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Abstract—Various projections or views of a heterogeneous infor-
mation network can be modeled using the graph OLAP (On-line
Analytical Processing) framework for effective decision making.
Detecting anomalous projections of the network can help the
analysts identify regions of interest from the graph specific to
the projection attribute. While most previous studies on outlier
detection in graphs deal with outlier nodes, edges or subgraphs,
we are the first to propose detection of graph cuboid outliers.
Further we perform this detection in a query sensitive way.
Given a general subgraph query on a heterogeneous network,
we study the problem of finding outlier cuboids from the graph
OLAP lattice. A Graph Cuboid Outlier (GCOutlier) is a cuboid
with exceptionally high density of matches for the query. The
GCOutlier detection task is clearly challenging because: (1)
finding matches for the query (subgraph isomorphism) is NP-
hard; (2) number of matches for the query can be very high; and
(3) number of cuboids can be large. We provide an approximate
solution to the problem by computing only a fraction of the
total matches originating from a select set of candidate nodes
and including a select set of edges, chosen smartly. We perform
extensive experiments on synthetic datasets to showcase the
execution time versus accuracy trade-off. Experiments on real
datasets like Four Area and Delicious containing thousands of
nodes reveal interesting GCOQutliers.

Keywords—Graph OLAP, Outlier Detection, Graph Projection Out-
liers, Graph Cuboid Outliers, Information Networks

I. INTRODUCTION

In a large variety of applications, heterogeneous information
networks (HINs) are used extensively to represent real world
data. HINs are graphs with nodes of multiple types. To support
data analytics on HINs, Chen et al. [1] proposed a graph OLAP
framework. Graph OLAP allows the user to navigate through
an information network across multiple levels and multiple
dimensions. Each cuboid in such a graph OLAP lattice can
be considered as a projection or a view of the network. Each
cuboid represents a subgraph of the original graph induced by
the nodes belonging to the particular value of the dimension.
For example, consider a bibliographic network of authors,
papers, conferences and keywords. One can construct a graph
OLAP for such a network with respect to the research area
dimension. Then the (DM+IR) projected network is a graph
which consists of only those authors, papers, conferences and
keywords which belong to either DM (Data Mining) or IR
(Information Retrieval) areas or both.

GCOutliers: Given a general subgraph query on a heteroge-
neous network, one can discover all the matches for the query.
Further, every match can be assigned to one or more cuboids
depending on the value of the OLAP dimension for the nodes
in the match. A Graph Cuboid Outlier (GCOutlier) is a cuboid
with exceptionally high density of matches for the query. We
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Fig. 1. Left: Bibliographic Network OLAP Lattice of Cuboids for Four
Research Areas: Data Mining(DM), Machine Learning (ML), Information
Retrieval (IR), Database (DB). Right: A Sample Query

ITTechniciani
Biologist / \
é Physicist

Commando/
I ov: [] o2 [ ows a

Fig. 2. Left: Organization Network OLAP Lattice of Cuboids for Three
Divisions: Divl, Div2, Div3. Right: A Sample Mission Query

study the problem of finding outlier cuboids from the graph
OLAP Iattice.

GCOutlier Case Studies: GCOutliers are interesting because
they provide insights about the information network and
support in decision making process, especially in identifying
semantic regions of interest within the network. Interesting
examples of GCOutliers can be commonly observed in var-
ious real-world scenarios. Here are two specific cases in
detail.

Research Area Cuboid Outliers: Consider a bibliographic
network lattice as shown in Figure 1 (left) on the research
area dimension with four research areas: Data Mining(DM),
Database (DB), Information Retrieval (IR) and Machine Learn-
ing (ML). Similarly, the lattice can be drawn for a combination
of other dimensions like “year” along with “research areas”.
Using the query described in Figure 1 (right), GCOutlier
detection can help satisfy the following user information need:
“In which research areas and in which set of years, there
were exceptionally high collaborations between authors of
institutes A, B and C?” The user can expect to discover a
particular (or group of) year and a research area for which
some large funding was made by multi-institution projects
leading to papers with authors from institutes A, B and C
(e.g., “big data” in recent few years).

