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Abstract. We study the journey planning problem in public transit
networks. Developing efficient preprocessing-based speedup techniques for
this problem has been challenging: current approaches either require mas-
sive preprocessing effort or provide limited speedups. Leveraging recent
advances in Hub Labeling, the fastest algorithm for road networks, we
revisit the well-known time-expanded model for public transit. Exploiting
domain-specific properties, we provide simple and efficient algorithms for
the earliest arrival, profile, and multicriteria problems, with queries that
are orders of magnitude faster than the state of the art.

1 Introduction

Recent research on route planning in transportation networks [5] has produced
several speedup techniques varying in preprocessing time, space, query perfor-
mance, and simplicity. Overall, queries on road networks are several orders of
magnitude faster than on public transit [5]. Our aim is to reduce this gap.

There are many natural query types in public transit. An earliest arrival
query seeks a journey that arrives at a target stop ¢ as early as possible, given
a source stop s and a departure time (e.g., “now”). A multicriteria query also
considers the number of transfers when traveling from s to t. A profile query
reports all quickest journeys between two stops within a time range.

These problems can be approached by variants of Dijkstra’s algorithm [I3]
applied to a graph modeling the public transit network, with various techniques
to handle time-dependency [I8]. In particular, the time-expanded (TE) graph
encodes time in the vertices, creating a vertex for every event (e.g., a train
departure or arrival at a stop at a specific time). Newer approaches, like CSA [12]
and RAPTOR [11], work directly on the timetable. Speedup techniques [5] such
as Transfer Patterns [46], Timetable Contraction Hierarchies [14], and ACSA [20]
use preprocessing to create auxiliary data that is then used to accelerate queries.

For aperiodic timetables, the TE model yields a directed acyclic graph (DAG),
and several public transit query problems translate to reachability problems.
Although these can be solved by simple graph searches, this is too slow for our
application. Different methodologies exist to enable faster reachability computa-
tion [TISITOITI2TI22123]. In particular, the 2-hop labeling [8] scheme associates
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with each vertex two labels (forward and backward); reachability (or shortest-path
distance) can be determined by intersecting the source’s forward label and the
target’s backward label. On continental road networks, 2-hop labeling distance
queries take less than a microsecond [2].

In this work, we adapt 2-hop labeling to public transit networks, improving
query performance by orders of magnitude over previous methods, while keeping
preprocessing time practical. Starting from the time-expanded graph model (Sec-
tion , we extend the labeling scheme by carefully exploiting properties of public
transit networks (Section. Besides earliest arrival and profile queries, we address
multicriteria and location-to-location queries, as well as reporting the full journey
description quickly (Section . We validate our Public Transit Labeling (PTL)
algorithm by careful experimental evaluation on large metropolitan and national
transit networks (Section @, achieving queries within microseconds.

2 Preliminaries

Let G = (V, A) be a (weighted) directed graph, where V is the set of vertices
and A the set of arcs. An arc between two vertices u,v € V is denoted by (u,v).
A path is a sequence of adjacent vertices. A vertex v is reachable from a vertex u
if there is a path from u to v. A DAG is a graph that is both directed and acyclic.

We consider aperiodic timetables, consisting of sets of stops S, events E,
trips T', and footpaths F'. Stops are distinct locations where one can board a
transit vehicle (such as bus stops or subway platforms). Fvents are the sched-
uled departures and arrivals of vehicles. Each event e € E has an associated
stop stop(e) and time time(e). Let E(p) = {eo(p),...,exr,(p)} be the list (or-
dered by time) of events at a stop p. We set time(e;(p)) = —oo for ¢ < 0,
and time(e;(p)) = oo for i > k,. For simplicity, we may drop the index of an
event (as in e(p) € E(p)) or its stop (as in e € E). A trip is a sequence of events
served by the same vehicle. A pair of a consecutive departure and arrival events
of a trip is a connection. Footpaths model transfers between nearby stops, each
with a predetermined walking duration.

