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Abstract—Applying code changes to software systems and 

testing these code changes can be a complex task that involves 

many different types of software testing strategies, e.g. system and 

integration tests. However, not all test failures reported during 

code integration are hinting towards code defects. Testing large 

systems such as the Microsoft Windows operating system requires 

complex test infrastructures, which may lead to test failures 

caused by faulty tests and test infrastructure issues. Such false test 

alarms are particular annoying as they raise engineer attention 

and require manual inspection without providing any benefit. The 

goal of this work is to use empirical data to minimize the number 

of false test alarms reported during system and integration testing. 

To achieve this goal, we use association rule learning to identify 

patterns among failing test steps that are typically for false test 

alarms and can be used to automatically classify them. A 

successful classification of false test alarms is particularly valuable 

for product teams as manual test failure inspection is an expensive 

and time-consuming process that not only costs engineering time 

and money but also slows down product development. We 

evaluating our approach on system and integration tests executed 

during Windows 8.1 and Microsoft Dynamics AX development. 

Performing more than 10,000 classifications for each product, our 

model shows a mean precision between 0.85 and 0.90 predicting 

between 34% and 48% of all false test alarms.  

Keywords—software testing; association rules; false test alarms; 

classification model; test improvement 

I. INTRODUCTION  

Every day engineers change software systems applying code 
changes to add new features, improve the product or to fix 
known issues. However, code changes increase the risk of 
introducing new issues or incompatibilities. To ensure that code 
changes do not lower product quality, developers typically test 
their code changes before merging them into the current code 
base. Testing all code changes applied to a code base for large 
software systems may be in itself a time-consuming task. While 
test cases on unit level might run fast, higher-level tests, such as 
system and integration tests, usually take more time to complete. 
Thus, the more changes are applied the more tests need to be 
executed and the more time each code change spends in 
verification before beig integrated into the final product. At the 
same time, competition between software manufacturers to gain 
or defend market share increases the pressure on development 

                                                           
1  False test alarms are valuable to identify problems in verification 

processes that should be resolved. However, false test alarms should not 

slow down code integration processes.  

teams to increase efficiency while maintaining or even 
increasing product quality. This situation is not new and there 
exist many studies and reports that investigate a wide variety of 
code and process metrics to estimate code quality before release 
[1, 2, 3, 4, 5, 6]. However, the increasing pressure on 
development teams to deliver features faster also impacts 
software testing processes. Testing processes tend to reduce 
code integration speed (code velocity) and slow down product 
development. Therefore, optimizing test processes is likely to 
positively affect speed and productivity of overall software 
development processes. 

There exist a wide range of test optimization research fields 
that address various aspects of testing processes, e.g. test 
prioritization [7, 8], test selection [9, 10], test generation [11, 
12], test effectiveness measurements [13, 14, 15], etc. However, 
many of these techniques concentrate on unit testing, which 
mainly focuses on functional correctness. In this paper, we 
tackle a severe problem that mainly appears in the area of system 
and integration testing—tests that typically check for constraints 
such compatibility, performance, privacy, etc. In theory, test 
cases either pass or fail and if they fail, they hint to code defects. 
In practice, running system and integrations tests for systems, 
e.g. Microsoft Windows or the Microsoft Dynamics business 
software suite, require complex test setups and infrastructures, 
which come with their own issues. Thus, system and integration 
tests may also fail due to test and infrastructure issues, e.g. 
broken hardware prevents a test from retrieving a remote file. 
We call such test failures false test alarms. As any test failure, 
false test alarms are reported to the engineers requiring manual 
investigation lowering development speed. However, false test 
alarms provide no insights into product quality but rather harm 
the development process. Therefore, it is desirable to minimize 
or eliminate false test alarms, or at least preventing them to 
disrupt the development process1. At the same time, test failures 
due to code defects must remain enabled and may not be ignored 
as these test failures may prevent code defects to be shipped to 
the customer.  

The goal of this work is to develop a precise false test alarm 
classification model, which identifies false test alarms 
automatically. Our model analyzes reported and manually 
classified false test alarms. Using association rule mining, we 
detect frequently occurring patterns between failures of 



individual test steps that are unique for false test alarms. These 
mined association rules are then used to automatically classify 
newly reported test failures as false test alarms. We evaluated 
our approach on a large set of false test alarms reported by 
system and integration test cases during development periods of 
Windows and Dynamics.  

We make the following contributions in this paper: 

 We use association rule mining to analyze tens of 
millions of individual test steps to detect patterns 
between these test steps that are unique to false test 
alarms.  

 Using these test behavior patterns, we develop a fully 
automatic and continuously learning model to pre-
classify test case failures as false test alarms. 