Organization Division Cuboid Outliers: Consider an organiza-



tion network lattice as shown in Figure 2 (left). For simplicity
we show only three divisions but in general there could be
a large number of divisions in an organization. Employees
are connected to each other in the network if they have
a history of working together. Using a mission query as
shown in Figure 2 (right), one can answer this question: “In
which divisions should I try to find teams of people who can
help me accomplish my mission?” The user can expect to
find divisions of the organization which have handled similar
missions earlier.

Besides these examples, GCOutliers find numerous other ap-
plications, e.g., finding regions in a spatial/sensor network
showing high concentration of a specific behavior, finding parts
of an electronic circuit that need to be redesigned because they
contain a high density of faulty design patterns, etc.

Relationship with Previous Work: Our work is most related
to a recent hot sub-area of outlier detection: outlier detection
in graphs. While general outlier detection in graphs has been
studied for quite some time, query based outlier detection has
gained attention very recently. A large number of algorithms
have been proposed for unexpected, missing or anomalous
nodes [2], [3], edges [4], [5], subgraphs [6], [7], [8], [9] and
graphs [10]. To the best of our knowledge, we propose a first
work on finding cuboid outliers. Note that a cuboid represents
a semantic sub-network defined by a particular set of values of
the OLAP dimension. Thus unlike general subgraphs, a cuboid
is a semantically related collection of nodes.

Brief Overview of GCOutlier Detection: Given a heteroge-
neous network having high dimensional data and consisting
of nodes of different types, represented as a Graph OLAP,
the goal is to find interesting outlier cuboids. This is chal-
lenging because: (1) finding matches for the query (subgraph
isomorphism) is NP-hard; (2) number of matches for the query
can be very high; and (3) number of cuboids can be large.
Given a query, we need to first find matching subgraphs
from the graph but we may not need to find all subgraphs.
The proposed approach finds matches originating from only a
carefully-chosen small sample of nodes and including edges
from a select set of edges. This is done by learning query-
specific node and edge regression models and assigning a
probability to each node and edge respectively, of being a part
of some match. While this leads to a reduced set of matches
from the graph, it reduces the execution time drastically while
maintaining the accuracy of the outlier cuboid computation.
The discovered sample of matches is further used to compute
approximate outlier scores for each cuboid. Cuboids with
exceptionally high scores are output as GCOutliers.

Summary: We make the following contributions in this pa-
per.

e We propose the problem of graph cuboid outlier
discovery given a heterogeneous network in the form
of a graph OLAP lattice and a subgraph query.

e To find a sample of all matches and hence outlier
cuboids from large graphs, we propose methods to
grow matches originating from only those nodes with
high probability of being a part of some match and
including only high probability edges. The probabil-
ities are learned using query-specific node and edge

regression models.

e Using extensive experiments on synthetic datasets,
we compare the effectiveness and efficiency of the
proposed methods. Our experiments result in a good
time versus accuracy trade-off on synthetic datasets,
and interesting GCOutliers from real datasets.

Our paper is organized as follows. In Section II, we formalize
the graph cuboid outlier detection problem. The proposed
approach consists of two phases: an offline index construction
phase and an online query processing phase which are detailed
in Section III. We present results with detailed insights on
several synthetic and real datasets in Section IV. We discuss
related work in Section V. The paper is summarized in
Section VI.

II. GCOUTLIER DETECTION PROBLEM DEFINITION

In this section we formally define the GCOutlier Detection
problem. In order to aid the understanding of the problem state-
ment, we present the following preliminary concepts.