A journey planning algorithm outputs a set of journeys. A journey is a
sequence of trips (each with a pair of pick-up and drop-off stops) and footpaths
in the order of travel. Journeys can be measured according to several criteria,
such as arrival time or number of transfers. A journey j; dominates a journey jo
if and only if j; is no worse in any criterion than js. In case j; and j, are equal in
all criteria, we break ties arbitrarily. A set of non-dominated journeys is called a
Pareto set. Multicriteria Pareto optimization is NP-hard in general, but practical
for natural criteria in public transit networks [TIIT2/T7IT8]. A journey is tight if
there is no other journey between the same source and target that dominates it
in terms of departure and arrival time, e. g., that departs later and arrives earlier.

Given a timetable, stops s and ¢, and a departure time 7, the (s, t, 7)-earliest
arrival (EA) problem asks for an s—t journey that arrives at t as early as possible
and departs at s no earlier than 7. The (s, t)-profile problem asks for a Pareto
set of all tight journeys between s and ¢ over the entire timetable period. Finally,
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the (s, t, 7)-multicriteria (MC) problem asks for a Pareto set of journeys departing
at s no earlier than 7 and minimizing the criteria arrival time and number of
transfers. We focus on computing the wvalues of the associated optimization
criteria of the journeys (i.e., departure time, arrival times, number of transfers),
which is enough for many applications. Section [ discusses how the full journey
description can be obtained with little overhead.

Our algorithms are based on the 2-hop labeling scheme for directed graphs [g].
It associates with every vertex v a forward label L¢(v) and a backward label Ly(v).
In a reachability labeling, labels are subsets of V', and vertices u € Ly(v) U Ly(v)
are hubs of v. Every hub in L¢(v) must be reachable from v, which in turn must
be reachable by every hub in Ly(v). In addition, labels must obey the cover
property: for any pair of vertices u and v, the intersection Ly(u) N Ly(v) must
contain at least one hub on a u—v path (if it exists). It follows from this definition
that L¢(u) N Ly(v) # 0 if and only if v is reachable from w.

In a shortest path labeling, each hub u € L;(v) also keeps the associated
distance dist(u,v) (or dist(v,u), for backward labels), and the cover property
requires L ¢(u) N Ly(v) to contain at least one hub on a shortest u—v path. If labels
are kept sorted by hub ID, a distance label query efficiently computes dist(u, v) by a
coordinated linear sweep over L¢(u) and Ly(v), finding the hub w € Lg(u)NLy(v)
that minimizes dist(u,w) + dist(w,v). In contrast, a reachability label query can
stop as soon as any matching hub is found.

In general, smaller labels lead to less space and faster queries. Many algorithms
to compute labelings have been proposed [2BITIT52TI23], often for restricted
graph classes. We leverage (as a black box) the recent RXL algorithm [9], which
efficiently computes small shortest path labelings for a variety of graph classes at
scale. It is a sampling-based greedy algorithm that builds labels one hub at a
time, with priority to vertices that cover as many relevant paths as possible.

Different approaches for transforming a timetable into a graph exist (see [I§]
for an overview). In this work, we focus on the time-expanded model. Since it
uses scalar arc costs, it is a natural choice for adapting the labeling approach.
In contrast, the time-dependent model (another popular approach) associates
functions with the arcs, which makes adaption more difficult.

3 Basic Approach

We build the time-expanded graph from the timetable as follows. We group all
departure and arrival events by the stop where they occur. We sort all events at a
stop by time, merging events that happen at the same stop and time. We then add
a vertex for each unique event, a waiting arc between two consecutive events of the
same stop, and a connection arc for each connection (between the corresponding
departure and arrival event). The cost of arc (u,v) is time(v) — time(u), i.e., the
time difference of the corresponding events. To account for footpaths between
two stops a and b, we add, from each vertex at stop a, a foot arc to the first
reachable vertex at b (based on walking time), and vice versa. As events and
vertices are tightly coupled in this model, we use the terms interchangeably.
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Any label generation scheme (we use RXL [9]) on the time-expanded graph
creates two (forward and backward) event labels for every vertex (event), enabling
event-to-event queries. For our application reachability labels [21], which only
store hubs (without distances), suffice. First, since all arcs point to the future,
time-expanded graphs are DAGs. Second, if an event e is reachable from another
event €’ (i.e., Ly(e') N Ly(e) # 0), we can compute the time to get from €’ to e
as time(e) — time(e’). In fact, all paths between two events have equal cost.