 We evaluate our classification model on more than 
20,000 test case results executed during development 
periods of Windows and Dynamics. 

 We further estimate the impact of false test alarms on 
code velocity that could have been prevented using the 
proposed test result classification model.  

 We briefly discuss how to apply such a model in a live 
development process scenario. 

The paper is structured as follows: In Section II and Section 
III we provide background on related work and a short 
introduction into the analyzed testing processes. In Section IV 
we discuss how we mined and analyzed test results and false test 
alarms using association rule mining, before presenting our 
experimental setup in Section V. In Section VI we present our 
evaluation results and discuss the impact of this work on the 
development processes in Section VII. We close with threats to 
validity in Section VIII and a conclude in Section IX.  

II. RELATED WORK 

Classifying test results is an active research field, but most 
of the related studies focused on failure classification, clustering 
test failures with respect to failure causes, test repair, and fault 
localization. To the best of our knowledge, only the work 
presented by Hao et al. [16] and Herzig and Nagappan [15] 
classify test failures related to test and infrastructure issues 
rather than code defects. 

A. Classifying Program Failures And Behavior 

A wide range of studies classifying the type of program 
behavior and in particular program failures exists. In many 
cases, test failures are described by bug reports. Using bug 
reports to classifying program failures is an active research field. 
Guo et al. [17] presented an approach to predict which program 
failures get fixed. Similar to the results presented by Bettenburg 
et al. [18], their results suggest that the reputation of bug 
reporters as well as the details of test failure description 
determines the likelihood of bugs to get fixed. Zanetti et al. [19] 
used social networks to build a successful classification model 
to identify bug reports that refer to actual code defects and that 
add no duplicated bug description. Antoniol et al. [20] used text 
mining to separate bug reports from feature requests. More 
generally, approaches as presented by Sherwood et al. [21] and 

Bowring et al. [22] automatically classify program behavior 
using execution data. In contrast, the work presented in this 
paper, uses test step failure patterns to automatically classify 
whether test failures report code defects or are due to test and 
infrastructure issues.  

B. Fault Localization  

Studies on fault localization tackle the problem of 
identifying code parts that are likely to cause a test failure. 
Although related, studies on fault localization deal with a more 
complex problem of automatic fault cause analysis to enhance 
and speedup debugging sessions. Hildebrandt and Zeller [23] 
showed that a binary search on program input causing faulty 
program behavior can be used to minimize program input 
reproducing the error and thus to narrow down code areas 
containing the corresponding code bug. Jones and Harrold [24] 
compared different fault localization techniques and showed that 
automatic fault localization techniques can be very precise. 
Later, Liu and Han [25] used proposed a new type of fault 
proximity not only making fault localization more precise but 
that can also be used to cluster failing traces with respect to the 
fault cause. Lately, Zhou et al. [26] mined bug reports extracting 
additional information hinting to possible bug locations.  

C. Test Repair 

In cases in which test failures are not due to code defects but 
rather to test issues, researchers proposed techniques to 
automatically repair tests—a scenario that occurs in practice 
[27]. Instead of simply reordering test executions to repair 
partially broken test cases [28], later studies advanced and tried 
to actually fix the suspected broken test case automatically [29, 
30, 31] also for GUI based test cases [32, 33]. The work 
presented in this paper does not try to automatically fix test 
issues nor to prevent their execution. Instead, our goal is to 
classify false test alarms as such, to reduce manual inspection 
effort, and to speed up the testing and development processes. 

D. Failure Clustering  

Similar to Liu and Han [25], there exist more approaches to 
classify software failures. The goal of these studies is to group 
test or program failures based on their suspected cause. 
Although closely related to this work, these approachs do not 
specifically target false test alarms but rather group failures 
often categorizing them by similarity but often without 
interpreting the relevance of the failures. Dickson et al. [34] used 
machine learning over program executions to identify faulty 
program executions. Later, Podgurski et al. [35] used clustering 
techniques to identify faulty program executions that are likely 
to be caused by the same code defect. DiGiuseppe and Jones 
used “latent-semantic-analysis techniques to categorize each 
failure by the semantic concepts that are expressed in the 
executed source code” [36] while Francis et al. [37] proposed 
tree-based classification techniques to cluster program failures 
with respect to their underlying error. 