Definition 1 (Heterogeneous Network): A heterogeneous net-
work is an undirected graph G = (Vg, Eq, typeg, attrg)
where Vi is a finite set of vertices (representing entities) and
FE¢ is a finite set of edges each being an unordered pair of
distinct vertices. typeg is a function defined on the vertex set
as typeg : Vg — To where T is the set of node types and
|7a| = T. Each type has a fixed set of attributes. attrg is a
function defined on the vertex set which associates each node
with a vector of size Dy, of attribute values. At least one of
these attributes is used as an OLAP dimension when creating
the graph OLAP.

For example, in the bibliographic networks (Figure 1), 7o =
{author, conference, paper, keywords}. Edges represent
relationships like “author” wrote a “paper”, etc. Nodes have
attributes like research area, affiliation and year. In the orga-
nization network (Figure 2), nodes could have attributes like
name, gender, organizational division of work, profession, etc.
Figure 3 shows a heterogeneous network G with three types
of nodes, Tz = {4, B,C}, |Vg| = 13 and |E¢| = 18.

Definition 2 (OLAP Dimension Attributes): It is a subset of
attributes which are used for generating graph cuboids (or
projections). At least one of node attributes (attrg) is used
as an OLAP dimension when creating the graph OLAP.

For example, in the bibliographic networks (Figure 1), research
area could be used as an OLAP dimension. In the organization
network, division could be used as an OLAP dimension. In
Figure 3, the network is projected over two dimensions, X
and Y. Both X and Y can take 2 values, {X;, X>} and
{Y1,Y>} respectively. Each vertex takes some value for both
the attributes X and Y.

Definition 3 (Subgraph Query on a Network): A  sub-graph
query (Q on a heterogeneous network GG is a graph consisting
of node set Vg and edge set Eg. Each node could be of any
type from 7 and could be associated with a predicate on its
attribute values.

For example, the query in Figure 1 consists of authors and a
paper where the authors have predicates on the “affiliation”
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Fig. 3. Example of a Network G and a Sample Query Q

attribute. Also, Figure 3 shows a query ) with four nodes,
|VQ| = 4, and |EQ| =3.

Definition 4 (Graph OLAP): The heterogeneous network G
can be projected along particular node attributes (called OLAP
dimensions) to obtain a lattice of projections or views. Each
projection is called a cuboid and corresponds to a set of values
for the dimensions. Thus, a cuboid represents a sub-graph
consisting of nodes with the corresponding set of projection
attribute values for that cuboid, along with the edges induced
by those nodes in G.

For example, in Figure 1, the projection attribute is “research
area”. Thus, the DM cuboid represents a DM-projected net-
work consisting of authors, conferences, keywords, papers in
DM and edges connecting them. In Figure 3, (X; +Y7) cuboid
consists of nodes 5, 6, 9, 10, 11 and 12, and edges (5, 6), (5,
9) and (9, 10).

Definition 5 (Match): The query graph ) can be subgraph
isomorphic to multiple subgraphs of G. Each such subgraph
of G is called a match or a matching subgraph of G. Let S
represent the set of values for the projection attribute for the
nodes in a particular match. The match belongs to those R
projected cuboids in the graph OLAP where S C R.

The query @ can be answered by returning all exact matching
subgraphs from G. For example, in Figure 3, match (8,9, 5, 6)
for @ from G belongs to (X7 + Y7 + Y3) and (X7 + X5 +
Y] +Y5) cuboids. Here S=(X1, Y7, Y5). Other matches for @)
are (3,4,5,6), (10,9,5,6), (4,3,2,7), (2,3,4,7), (9,5,4,7),
(10,9,8,7), (5,9,8,7) and (4,3,2,1).

Definition 6 (GCOutlier Score): Let a cuboid ¢ contain d
edges. Let n be the number of edges covered by matches of
query @ from c. We define the GCOutlier Score of cuboid ¢
as the ratio % when d is non-zero. If d is 0, we define the

outlier score to be 0.