In practice, however, event-to-event queries are of limited use, as they require
users to specify both departure and arrival times, one of which is usually unknown.
Therefore, we discuss earliest arrival and profile queries, which optimize arrival
time and are thus more meaningful. See Section [f] for multicriteria queries.

Earliest Arrival Queries. Given event labels, we answer an (s, ¢, 7)-EA query as fol-
lows. We first find the earliest event e;(s) € E(s) at the source stop s that suits the
departure time, i. e., with time(e;(s)) > 7 and time(e;—1(s)) < 7. Next, we search
at the target stop ¢ for the earliest event e;(t) € E(t) that is reachable from e;(s)
by testing whether Ly(e;(s)) N Ly(e;(t)) # 0 and Lg(ei(s)) N Ly(ej—1(t)) = 0.
Then, time(e;(t)) is the earliest arrival time. One could find e;(t) using lin-
ear search (which is simple and cache-friendly), but binary search is faster in
theory and in practice. To accelerate queries, we prune (skip) all events e(t)
with time(e(t)) < 7, since Ly(e;i(s)) N Ly(e(t)) = O always holds in such
cases. Moreover, to avoid evaluating Ly(e;(s)) multiple times, we use hash-
based queries [9]: we first build a hash set of the hubs in Ly(e;(s)), then check
the reachability for an event e(t) by probing the hash with hubs h € Ly(e(t)).

Profile Queries. To answer an (s, t)-profile query, we perform a coordinated sweep
over the events at s and ¢. For the current event e;(s) € E(s) at the source stop (ini-
tialized to the earliest event eg(s) € E(s)), we find the first event e;(t) € E(t)
at the target stop that is reachable, i.e., such that Lg(e;(s)) N Ly(e;(t)) # 0
and Ly(e;(s))NLy(ej—1(t)) = 0. This gives us the earliest arrival time time(e;(t)).
To identify the latest departure time from s for that earliest arrival event (and
thus have a tight journey), we increase ¢ until L¢(e;(s)) N Ly(ej(t)) = 0, then
add (time(e;—1(s)), time(e;(t))) to the profile. We repeat the process starting
from the events e;(s) and e;y1(t). Since we increase either ¢ or j after each
intersection test, the worst-case time to find all tight journeys is linear in the
number of events (at s and ¢) multiplied by the size of their largest label.

4 Leveraging Public Transit

Our approach can be refined to exploit features specific to public transit networks.
As described so far, our labeling scheme maintains reachability information for aill
pairs of events (by covering all paths of the time-expanded graph, breaking ties
arbitrarily). However, in public transit networks we actually are only interested in
certain paths. In particular, the labeling does not need to cover any path ending
at a departure event (or beginning at an arrival event). We can thus discard
forward labels from arrival events and backward labels from departure events.
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Trimmed Event Labels. Moreover, we can disregard paths representing dominated
journeys that depart earlier and arrive later than others (i.e., journeys that are
not tight, cf. Section . Consider all departure events of a stop. If a certain hub
is reachable from event e;(s), then it is also reachable from eg(s),...,e;—1(s),
and is thus potentially added to the forward labels of all these earlier events. In
fact, experiments show that on average the same hub is added to 1.8-5.0 events
per stop (depending on the network). We therefore compute trimmed event labels
by discarding all but the latest occurrence of each hub from the forward labels.
Similarly, we only keep the earliest occurrence of each hub in the backward labels.
(Preliminary experiments have shown that we obtain very similar label sizes with
a much slower algorithm that greedily covers tight journeys explicitly [2]9].)