E. Classifying Test Results 

Related work specifically targeting test results with the goal 
of identifying test results to filter relevant test failures is rare. 
Triou et al. [38] filed a patent to collect, compare, and cross-
reference test failure results. Hao et al. [16] and Herzig and 
Nagappan [15] reported similar studies in which the authors 



classified test results to identify test failures due to test issues. 
However, the study by Hao et al. [16] is based on unit test level 
and uses test complexity and program execution measurements 
(e.g. code coverage) to classify test results. In comparison, the 
work presented in this paper does not use any static nor dynamic 
test measurements. Collecting such information for test 
executions is rather expensive in a large evolving system and 
slows down test speed. The presented classification model is 
solely based on already existing test step results captured during 
common test executions without the need to slow down or 
enhance existing test environments in any way. Closest to this 
approach, is the study by Herzig and Nagappan [15] who 
identified false test alarms in the Microsoft Windows 
development process and showed to show the impact of 
organizational structure on test reliability and effectiveness. In 

their study, false tests alarms are used as reliability measures for 
system and integration tests. In this paper, we re-use the 
approach presented by Herzig and Nagappan [15] to identify 
false test alarms. 

III. TEST PROCESS 

In this study, we investigate system and integration test runs 
continuously executed during the development of Microsoft 
Windows and Microsoft Dynamics. Each system and integration 
test case checks for one or multiple system constraints such as 
compatibility, performance, privacy, functional correctness etc. 
Where system constraints exist on products, additional test 
infrastructure is required to ensure all code meets those 
constraints. Since product constraints are system properties, they 
often need to be verified at system level. For example, Windows 
has certain backward compatibility requirements, both in terms 
of hardware and in terms of supported applications. To verify 
these constraints requires the emulation of millions of different 
configurations and execution setups. For the sake of brevity, we 
provide a high-level description of the analyzed Microsoft 
testing processes to make this paper self-contained. For details, 
we refer to Bird and Zimmermann [39] and Herzig and 
Nagappan [15].  

The development process to develop and maintain large 
software systems typically involves multiple code branches—a 
forked copy of the code base that allows parallel modifications 
without interference (for more details we refer to Bird and 
Zimmermann [39] and Murphy et al. [40]). Typically, code 
changes are applied in development branches and once ready 
integrated into the trunk branch using integration branches. Each 
merge between branches is guarded by system and integration 
test cases ensuring basic functionality and constraints such as 
compatibility and performance compliances (see Fig. 1). Thus, 
each code change has to pass multiple layers of system and 
integration tests while code changes from different development 
branches are merged together. Once a code change reaches the 
trunk branch it is considered as part of the next release.  

Each system and integration test case can be considered a 
test scenario executing a sequence of test steps to complete the 
scenario. To sucessfully complete the scanrio (test case), all test 
steps must pass (see Fig. 2). As a consequence, each failing test 
step causes the corresponding test case to report a test failure. 

A. Test Failures 

A failing test case causes a development process disruption. 
Scheduled code integration requests are canceled and the 
corresponding code branch on which the test failure occurred is 
excluded from code integration processes until the issue is 
resolved. Each failed test case requires manual inspection and 
resolution in order to include the branch code, and its code 
branch sub-tree, into the code integration process again. As a 
consequence, each system and integration test failure not only 
affects the engineers that submitted code changes to the branch 
before the test failure, but all engineers that will have to merge 
their code changes through this code branch in order to integrate 
into the main trunk branch. Please note that a failing test step 
may not cause the test case to terminate immediately. Thus, each 
executed test case may report more than one test step failure 
each of which may relate to a code defect or a false test alarm. 

Build Build Build

Build Build

Branch B1

Branch B2

 

Fig. 1. Code changes have to pass system and integration tests to get 

integrated into lower level branches. Failing tests automatically cancel code 

integrations and require manual inspection and possible bug fixes to allow 

further code integration. 

Test step 1

Test step 2

Test step 3

Test step n

Test case

 
Fig. 2. Each system and integration test case as shown in Fig. 1 executes a 

sequence of test steps all of which are required to pass to pass the overall test 
case. Test failures reported to engineers contain a list of test steps that failed 

during execution. 



Test case failures reported to engineers contain a list of test steps 
that failed to help the engineer to investigate the failure cause 
and to resolve the underlying issue. 

B. False Test Alarms 

Test results presented to engineers are classified as passing 
or failing. However, it is important to further distinguish 
whether a test failures is caused by a code defects or whether the  
test failures must be considered a false test alarms. A test failure 
that is due to any other reason than a code defect is regarded as 
false alarms. In most cases, such false alarms are caused by test 
and infrastructure issues, e.g. a test case requires to fetch an 
input source from a remote server that cannot be reached at the 
time of the test execution. False test alarms are a common issue 
during system and integration tests, for example testing the 
installation of a Windows operating system.  