There could be many other ways of defining the outlier
score. But we chose this definition because (1) it captures the
cuboid with unexpectedly high frequency of matches, and (2)
normalizes with respect to the size of the cuboid. In Figure 3,
the cuboid (X7 + Y3) consists of the following edges: (1, 2),
2, 3), 3,4, 4, 12), (3, 12), (2, 13), (3, 13), and (12, 13).
Out of the matches for the query @, only the match (4,3,2,1)
belongs to the cuboid (X; + Y2) and covers three edges. Thus
the GCOutlier score for cuboid (X7 + Y5) is 3/8.

Definition 7 (Graph Cuboid Outlier Detection Problem):
Given: A heterogeneous information network G represented
as a graph OLAP, a heterogeneous query Q).

Find: Top K cuboids from the graph OLAP with highest
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Fig. 4. Graph Cuboid Outlier Detection (GCOD-RS) System Diagram

outlier scores which are not a super-set of higher or equally
scoring cuboids.

Table I shows the GCOutlier scores for each cuboid for graph
G in Figure 3. Cuboids not shown in the table have a score of
0.

Table 1. GCOutlier Score of Cuboids for Graph OLAP in Figure 3
Cuboid # Edges in Cuboid | # Matching Edges | GCOutlier Score
X1 +Y; 3 3 1.00
X1 +Ys 8 3 0.38
X1 +Y1 4+ Xo 3 3 1.00
X1+ Xo+ Yo 11 5 0.45
X1+Y1+Ys 14 7 0.50
X1 +Y1+Xo+ Y, 18 11 0.61

In this example, if K is set to 1, the cuboid (X; + Y1) will
be returned as a GCOutlier. Both the cuboids (X; + Y7) and
(X1 + Y7 + X5) have a score of 1, but since (X1 + Y7 + X5)
contains (X; + Y1), we ignore (X; + Y7 + X5).

III. GCOUTLIER DETECTION APPROACH

In this section, we discuss two proposed approaches for
the GCOutlier detection problem: (a) Graph Cuboid Outlier
Detection using Random Sampling (GCOD-RS), and (b) Graph
Cuboid Outlier Detection using Regression Models (GCOD-
RM).

A. GCOutlier Detection System Overview

Figures 4 and 5 show a broad overview of the proposed sys-
tems using random sampling (GCOD-RS) and using regression
models (GCOD-RM) respectively. For a given information
network G we first pre-process it offline as shown in the
top half of the figure. The lower half denotes the online
processing phase in which the user query () is processed
using the indexes generated in the offline phase. Note that
the online processing of the subgraph queries is approximate,
i.e., approximate results are obtained by exploiting the indexes
generated in the offline phase. We will explore the time-
accuracy trade-off of the approximation in Section IV.

B. Offline Index Construction for the GCOD System

The offline part of the GCOD system is run once for a graph. It
consists of building two indexes: an SPath index and a cuboid



edge count list. We detail the method of constructing these
indexes in the following.

SPath Index: SPath [11] is a previously proposed high perfor-
mance graph indexing mechanism to find matching subgraphs
for a general subgraph query on large networks. SPath lever-
ages decomposed shortest paths around vertex neighborhood
as basic indexing units, which prove to be both effective
in graph search space pruning and highly scalable in index
construction and deployment. Via SPath, a graph query is
processed and optimized beyond the traditional vertex-at-a-
time fashion to a more efficient path-at-a-time way: the query
is first decomposed to a set of shortest paths, among which a
subset of candidates with good selectivity is picked by a query
plan optimizer; candidate paths are further joined together
to help recover the query graph to finalize the graph query
processing.

For every vertex v € Vg, its Neighborhood Signature NS¢ (v)
is constructed. For a given distance D, a breadth-first traversal
from v upto a distance D is required in order to obtain the
shortest path information in the D-hop neighborhood subgraph
of v. The SPath index is later used in the online phase
to compute the matching subgraphs. The signature NSq(v)
stores the set of nodes of a particular type at a particular
distance d < D from node v. For example, for node 4, there
are two 1-hop neighbors of type B viz. (3,5), three 2-hop
neighbors of type B viz. (2,8,9).