Unfortunately, we can no longer just apply the query algorithms from Section [3]
with trimmed event labels: if the selected departure event at s does not correspond
to a tight journey toward ¢, the algorithm will not find a solution (though one
might exist). One could circumvent this issue by also running the algorithm from
subsequent departure events at s, which however may lead to quadratic query
complexity in the worst case (for both EA and profile queries).

Stop Labels. We solve this problem by working with stop labels: For each stop p,
we merge all forward event labels Lf(eo(p)), ..., L¢(ex(p)) into a forward stop
label SLy(p), and all backward event labels into a backward stop label SLy(p).
Similar to distance labels, each stop label SL(p) is a list of pairs (h, time,(h)),
each containing a hub and a time, sorted by hub. For a forward label, time,(h)
encodes the latest departure time from p to reach hub h. More precisely, let h be
a hub in an event label Ly (e;(p)): we add the pair (h, time(e;(p))) to the stop
label SLf(p) only if h & L¢(e;(p)),j > i, i.e., only if h does not appear in the
label of another event with a later departure time at the stop. Analogously, for
backward stop labels, time,(h) encodes the earliest arrival time at p from h.
By restricting ourselves to these entries, we effectively discard dominated (non-
tight) journeys to these hubs. It is easy to see that these stop labels obey a tight
journey cover property: for each pair of stops s and ¢, SLf(s) N SLy(t) contains
at least one hub on each tight journey between them (or any equivalent journey
that departs and arrives at the same time; recall from Section [2] that we allow
arbitrary tie-breaking). This property does not, however, imply that the label
intersection only contains tight journeys: for example, SL¢(s) and SLy(t) could
share a hub that is important for long distance travel, but not to get from s to t.
The remainder of this section discusses how we handle this fact during queries.

Stop Label Profile Queries. To run an (s,t)-profile query on stop labels, we
perform a coordinated sweep over both labels SLy(s) and SLy(t). For every
matching hub h, i.e., (h,times(h)) € SLs(s) and (h,time,(h)) € SLy(t), we
consider the journey induced by (time4(h), times(h)) for output. However, since
we are only interested in reporting tight journeys, we maintain (during the
algorithm) a tentative set of tight journeys, removing dominated journeys from it
on-the-fly. (We found this to be faster than adding all journeys during the sweep
and only discarding dominated journeys at the end.) We can further improve the
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efficiency of this approach in practice by (globally) reassigning hub IDs by the
time of day. Note that every hub h of a stop label is still also an event and carries
an event time time(h). (Not to be confused with times(h) and time;(h).) We
assign sequential IDs to all hubs h in order of increasing time(h), thus ensuring
that hubs in the label intersection are enumerated chronologically. Note that this
does not imply that journeys are enumerated in order of departure or arrival time,
since each hub h may appear anywhere along its associated journey. However,
preliminary experiments have shown that this approach leads to fewer insertions
into the tentative set of tight journeys, reducing query time. Moreover, as in
shortest path labels [9], we improve cache efficiency by storing the values for hubs
and times separately in a stop label, accessing times only for matching hubs.

Overall, stop and event labels have different trade-offs: maintaining the profile
requires less effort with event labels (any discovered journey is already tight),
but fewer hubs are scanned with stop labels (there are no duplicate hubs).

Stop Label Earliest Arrival Queries. Reassigned hub IDs also enable fast (s, ¢, 7)-
EA queries. We use binary search in SL¢(s) and SLy(t) to find the earliest relevant
hub h, i. e., with time(h) > 7. From there, we perform a linear coordinated sweep
as in the profile query, finding (h, time,(h)) € SL;(s) and (h, time,(h)) € SLy(t).
However, instead of maintaining tentative profile entries (time4(h), time;(h)),
we ignore solutions that depart too early (i.e., times(h) < 7), while picking
the hub A* that minimizes the tentative best arrival time time;(h*). (Note
that time(h) > 7 does not imply times(h) > 7.) Once we scan a hub h
with time(h) > time,(h*), the tentative best arrival time cannot be improved
anymore, and we stop the query. For practical performance, pruning the scan, so
that we only sweep hubs h between 7 < time(h) < time;(h*), is very important.