False test alarms are expensive and harm the verification and 
development process without providing any benefit. Like other 
test failures, false test alarms require expensive manual 
inspection. However, unlike test failures due to code defects, 
investigating false test alarms must be considered as a waste of 
time and resources. The result of the investigation will be that 
the test failure was due to test and infrastructure issues, but 
allows no conclusion about the actual code quality under tests. 
The test suite execution must be repeated, once the test 
infrastructure issue is resolved. Like for any other test failure, 
the code branch is banned from code integrations until the tests 
pass again. This is likely to affect other engineers on the same 
branch as they are also banned from integrating changes into the 
main trunk branch. Thus, false test alarms not only waste the 
time of engineers inspecting the test failure but also slows down 
productivity and code velocity of entire development teams. 

IV. DATA COLLECTION 

The main goal of this work is to build a precise classification 
model to identify false test alarms without requiring expensive 
additional information about test runs, such as dynamic program 
traces or state dumps. 

A. Test Case Features (Independent Variables) 

Instead, we investigate the behavior of individual test steps 
to judge the outcome of the overall test case. The rational is that 
false test alarms show specific patterns or combinations of test 
step failures that rarely occur during normal test executions 
including test failures due to code defects. For each failing test 

case, we collect the following properties of all executed (failing 
and passing) test steps executed: 

 The unique identifier of the test case execution. Each test 
case execution is assigned a unique identifier that can be 
used to reference a specific executed instance of a test 
case. 

 The unique identifier of the test case, typically the test 
case name. However, this identifier does not specify the 
exact execution (see test case execution identifier above). 
A test is typically associated with many executions. 

 The identifier of the executed test step. Each test case is 
a sequence of test steps. Test steps themselves have 
unique names within a test case. The full-qualified test 
step name is a combination of test case name and test step 
name. It allows us to uniquely refer to an individual test 
step and is unique among all test steps names. 

 A simple binary field indicating whether the test step has 
passed or failed. This binary field contains no indication 
on whether the test case step failed due to a code defect 
or a test or infrastructure issue. 

At this point in time, we made no assumption on test failures 
or their possible causes. In particular, we do not make any 
judgment on whether the test case or the individual test step 
failed due to code or test and infrastructure issues. 

B. False Test Alarms (Dependent Variable) 

To identify false test alarms, we trace development activities 
that occurred after a test failure (see Fig. 3) using CODEMINE 
[1]. Test failures referencing bug reports that were fixed by 
applying code changes must be considered test failures due to 
code defects. Test failures that did not lead to a bug report or that 
were assigned to bug reports, which never got fixed, are 
considered false test alarms. The only exception are test failures 
that were not investigated at all—we ignored these instances and 
removed them from our list of observed test failures. The 
mapping strategy was developed in cooperation with the 
Windows and Dynamics product teams. We estimated the 
number of falsely classified test failures to be below 5%.  

C. Test Step Association Rules 

To discover patterns among test step behavior unique to false 
test alarms, we use association rule learning [41] to produce 
rules of the form: {𝑎1, … , 𝑎𝑛}  ⇒  {𝑐} where left hand side of the 
implication (antecedent) represents one or multiple conditions 

Exec fails

False positive 
failure

Mapped to 
bug report?

yes
Bug report 

fixed?
yes

True positive 
failure

Resolved via 
code change?

yes

 no  

Investigated? yes

Undecided

no

 

Fig. 3 Flow chart describing the process to separate test failures reporting code issues from test executions failing due to other reasons than code issues 

(e.g. test and infrastructure issues). 



that need to be satisfied to imply the right hand side 
(consequent). In our case, the set of antecedents 𝑎1, … , 𝑎𝑛 will 
indicate which combination of test step results is expected in 
order to indicate the type of test failure reported by the test case. 
As an example, consider the following rule: 

{𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑋 = 1, 𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑌 = 0, 𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑍 = 1}  ⇒  𝐹𝑇𝐴.

This association rule suggests that a test case execution in 
which test steps 𝑋 and 𝑍 fail but test step 𝑌 passes should be 
considered a false test alarm. Typically, association rule learning 
returns more than a single association rule. Each rule can be 
treated as a separate set of conditions that if satisfied by a test 
case execution indicate how to interpret the corresponding test 
case result. Note that the antecedents of an association rules are 
not sufficient to let the consequence to become true. Association 
rules do not state implications but probabilistic relationships. As 
a consequence, association rules are associated with statistical 
measurements: support and confidence. Translated to our usage 
scenario, support is a value between zero and one and defined as 
the proportion of test case executions for which all antecedents 
were satisfied. A support value of 0.5 would mean that 50% of 
all observed test case executions satisfied all antecedents. In the 
example above this would mean that in 50% of all test case 
executions, test steps 𝑋 and 𝑍 fail while test step 𝑌 passes. The 
confidence in a rule is defined as the relative number of observed 
test case executions for which all antecedents and the 
consequence were satisfied over the number of test case 
executions for which all antecedents were satisfied: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒({𝐴 ⇒  {𝑐}} =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ {𝑐})
, 