Cuboid Edge Count: Besides the SPath Index, we also main-
tain a list which captures the number of edges covered by each
cuboid in the entire graph. We assign an edge to all the cuboids
which correspond to the projection attribute values of both the
edge endpoints. This list is later used in computing the outlier
score of the cuboids.

The second column of Table I indicates the number of edges
covered by each cuboid for the graph shown in Figure 3.
Edges (5,6), (5,9) and (9,10) contribute to the edge list of
cuboid { X7, Y7 }. Thus the number of edges covered by cuboid
{Xl, Yl} is 3.

Time and Space Complexity: The SPath index construction
and building the cuboid edge count needs to be done just once
and is an offline task.

The worst case time complexity for SPath index construction
is O(|Vg| x |Eg|) while the worst case space complexity is
O(]Vg|?). In case of the edges covered by the cuboid list,
it needs to scan the edges of the graph and compare the
projection attribute values covered by each edge with that
of each cuboid. Thus, if the projection attribute can take n
unique values, the number of cuboids is 2" and the time
complexity for computing the list is O(|Eg| x 2™). Since
we store only the edge count per cuboid, space complexity
is clearly O(2").

Although the worst case complexities seem very large, in
practical cases, the graphs and the indexes are quite sparse
and hence index construction times and space are relatively
much smaller.

C. Online Query Processing for the GCOD System

Given a graph G and a query @, outlier cuboids are discovered
by first extracting the exact matches using the SPath index. The

number of matches can be very high for some queries. After
obtaining the exact matches we map each edge of the match to
all possible cuboids. An edge can belong to multiple cuboids.
Thus, we obtain the number of matching edges belonging to
each cuboid. Next, we compute the outlier score of each cuboid
using the cuboid edge count list. As defined in Section II, the
outlier score for a cuboid is the ratio of the number of matching
edges covered by the cuboid to the total number of edges
covered by the cuboid. Based on the outlier density the cuboids
are ranked and the top K cuboids are returned as GCOutliers.
We call this as the baseline online processing approach which
provides exact GCOutliers. Table I shows outlier scores for all
cuboids for Graph OLAP in Figure 3, except the cuboids with
a 0 score.

The baseline online processing approach though accurate
incurs high execution time especially for large queries. To
compute the matches for query @, the baseline algorithm first
computes a list of candidate graph nodes for every query node.
A graph node ¢ is marked as a candidate node for a query
node @ if the graph node ¢’s type-wise d-hop neighborhood
is a superset of the type-wise d-hop neighborhood expected
by the query node (). Further, computations are run from each
of these candidate nodes in the smallest list among various
query nodes, and matches are “grown” around them path-at-
a-time.

We propose two different online processing approaches for
approximate computation of GCOutliers : GCOD-RS and
GCOD-RM. Both of these approaches reduce execution time
by computing only a small fraction of the total matches
while ensuring high accuracy for GCOutlier computation.
While GCOD-RS depends on random sampling to achieve a
good time-accuracy trade-off in computation of Graph Cuboid
Outliers, GCOD-RM learns two regression models for every
query to further improve the trade-off. We discuss both these
approaches in detail in the following.

1) Graph Cuboid Outlier Detection using Random Sampling
(GCOD-RS):

In GCOD-RS, we adapt the baseline algorithm by random
sampling on the pool of candidate nodes. Thus, we use a small
percentage of candidate nodes to obtain the matches rather
than all the candidate nodes. This implies that the GCOD-
RS approach returns a sample of matches rather than all the
matches. The hope is that the random sample affects all the
cuboids equivalently and so the relative cuboid outlier rankings
do not change. We experiment by varying the percentage of
candidate nodes selected and show the time-accuracy trade-off
in Section IV.

