, we
use accuracy (Acc) which is taken as the ratio of the correctly
predicted tags to all tags in sequence (see Table 1). Specifi-
cally, a relevance value of ’2’ indicates that the predicted tag
sequence t̂

(i)
n matches the true tag sequence t(i), whereas a

value of ’1’ indicates that for some tokens in the sequence,
the predicted tags do not match the true tags. A threshold Ā
sets the confidence of accepting a predicted tag sequence, and
in the experiments we learn its value by grid search.

CRF Ensemble Learning Method: Our goal is to use
pairwise preferences from training examples for predicting a
ranking for all possible sequences for a new test example.
Now that we converted the sequence posteriors into prefer-
ence rank matrices that the CRF-ESB can use as training data
D={R(i),y(i)}|D|

i=1, we are ready to learn a mapping from the
constructed rank matrix R(i) to the acceptance values y(i).
To do that, the CRF-ESB defines a conditional distribution
p(y|R) through an energy E(y,R;β):

p(y|R) = 1/Z(R) exp (−E(y,R;β)) (2)

and optimizes it for the target metric between predicted ranks
ŷ
(i)
n and the truth y

(i)
n . The partition functionZ(R) sums over

Mk! valid rankings of y. We try to learn the model parameters
β, that minimize the average training loss 1

|D|
∑|D|
i L(yi,ŷi)1.

One of the characteristics of the CRF-ESB method is to con-
sider disagreements between the ŷ

(i)
n and y

(i)
n . Thus, we de-

rive unary ϕk(j) and pairwise potentials φk(j, l) from the
rank matrix and use these potentials to define a smooth energy
function over the rankings. The unary potential for a sequence
j is defined as, ϕk(j) = I[R(i)(j, k) = 0], where I[·] is in-
dicator function that is turned on when the potential is active
only when sequence j is not ranked by the model k. Given the
N×K ranking matrix R, we convert it into K N×N pairwise
potentials φk(j, l), to emphasize the importance of the rela-
tive position of each candidate sequence. We use the log-rank
difference function to define pairwise potentials, which was
identified as the most effective function in [5]:

φk(j, l) = I[R(i)(j, k) < R(i)(l, k)] · LRk(j, l) (3)

φk(j, l) provides the pairwise potential value between se-
quence j and l using the kth base model, where log-ratio
LRk(j, l) is defined as:

LRk(j, l) =
log(R(i)(l, k))− log(R(i)(j, k))

log(max(R(i)(l, k),R(i)(j, k)))
(4)

1Please refer to the [5] for details of the learning and inference methods.

Learning Methods POS NER SLU

PL

1. CRF++ 94.70 79.58 85.07
2. CRFSGD 94.67 81.43 87.74

R
L 3. CNF 95.06 78.78 88.05

4. RNNSEQ 95.17 81.79 85.72

C
R

F
E

ns
em

bl
e

5. CRF++, CRFSGD, CNF 95.75 81.95 87.67
6. CRF++, CRFSGD, RNNSEQ 95.95 81.98 86.12
7. CRFSGD, CNF, RNNSEQ 95.98 82.12 87.34
8. CRF++, CNF, RNNSEQ 96.01 82.03 86.89
9. All PL {CRF++, CRFSGD} 94.99 81.79 86.72

10. All RL {CNF, RNNSEQ} 95.97 81.50 87.79
11. All Base Models Combined 96.45 82.81 88.41

Table 2. The F-scores for the POS, NER and SLU models.

Non-zero entries in φk(j, l) represent the strength of the pair-
wise preference {t̂j � t̂l} expressed by model M (k).

The CRB-ESB has an arbitrary structure and has a struc-
ture as Preference Networks [23], which is different than the
linear-chain CRF models since it is not used for sequence tag-
ging . The main idea behind CRF-ESB approach is that the
pairwise preferences and the rankings translate to pairwise
potentials in a CRF model. The algorithm evaluates the com-
patibility of any ranking R(i)(j, k) by comparing the order
induced by the ranking with the relevance values y(i).

5. EXPERIMENTS AND DISCUSSION

We focus on three sequence learning tasks: syntactic POS
tagging, semantic NER tagging and slot filling task for spo-
ken language understanding (SLU). For POS tagging, we use
the Wall Steet Journal (WSJ) section of Penn Treebank [24],
sections 00-18 for training and dev. data and rest for testing.
For NER we use the CoNLL-03 Shared Task [25] dataset,
splitting training data into train and dev. sets, and ’testa’ for
testing. For SLU, we use a dataset of utterances from real-
use scenarios of a spoken dialog system. The utterances are
from domains of audiovisual media, including movies, music,
games, tv shows. The user is expected to interact by voice
with a spoken dialog system to perform a variety of tasks in
relation to such media, including browsing, searching, etc.

The NER corpus has four output tags (person (PER),
organization (ORG), location (LOC), and miscellaneous
(MISC; broadly including events, artworks and nationali-
ties)), whereas POS data has 45 part-of-speech tags. The
media dataset has 26 semantic tags including movie-genre,
release-date, description, actor, game-title, etc. Because we
use the IOB (in-out-begin) format, any token with no tags
gets an ’O’ tag.