where 𝐴  represents a set of antecedent such as {𝑎1, … , 𝑎𝑛} . 
Confidence values range between zero and one. A confidence 
value of 1 indicates that in all cases for which the antecedents 
were satisfied the consequence could always be satisfied as well. 
Note that different association rules might contradict each other. 
It is important to remove contradicting rules from rule sets 
before using them. As result, for a series of observed test case 
executions, we extract a set of association rules expressing 
probabilistic relations between test step results and the overall 
test case failure categorization. Each rule is associated with a 
support and confidence value that allows us to filter rules based 
on their frequency and accuracy. 

V. EXPERIMENTAL SETUP 

A. Learning Association Rules 

To perform association rule learning on a given set of test 
case executions, we used an implementation of the apriori 
algorithm provided by Hahsler et al. [42] in their arules package 
for the statistical framework R [43]. For each given set of 
observations (transactions), we use a stringent selection criteria 
for association rules that we consider as relevant. Association 
rules must be associated with a minimum confidence value of 
0.8 before being considered by our classification model. 
Additionally, we considered only rules that appeared in at least 
3% of all test case failures. This minimum support value is 
derived by measuring the median number of occurrences per test 

case in the overall set of test failure observations and multiplied 
by ten.  

For each set of observations, we split the set of association 
rules into two subsets: one containing rules whose consequences 
indicate false test alarms (𝐹𝑃) and the other subset containing 
rules whose consequences indicate failures due to code defect 
(𝑇𝑃). To remove possible contradicting rules, we only use 𝐹𝑃 
rules whose antecedents (left hand side) does not appear as 
antecedents in the set of 𝑇𝑃 rules. 

B. Predicting and Updating Classification Model 

To simulate realistic scenarios, we use incremental learning 
to classify test case failures as false alarms based on previous 
test case execution observations (see Fig. 4). We start with an 
initial training set containing the first 10% of test case failures 
as they occurred during development (preserving temporal 
order). The idea is to build up a set of association rules as basis 
for any classification attempt. After this initial training phase, 
we proceed with the following steps: 

Step 1: We fetch the next test case failure as it occurred 
during development and decompose the failure into 
individual test step results. 

Step 2: We check if our current pool of association rules 
contains any rule whose left hand side (antecedent) is 
satisfied by the test step results observed during test case 
execution. If any such rule exists, we classify the test case 
failure as false test alarm. If no such rule exist (considering 
the thresholds discussed in Section V.A), we consider the 
test failure to be due to code defects. 

Step 3: We compare the classification result with the actual 
ground truth by tracing development activities that occurred 
after a test failure (see Section IV.B).  
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no Mark as code issue

yes

Mark as false alarm

Add to training pool

Observed 
failed test 
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Did test failure 
caused bug fix?

Did test failure 
caused bug fix?

yes
no

no

yes

True 
positive

False 
positive

True 
negative

False 
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Fig. 4.  Using incremental learning to evaluate false test alarm classification 

model. Evaluation performed on multiple million test case executions. 



Step 4: Depending on the result of this comparison, we mark 
the result either as true positive (we correctly predicted the 
test failure to be a false alarm), false positive (we predicted 
the test failure to be a false alarm but it was due to code 
defects),  false negative (we failed to classified the test 
failure as false test alarm), or true negative (we correctly 
classified the test failure to be due to code defects). See Fig. 
5 for schematic version of confusion matrix. 

Step 5: We use the ground truth as new observation and use 
the updated pool of test case observations to create a new set 
of association rules. 

Naturally, all test case executions that did not fail are treated 
as true negatives. To measure the accuracy of our classification 
model, we report precision and recall values over all predictions 
performed.  

C. Study Subjects 

To evaluate our classification technique, we classified 
integration test cases executed during development periods of 
Windows and Dynamics. For each product, we classified more 
than 10,000 test case failures executing tens of millions of test 
steps. TABLE I. contains details about the development periods 
and products our experiments were conducted on. For Dynamics 
we covered a total development period of approximately 2 years, 
for Windows, active development lasted about 1 year. Overall, 
we performed more than 10,000 predictions per product.  

VI. IDENTIFYING  FALSE TEST ALARMS 

As discussed in Section V, we used incremental learning to 
conduct our experiments.  