5 Practical Extensions

So far, we presented stop-to-stop queries, which report the departure and arrival
times of the quickest journey(s). In this section, we address multicriteria queries,
general location-to-location requests, and obtaining detailed journey descriptions.

Multicriteria Optimization and Minimum Transfer Time. Besides optimizing
arrival time, many users also prefer journeys with fewer transfers. To solve the
underlying multicriteria optimization problem, we adapt our labeling approach
by (1) encoding transfers as arc costs in the graph, (2) computing shortest path
labels based on these costs (instead of reachability labels on an unweighted
graph), and (3) adjusting the query algorithm to find the Pareto set of solutions.
Reconsider the earliest arrival graph from Section[3] As before, we add a vertex
for each unique event, linking consecutive events at the same stop with waiting
arcs of cost 0. However, each connection arc (u,w) in the graph is subdivided
by an intermediate connection verter v, setting the cost of arc (u,v) to 0 and
the cost of arc (v, w) to 1. By interpreting costs of 1 as leaving a vehicle, we can
count the number of trips taken along any path. To model staying in the vehicle,
consecutive connection vertices of the same trip are linked by zero-cost arcs.
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A shortest path labeling on this graph now encodes the number of transfers
as the shortest path distance between two events, while the duration of the
journey can still be deduced from the time difference of the events. Consider a
fixed source event e(s) and the arrival events of a target stop eg(t),e1(¢),... in
order of increasing time. The minimum number of transfers required to reach the
target stop ¢ never increases with arrival times. (Hence, the whole Pareto set P
of multicriteria solutions can be computed with a single Dijkstra run [I8].)

We exploit this property to compute (s,t, 7)-EA multicriteria (MC) queries
from the labels as follows. We initialize P as the empty set. We then perform
an (s,t,7)-EA query (with all optimizations described in Section [3) to compute
the fastest journey in the solution, i.e., the one with most transfers. We add
this journey to P. We then check (by performing distance label queries) for each
subsequent event at ¢ whether there is a journey with fewer transfers (than the
most recently added entry of P), in which case we add the journey to P and
repeat. The MC query ends once the last event at the target stop has been
processed. We can stop earlier with the following optimization: we first run a
distance label query on the last event at t to obtain the smallest possible number
of transfers to travel from s to t. We may then already stop the MC query once
we add a journey to P with this many transfers. Note that, since we do not need
to check for domination in P explicitly, our algorithm maintains P in constant
time per added journey.

Minimum Transfer Times. Transit agencies often model an entire station with
multiple platforms as a single stop and account for the time required to change
trips inside the station by associating a minimum transfer time mtt(p) with each
stop p. To incorporate them into the EA graph, we first locally replace each
affected stop p by a set of new stops p*, distributing conflicting trips (between
which transferring is impossible due to mtt(p)) to different stops of p*. We then
add footpaths between all pairs of stops in p* with length mtt(p). A small set p*
can be computed by solving an appropriate coloring problem [I0]. For the MC
graph, we need not change the input. Instead, it is sufficient to shift each arrival
event e € E(p) by adding mtt(p) to time(e) before creating the vertices.

Location-to-Location Queries. A query between arbitrary locations s* and t*,
which may employ walking or driving as the first and last legs of the journey, can
be handled by a two-stage approach. It first computes sets S and T of relevant
stops near the origin s* and destination t* that can be reached by car or on
foot. With that information, a forward superlabel [I] is built from all forward
stop labels associated with S. For each entry (h, time,(h)) € SL;(p) in the label
of stop p € S, we adjust the departure time time}(h) = time,(h) — dist(s*, p)
so that the journey starts at s* and add (h,time¥*(h)) to the superlabel. For
duplicate hubs that occur in multiple stop labels, we keep only the latest departure
time from s*. This can be achieved with a coordinated sweep, always adding
the next hub of minimum ID. A backward superlabel (for T) is built analogously.
For location-to-location queries, we then simply run our stop-label-based EA
and profile query algorithms using the superlabels. In practice, we need not
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build superlabels explicitly but can simulate the building sweep during the
query (which in itself is a coordinated sweep over two labels). A similar approach
is possible for event labels. Moreover, point-of-interest queries (such as finding
the closest restaurants to a given location) can be computed by applying known
techniques [I] to these superlabels.