All methods in section 2 that we use to build our base
models have publicly available code (see References for
link to their code), except for the RNNSEQ, which we re-
implemented based on [16]. For each model, we also im-
plemented the forward-backward schema just to obtain the



NNPS VBG RP JJ VBN RBS IN VBD
� RL 49.0% 20.0% 21.0% 13.4% 8.6% 6.6% 5.1% 3.9%
� PL 51.5% 19.8% 15.4% 8.8% 7.9% 7.2% 6.6% 4.2%
� ESB 44.0% 17.6% 12.9% 7.9% 6.9% 2.6% 5.7% 3.8%

Table 3. Prediction errors of three models, � RL: Representation
Learning using RNNSEQ,� PL: Predictive Learning using CRF++,
� ESB: CRF Ensemble model aggregating RL and PL methods
(CRF-ESB). A significant % decrease in error (per tag) based on
paired t-test (p<0.01) is bolded.

N-best tag sequence posteriors given a sentence. Each base
model is trained using only the n-gram features with 5-gram
window centered on the current position. Because the RL
methods learn hidden (latent) features from observed data,
they have more features than the PL methods. The RNNSEQ
uses back-propagation, CRFSGD uses stochastic gradient
descent, whereas CRF++ and CNF use L-BFGS for opti-
mization. We compare four types of ensemble methods:
majority voting, stacking, linear combination which use lin-
ear regression and CRF-ESB ensemble learner which use
gradient based procedure for optimization.

Experiment 1: Predictive or Representation or Both?
Our first goal is to explore the performance gain from the
CRF-ESB model for the three sequence learning tasks. Ta-
ble 2 shows the results of each base and several CRF-ESB
models on POS, NER and SLU tasks.

As expected, in all tasks, we observe larger gains with the
ensemble models when all the base models are aggregated
(#11). Each ensemble model from #5 through #8 exclude one
of the base models; so only three base models are aggregated
at training time. Although there is a small difference between
their F-scores, when the RNNSEQ is removed (#5), we ob-
serve the least performance in POS and NER. Same applies to
SLU task that the ensemble without CNF (#6) yields the least
performance. It suggests that RNNSEQ and CNF contribute
most to the performance, considering RNNSEQ is the best
performing base model (#4) for POS and NER and CNF is
the best performing base model for SLU (#3). Combining all
PL (#9) and all RL methods (#10) also does not yield a signif-
icant gain over base models even though the best base mod-
els are from RL. Albeit this fact, it is interesting that when
all the models are combined in #11 we observe a significant
improvement over base models (using paired t-test, p<0.01).
This suggests that with the aggregation of each base model we
learn a different aspect of the data corresponding to different
tags. But, which aspects is CRF-ESB learning better ?

We investigate this fact on the POS task. We take the
most frequent POS tags and select the most confusable ones
to compare the CRF-ESB model results (#11) against the
best PL (#1) and the best RL (#4) base models from Table
2. Note that the ESB (CRF-ESB) model aggregates all four
models, whereas PL and RL are only the results from single
base model. Although the CRF-ESB model does not directly

Task MV LC STK CRF-ESB Rel. Imp.
POS 95.30 95.23

::::
95.34 96.45 +1.2%

NER
::::
81.99 81.94 81.32 82.81 +1.0%

SLU 86.45 86.32
::::
87.04 88.41 +1.6%

Table 4. The F-scores of CRF-based Ensemble Model (CRF-
ESB), Majority Voting (MV), Linear Combination (LC), and Stack-
ing (STK) on POS, NER and SLU tasks. Relative Improvement
(Rel.Imp) is the % increase in F-score by CRF-ESB over the best
performing scoring and stacking methods (wavy

:::::::
underline)

optimize the token-tag level errors but rather optimizes the
ranked order of the N-best sequences, its inference predicts
the best tag sequence, which we compare against the best tag
sequences from base models.

We show the results in Table 3. Not surprisingly, we see
the same performance gain (error reduction) per tag that we
saw in the overall evaluations in Table 2. The most significant
error reductions are observed for the plural nouns (NNPS),
adverbs (JJ) and adjectives (RBS). Earlier study shows that
the errors between noun phrases (NNP/NN/NNPS/NNS) can
be largely attributed to difficulties with unknown words [26].
One conclusion we can derive is that the ensemble model can
recover unknown word errors. Another common class of er-
rors of POS tagging models is the RB/RBS/RP/IN ambiguity
of words like up, out, on, which require semantic intuition.
It appears that the ensemble model learns to make accurate
linguistic distinction between ambiguous words.

Experiment 2: Learn, Stack, or Vote for Ensembles?
So far, we have provided insights into the effectiveness of a
learning based ensemble method. We now provide bench-
marks for comparing the performance of the majority voting
(MV) schema, stacking (STK) and linear combination (LC)
across POS, NER and SLU tasks.

The results as shown in Table 4 confirm our hypothesis
that the majority voting as well as linear combination provide
suboptimal results, and in some cases does not even improve
over base models (e.g., POS, SLU). Although slightly better
than voting models, stacking falls short against the CRF-ESB.
On the other hand, the CRF-ESB model can pick the correct
answer from the crowd even when the majority is incorrect.
This is due to the fact that CRF-ESB algorithm learns patterns
of the pair-wise rankings between each model, favoring the
top ranked ones when base models don’t agree.

6. CONCLUSION

We investigate ensemble learning for NLP sequence tagging
tasks by aggregating different base sequence tagging models.
The ensemble models select the most confident predictions
of each base model and infer the most likely sequence outper-
forming the best base models. We empirically analyze the im-
pact of using different learning methods as base taggers. For
future work, we will inject the diversity of the base models as
an additional feature during learning the ensemble models.
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