A. Precision & Recall 

The overall observed precision for Dynamics lies at 0.85 
while for Windows we achieved an overall precision of 0.9 (see 
TABLE I. ). Thus, the false positive rate—classified false test 
alarms that were due to real code defects—lies under 15%. This 
is important as false positives can have critical impact on 
product quality: test failures that would be falsely suppressed or 

ignored could lead to defects elapsing quality assurance and thus 
directly affect product quality.  

As expected, recall values for our classification models are 
lower. At the end of each development period, the overall 
observed recall value for Dynamics lies at 0.48 and for Windows 
at 0.34. The reason for these low recall values is that there exist 
a lot of false test alarms cause by infrastructure issues that 
occurred only a few times or even only once. Thus, low recall 
was expected and shows that false test alarms are more complex 
than simple infrastructure issues, but rather are serious issues 
that are hard to detect and prevent. Still, reducing the number of 
false test alarm reported by at least 34% is a significant 
improvement. We discuss implication on development 
processes in more detail in Section VII. 

Fig. 6 shows values for cumulative precision and recall 
values over test case failures ordered by time. Values on the x-
axis represent development time excluding the initial training 
phase (see Section V). As shown in Fig. 6, precision and recall 
values are not constant but rather follow a wave curve. In both 
cases, the recall value drops quite dramatically over time. For 
Windows, the cumulative recall value at the end of the one-year 
period drops to its lowest value of 0.34. The same trend can be 
observed for Dynamics for which the recall value recovers after 
a sharp drop in the first half of the development time (one year) 
before it starts declining again. Currently, we suspect that there 
could be a relationship between the decrease (and increase) of 
recall values and the maturity of the code base towards final 
release dates. However, we have no evidence to confirm this 
relationship. Although showing similar behavior, precision 
values are much more stable over time. The curve shape is less 
distinct but still visible. For both products, precision values do 
not drop under 0.8 and remain high throughout the entire 
experiment. This is an important factor as precision is the more 
important value. False positives (precision) threaten the 
usefulness and reliability of the presented approach, while low 
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Fig. 5. Comparing observed and classified test failures in a confusion 

matrix. Used to compute precision and recall values to measure accuracy 
of classification model. 

TABLE I.  OVERALL PRECISION AND RECALL VALUES. 

 Dynamics Windows 

Covered development time ~2 years ~ 1year 

Overall precision 0.85 0.90 

Overall recall 0.48 0.34 
   

 
Fig. 6. Precision and recall values of Windows false test alarm 

classification model over time. X-axis represent test case failures ordered 

by time without initial training phase. 



recall values (false negatives) impact the ability to prevent false 
test alarms. However, the number of false negative 
classifications does not threaten product or process quality as 
these false test failures occurred already (not newly introduced) 
but could not be automatically detected. 

B. Number of Associtation Rules  

Besides precision and recall, we were interested in the 
number of association rules required to achieve the high 
precision as discussed in the previous section. In particular, we 
wanted to know whether the number of association rules is 
rather constant—no new rules must be learned over time—or 
whether constant learning of new rules is required. In the first 
case, we might be able to extract the learned rules into a static, 
and faster, classification model, or whether we need to keep 
learning new appearing rules. For this purpose, we relate the 
number of matching association rules per predicted test case 
failure with the overall number of performed predictions. This 
relative measure represents the number of rules to be learned 
relative to the number of predictions. The result is a value 
between 0 and 1, where 1 represents cases for which each 
prediction instance would require a different association rule to 
be learned. For the case that the number of required association 
rules remains constant over time, we should see a linear 
dropping line, when plotting this value over time. 

Fig. 7 shows this relative association rule count 
measurement over time (predicted test case failures ordered by 
time). Both products show different trends. While Dynamics is 
a nearly constantly dropping function, the number of association 
rules required to achieve the mean precision value over 0.8 for 
this product seems to be limited, thus, few new rules must be 
learned over time. For Dynamics, there exist two time windows 
in which the number of association rules is increasing over time 
(curve constant or increasing). Comparing these two time 
windows with the curve in Fig. 7, we see that the precision and 
recall values for these two windows is also dropping, suggesting 
that new rules must be learned to gain previous precision. 
However, new rules are only adapted over time when these rules 
have proven to be reliable (support and confidence thresholds, 
see Section V.A). For Windows, the curve for the number of 
association rules relative to the number of performed predictions 
is completely different. Here, the curve is increasing in the first 

couple of weeks indicating that a high number of new rules have 
to be learned. Then, after some time, the curve stabilizes at a 
level of roughly 0.65. This means, that for Windows, the set of 
association rules required to maintain a mean precision value of 
0.91 is constantly changing and new rules have to be learned.  