Journey Descriptions. While for many applications it suffices to report departure
and arrival times (and possibly the number of transfers) per journey, sometimes
a more detailed description is needed. We could apply known path unpacking
techniques [I] to retrieve the full sequence of connections (and transfers), but
in public transit it is usually enough to report the list of trips with associated
transfer stops. We can accomplish that by storing with each hub the sequences
of trips (and transfer stops) for travel between the hub and its label vertex.

6 Experiments

Setup. We implemented all algorithms in C++ using Visual Studio 2013 with
full optimization. All experiments were conducted on a machine with two 8-core
Intel Xeon E5-2690 CPUs and 384 GiB of DDR3-1066 RAM, running Windows
2008R2 Server. All runs are sequential. We use at most 32 bits for distances.
We consider four realistic inputs: the metropolitan networks of London (data|
london.gov.uk) and Madrid (emtmadrid.es), and the national networks of
Sweden (trafiklab.se|) and Switzerland (gtfs.geops.ch)). London includes
all modes of transport, Madrid contains only buses, and the national networks
contain both long-distance and local transit. We consider 24-hour timetables for
the metropolitan networks, and two days for national ones (to enable overnight
journeys). Footpaths were generated using a known heuristic [I0] for Madrid; they
are part of the input for the other networks. See Table [1] for size figures of the
timetables and resulting graphs. The average number of unique events per stop
ranges from 160 for Sweden to 644 for Madrid. (Recall from Section [3| that we
merge all coincident events at a stop.) Note that no two instances dominate each
other (w.r.t. number of stops, connections, trips, events per stop, and footpaths).

Preprocessing. Table [2 reports preprocessing figures for the unweighted earliest
arrival graph (which also enables profile queries) and the multicriteria graph. For

Table 1. Size of timetables and the earliest arrival (EA) and multicriteria (MC) graphs.

EA Graph MC Graph
Instance Stops Conns Trips Footp. Dy. V| |A] V] |A]
London 20.8k 5,133k 133k 457k 1 4,719k 51,043k 9,852k 72,162k
Madrid 4.7k 4,527k 165k 1.3k 1 3,003k 13,730k 7,530k 34,505k

Sweden 51.1k 12,657k 548k 1.1k 2 8,151k 34,806k 20,808k 93,194k
Switzerland 27.1k 23,706k 2,198k 29.8k 2 7,979k 49,656k 31,685k 170,503k
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Table 2. Preprocessing figures. Label sizes are averages of forward and backward labels.

Earliest Arrival Multicriteria

Event Labels Stop Labels Event Labels

RXL Hubs Hubs Space Hubs Space RXL Hubs Hubs Space
Instance [h:m] p.1bl p.stop [MiB] p.stop [MiB] [h:m] p.lbl p.stop [MiB]

London 0:54 70 15480 1,334 7,075 1,257 49:19 734 162,565 26,871
Madrid 0:25 77 49,247 963 9,830 403 10:55 404 258,008 10,155
Sweden 0:32 37 5,630 1,226 1,536 700 36:14 190 29,046 12,637

Switzerland 0:42 42 11,189 1,282 2,970 708 61:36 216 58,022 12,983

earliest arrival (EA), preprocessing takes well below an hour and generates about
one gigabyte, which is quite practical. Although there are only 37-70 hubs per
label, the total number of hubs per stop (i. e., the combined size of all labels) is
quite large (5,630-49,247). By eliminating redundancy (cf. Section , stop labels
have only a fifth as many hubs (for Madrid). Even though they need to store an
additional distance value per hub, total space usage is still smaller. In general,
average labels sizes (though not total space) are higher for metropolitan instances.
This correlates with the higher number of daily journeys in these networks.
Preprocessing the multicriteria (MC) graph is much more expensive: times
increase by a factor of 26.2-54.8 for the metropolitan and 67.9-88 for the national
networks. On Madrid, Sweden, and Switzerland labels are five times larger
compared to EA, and on London the factor is even more than ten. This is
immediately reflected in the space consumption, which is up to 26 GiB (London).