C. Lifetime of associtation rules 

The results shown in Section VI.B suggest that individual 
association rules seem to have a rather short lifetime and change 
quickly to capture new types of test and infrastructure issues, at 
least for Windows. To further investigate this trend of 
association rules being valid for only short periods of time, we 
investigated the duration of individual association rules as 
relative number of occurrence across predictions—that is the 
number of predictions an association rule caused the test case 
failure to be classified as false test alarm. Fig. 8 plots the 
distribution of relative occurrence as a histogram. The x-axis 
represents the relative number of predictions a single association 
rule shows with a confidence value above 0.8 and a support 
value above 3% (see Section V). The y-axis represents the 
number of rules that showed this relative number of occurrences, 
using a square root scaling function for the y-axis.  

From Fig. 8 we can see that most association rules occur 
contribute to less than 1% of all classifications; remember that 
we classified more than 10,000 test case failures per product, 
thus, a rule contributing to 1% of all classifications still 
contributed to at least 100 decisions. Only very few association 
rules contribute to more than the 2.5% of decisions. For 

 

Fig. 7. Number of used association rules relative to the number of 
predictions performed plotted over time. X-axis values represent test case 

failures ordered by time without initial training phase. 

 

Fig. 8. Relative number of rule occurrences per development week: How 
often does a specific rule occurs across the entire development period? A 

value of one means a rule is omnipresent across all development days—

having a minimum confidence value of 0.8. 



Dynamics the most prominent rule contributes to 12.5% of all 
decisions. Similarly, the most prominent rule for Windows 
contributes to 17.5% of decisions. In general, the data shown in 
Fig. 8 supports the observation that association rules have a 
relative short lifetime (as suspected in Section VI.B). 
Consequently, the number of required association rules is high, 
indicating that false test alarms can manifest in many different 
ways, but still be consistent over time. This result supports the 
need for an automated classification system. A high number of 
frequently changing patterns that can point out false tests alarms 
is required. In fact, the actual number of required association 
rules to achieve our presented precision lies well above 100. 
Demanding engineers to check for more than 100 patterns 
whenever a test case fails seems to be unpractical and too time 
consuming, even if the number of rules would remain constant 
or change little over time. 

VII. IMPACT ON DEVELOPMENT PROCESS 

Applying an automated classification model in real 
development scenarios can have severe consequences and 
implications with respect to development processes, engineering 
behavior, and product quality. In this section, we discus some of 
these possible implications and provide some estimations on 
them. However, most of these improvements are hard or even 
impossible to measure. Nevertheless, such implications are 
important to understand the implications of models like the one 
presented in this paper.  

A. Code Velocity 

As discussed in Section III.B, false test alarms directly affect 
development speed. Failing tests cause code branches to be 
banned from code integrations until the test issue is resolved. For 
false test alarms, the time required to inspect the test failure the 
code branch is blocked unnecessary, causing delays for code 
changes going through this code branch. Preventing false test 
alarms to block the integration activity of a code branch or being 
raised to engineers could reduce these unnecessary delays and 
thus improve development speed. To estimate the benefit of our 
false test alarm classification model with respect to code 
velocity, we traced the resolution time of false test alarms for all 
cases that our classification model had classified correctly (true 
positives). Summing these time values represents the amount of 
time code branches were banned from integration activity, 
which might have caused integration delays, but which could 
have prevented using a classification model like the one 
presented in this paper.  

For Dynamics the estimated code velocity gain is roughly 
173 hours, which corresponds to little more than 7 days. 
Normalized over two years of development time, this 
corresponds to an average development speedup of 14 minutes 
per day. The same calculation for Windows results in a total gain 
of 611 hours or 25.5 days. Normalized over a development 
period of 1 year, this corresponds to an average daily code 
velocity gain of roughly 100 minutes per day (1.7 hours per day). 

Please keep in mind that this estimation is a very rough 
estimation and that it assumes that the classification model 
would have the power to suppress classified false test alarms, a 
highly unlikely scenario. Note that our current classification 
model has a low recall value of 0.3, which implies that around 

70% of false test alarms would remain undetected. Thus, the 
potential gain in code velocity could be significant higher. 

B. Impact on Engineers 

The main motivation for this work is to provide help in 
identifying false test alarms, as these test failures require manual 
failure inspection. Raising less false test alarms should help to 
increase the confidence in test results themselves, but also in 
decisions based on test results. Increasing code velocity, as 
discussed in Section VII.A, can reduce the number of merge 
conflicts and thus might further reduce the number of actual test 
failures.  

C. Impact on Product Quality 

Using the proposed classification model would imply test 
process changes. Like any other process change, the 
classification model requires monitoring the implications and 
possible effects on other development processes. The precision 
of our classification model is already high, but still produces a 
small fraction of false positives---test failures due to code 
defects classified as false test alarms---which may cause code 
defects to remain undetected for some time. Although we 
suspect this time to be short. Tests are executed in short time 
intervals or get triggered by code integration requests. However, 
using human supervision and monitoring techniques to ensure 
high development process quality are recommended, not only 
for this classification model, but for all changes to development 
processes.  

D. How to Use Such a Classifcation Model 

The model is an excellent tool to help engineers to prioritize 
test failures and to provide additional input for engineers to 
confirm the classification models decisions. Such a scenario has 
two important benefits. First, it would reduce the risk of code 
defects wrongly classified as false alarms to a minimum. Instead 
of suppressing the test failure, the failure still reaches the 
engineer but warns her about the possibility of being a false test 
alarm. It would allow human supervision of the classification 
system and may include a feedback loop that allows engineers 
to override classification results which will then help to train the 
classification model. At the same time, such an interactive 
model might help engineers to prioritize their test failure 
inspection. Test failures classified as false test alarms could be 
seen as low severity failures and ranked by their corresponding 
support and confidence values, similar to the eRose system 
suggested and implemented by Zimmermann et al. [44].   

Together with the product teams within Microsoft, we 
believe that tackling the issue of false test alarms will strengthen 
confidence into testing infrastructure even if some test cases 
occasionally report false test alarms. 

VIII. THREATS TO VALIDITY 

A. Generalizability 

We investigate test executions and test results for two 
Microsoft products and their development processes. Even 
though some terminology might be unique to Microsoft, the 
execution of tests during software development, the impact of 
test execution time on development speed, and the issue of false 
test alarms are generalizable. We also believe that the basic 
assumption that test failures due to test and infrastructure issues 



will manifest in different test step failure patterns is general and 
not specific to a particular development or verification process. 
The data collected to build the classification model were 
collected using Microsoft specific tools like CODEMINE, but 
are not requiring the used toolset nor relies on Microsoft specific 
data or details. We collect test execution data, test failure 
statistics, as well as bug report linked to code changes used by 
many other studies conducted on open-source. Hence, we 
believe that the study and its presented model is generic and 
could be easily replicated on other projects in different 
companies.  

The impact of suppressing or pre-classifying false test 
alarms on the overall development process might differ and are 
of course product and company specific. The estimated code 
velocity measurements presented in this paper are specific to 
Microsoft. Replicating the experiments on different projects, 
releases, or development processes requires detailed reviews 
and applied heuristics and might yield different results. 

This paper focuses on system and integration tests that test 
various constraints of a system, e.g. performance, compatibility, 
and functionality. However, different test types, such as unit 
tests, might require different approaches or might not even 
require false test alarm detection.  

B. Construct Validity 

In this paper, we identify false test alarms mapping various 
data sources kept in different databases. Although, we discussed 
our heuristic, data mappings, and data interpretations with all 
involved product teams, it is possible that some data mappings 
might be missing or wrong. The product teams and we consider 
all made approximations as fair and realistic and that 
assumptions made in this study reflect the development 
processes accurately. Time factors used to estimate code 
velocity delays are based on average Microsoft figures and 
numbers. These numbers vary over time and might not consider 
all possible aspects. 

The classification models presented in this paper depends on 
data extracted using CODEMINE [1], the approach to identify 
false test alarms by Herzig and Nagappan [15], and on the apriori 
algorithm implemented in the arules [42] package for the R 
statistical framework. All threads to validity to these tools also 
apply for this study. 

IX. CONCLUSION 

In this paper, we presented a novel approach to automatically 
classify false test alarms, test case failures due to test and 
infrastructure issues. Our classification model uses association 
rule mining to identify patterns across failing test steps that 
correlate with false test alarms. We evaluated our classification 
model on two development processes and periods covering the 
development of Microsoft Windows and a 2-year development 
period of Microsoft Dynamics.  Our classification model shows 
a mean precision above 0.85 for both products. This means that 
our classification model produces a false positive rate below 
15%. Recall values for both products are low and range between 
0.3 and 0.5. Having a low recall does not imply negative 
consequences for the development process as these test failures 
already occurred in reality but simply could not be prevented. 
We estimate the achieved code velocity increase by preventing 

classified false test alarms to block code integration activity to 
14 minutes per day for Dynamics and 100 minutes per day for 
Windows. The product teams are confident that the presented 
approach can help to positively impact the development 
processes by increasing the confidence into test executions and 
test results, but also by speeding up development processes.  

The technique and results described in this paper have 

convinced the Microsoft Windows product team to explore 

ways to integrate the presented classification model into their 

production test environments. The goal is to rank and mark 

classified test failures accordingly to raise awareness of 

potential false test failures. 
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