Queries. We now evaluate query performance. For each algorithm, we ran 100,000
queries between random source and target stops, at random departure times
between 0:00 and 23:59 (of the first day). Table |3| reports detailed figures,
organized in three blocks: event label EA queries, stop label EA queries, and
profile queries (with both event and stop labels). We discuss MC queries later.
We observe that event labels result in extremely fast EA queries (6.9-14.7 pis),
even without optimizations. As expected, pruning and hashing reduce the number
of accesses to labels and hubs (see columns “Lbls” and “Hubs”). Although binary
search cannot stop as soon as a matching hub is found (see the “=" column), it
accesses fewer labels and hubs, achieving query times below 3 s on all instances.
Using stop labels (cf. Section |4]) in their basic form is significantly slower than
using event labels. With pruning enabled, however, query times (3.6-6.2 ps) are
within a factor of two of the event labels, while saving a factor of 1.1-2.4 in space.
For profile queries, stop labels are clearly the best approach. It scans up to a
factor of 5.1 fewer hubs and is up to 3.3 times faster, computing the profile of
the full timetable period in under 80 ps on all instances. The difference in factors
is due to the overhead of maintaining the Pareto set during the stop label query.

Comparison. Table 4 compares our new algorithm (indicated as PTL, for Public
Transit Labeling) to the state of the art and also evaluates multicriteria queries. In
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Table 3. Evaluating earliest arrival queries. Bullets (o) indicate different features:
profile query (Prof.), stop labels (St.1bs.), pruning (Prn.), hashing (Hash), and binary

search (Bin.). The column “=” indicates the average number of matched hubs.

¥ iQ@Q %Q.e' London Sweden Switzerland
CH'CLEY Lbls. Hubs = [ps] Lbls. Hubs = [ps] Lbls. Hubs = [ps]
oo o oo 1084 6,936 1 147 680 2415 1 6.9 89.0 348 1 8.7
ocoeoo 16.1 1,360 1 59 344 1581 1 54 335 167 1 5.8
ocoeeo 161 1,047 1 42 344 108 1 36 335 1,151 1 3.8
coeee 70 332 4 28 6.5 179 3 21 76 204 4 21

[e]
[ ]
[e]
[e]

2.0 13,037 1,126 54.8 2.0 2,855 81 10.0 2.0 5,707 218 20.4
2.0 861 62 62 20 711 16 3.6 2.0 699 19 3.8

658.5 40,892 211 141.7 423.7 13,590 118 39.4 786.6 29,381 240 81.4
2.0 13,037 1,126 743 2.0 2,855 81 121 2.0 5,707 218 24.5

[e]
[ ]
[ ]
[e]

[e]

[e]

this experiment, PTL uses event labels with pruning, hashing and binary search for
earliest arrival (and multicriteria) queries, and stop labels for profile queries. We
compare PTL to CSA [I2] and RAPTOR [11] (currently the fastest algorithms
without preprocessing), as well as Accelerated CSA (ACSA) [20], Timetable
Contraction Hierarchies (CH) [I4], and Transfer Patterns (TP) [4J6] (which make
use of preprocessing). Since RAPTOR always optimizes transfers (by design), we
only include it for the MC problem. Note that the following evaluation should be
taken with a grain of salt, as no standardized benchmark instances exist, and
many data sets used in the literature are proprietary. Although precise numbers
are not available for several competing methods, it is safe to say they use less
space than PTL, particularly for the MC problem.

Table [4 shows that PTL queries are very efficient. Remarkably, they are faster
on the national networks than on the metropolitan ones: the latter are smaller in
most aspects, but have more frequent journeys (that must be covered). Compared
to other methods, PTL is 2-3 orders of magnitude faster on London than CSA
and RAPTOR for EA (factor 643), profile (factor 2,167), and MC (factor 203)
queries. We note, however, that PTL is a point-to-point algorithm (as are ACSA,
TP, and CH); for one-to-all queries, CSA and RAPTOR would be faster.

PTL has 1-2 orders of magnitude faster preprocessing and queries than
TP for the EA and profile problems. On Madrid, EA queries are 233 times
faster while preprocessing is faster by a factor of 48. Note that Sweden (PTL)
and Germany (TP) have a similar number of connections, but PTL queries
are 95 times faster. (Germany does have more stops, but recall that PTL query
performance depends more on the frequency of trips.) For the MC problem, the
difference is smaller, but both preprocessing and queries of PTL are still an order
of magnitude faster than TP (up to 48 times for MC queries on Madrid).

Compared to ACSA and CH (for which figures are only available for the
EA and profile problems), PTL has slower preprocessing but significantly faster
queries (even when accounting for different network sizes).
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Table 4. Comparison with the state of the art. Presentation largely based on [5], with
some additional results taken from [6]. The first block of techniques considers the EA
problem, the second the MC problem and the third the profile problem.

Instance Criteria

Stops Conns S % Prep. Query

5o O
Algorithm Name [10°] [10°] Dy v& [h]  Jn. [ms]
CSA [12] London 20.8 4.9 1 e o o — n/a 1.8
ACSA [20] Germany 2524 462 2 e o o 0.2 n/a 87
CH [14] Europe (LD)  30.5 1.7 p e o o <01 n=n/a 03
TP [5] Madrid 4.6 4.8 1 e o o 19 n/a 0.7
TP [6] Germany 2484 139 1 e o o 249 09 02
PTL London 20.8 5.1 1 ¢ o o 0.9 0.9 0.0028
PTL Madrid 4.7 4.5 1 ¢ o o 0.4 0.9 0.0030
PTL Sweden 51.1 12.7 2 e o o 0.5 1.0 0.0021
PTL Switzerland 27.1 23.7 2 e o o 0.7 1.0 0.0021
RAPTOR [1I] London 20.8 5.1 1 ¢ o o — 1.8 54
TP [B] Madrid 4.6 48 1 e e o 185 n/a 3.1
TP [6] Germany 248.4 13.9 1 ¢ ¢ o 372 1.9 0.3
PTL London 20.8 5.1 1 e o o 49.3 1.8 0.0266
PTL Madrid 4.7 4.5 1 e ¢ o 10.9 1.9 0.0643
PTL Sweden 51.1 12.7 2 e o o© 36.2 1.7 0.0276
PTL Switzerland 27.1 23.7 2 e o o© 61.6 1.7 0.0217
CSA [12] London 208 49 1 e o e  — 982 161.0
ACSA [20] Germany 2524 462 2 e o e 0.2 n/a 171.0
CH [14] Europe (LD)  30.5 1.7 p e o e <01 n/a 37
TP [6] Germany 248.4 13.9 1 e o e 249 16.4 3.3
PTL London 20.8 5.1 1 ¢ 0o e 0.9 81.0 0.0743
PTL Madrid 4.7 4.5 1 ¢ o e 0.4 110.7 0.1119
PTL Sweden 51.1 12.7 2 e 0 e 0.5 12.7 0.0121
PTL Switzerland 27.1 23.7 2 e o e 0.7 31.5 0.0245

7 Conclusion

We introduced PTL, a new preprocessing-based algorithm for journey planning
in public transit networks, by revisiting the time-expanded model and adapting
the Hub Labeling approach to it. By further exploiting structural properties
specific to timetables, we obtained simple and efficient algorithms that outperform
the current state of the art on large metropolitan and country-sized networks
by orders of magnitude for various realistic query types. Future work includes
developing tailored algorithms for hub computation (instead of using RXL as
a black box), compressing the labels (e.g., using techniques from [6] and [9]),
exploring other hub representations (e. g., using trips instead of events, as in 3-hop
labeling [21]), using multicore- and instruction-based parallelism for preprocessing
and queries, and handling dynamic scenarios (e. g., temporary station closures
and train delays or cancellations [5]).
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