The overall GCOutlier Detection Algorithm using Random
Sampling (GCOD-RS) is illustrated in Algorithm 1.

2) Graph Cuboid Outlier Detection using Regression Models
(GCOD-RM):

Similar to GCOD-RS, GCOD-RM first obtains a set of can-
didate nodes using the neighborhood topology checks of the
graph node and the query node. Random sampling of the
candidate nodes in GCOD-RS results in a very small number of
matches to be discovered if the rate of sampling is small. This



Algorithm 1 Graph Cuboid Outlier Detection Algorithm using
Random Sampling (GCOD-RS)

Input: (1) Graph G, (2) Query Q, (3) Index Parameter D, (4) Number of Outliers K
(5) Sampling rate 7

Output: K GCOutliers.

: Compute SPath Index using D, and List of Cuboid Edge Count for G once.

Compute node signatures NS for each node in Q.

Use NS-Containment neighborhood topology checks (as described in [11]) to

compute candidate nodes for every query node.

v < Query node with smallest sized candidate list.

CandidateList < Randomly sample with rate 7 from the candidate list for

G-

Compute matches using candidates in CandidateList only for g, using

SPath [11].

Map the matches to cuboids.

Compute outlier score for each cuboid and rank.

Return top K cuboids.
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Fig. 5. Graph Cuboid Outlier Detection (GCOD-RM) System Diagram

in turn can lead to poor accuracy for the GCOutlier Detection.
Therefore, in GCOD-RM, we perform a more principled
sampling using a node regression model. The node regression
model is used to predict the probability of a node belonging
to some match for the input query versus not. Further, we also
learn an edge regression model to predict the probability of
an edge being a part of some match or not. Edges with very
low probability are ignored when “growing” the matches from
selected candidate nodes.

The regression models are trained as follows. Given a query,
we first sample a few (say 7%) candidate nodes and then
perform computations to grow matches from those nodes.
Each of these candidate nodes are associated with a label
that denotes the number of matches of which this node is a
part of. Thus, nodes which are not a part of any match get
a label of zero. Similarly, edges incident on the candidate
node are assigned a score corresponding to the number of
matches that they are a part of, considering the computations
with the candidate node as the source. Note that only the
originating node and the edges incident on this node are used to
define the instances for training the node and edge regression
models respectively, because the true regression scores can
be evaluated only for these node and edges based on the
computations from the originating node. Such labeled node
and edge instances are then used to learn a node and an edge
regression model respectively.

For the edge regression model, the feature vector is a concate-
nation of the feature vectors for the two nodes on which the
edge is incident. The features for the node regression model
capture the heterogeneous topological structure associated with
each node as follows.

e  Graph Topology: Type-wise number of nodes in the
d-hop neighborhood of the node (d € D)

e  Graph vs Query Topology: Extra type-wise number
of nodes in the d-hop neighborhood of the node
compared to those expected by the corresponding
query node (d € D)

e Total degree of the node
e Type-wise degree of the node

e  Total number of d-hop neighbors of the node (d € D)

For our experiments, we use D = 2. Note that the candidate
node identification also uses the graph versus query topology
information to decide whether a node is a candidate node
or not. When making this decision, the algorithm needs to
ensure that the graph node neighborhood must be a superset
of the neighborhood expected by the query node. However, the
candidate node list computation fails to consider “how loose
a superset the graph node neighborhood is compared to the
expected query node neighborhood?” This signal is encoded as
the “Graph vs Query Topology” feature in the node regression
model as mentioned above.

Note that all these feature values can be computed using the
graph SPath index when the candidate list is being constructed
for every query node. Thus, feature computation does not
involve any extra time. Also, unlike the SPath index, (1) the
features store only the count of nodes of a particular type at
a particular distance and not the node ids themselves; (2) the
features are computed for a small set of graph candidate nodes.
Thus, the features can be easily loaded in main memory and
regression models can be easily learned.

Using the node regression model, the remaining candidate
nodes are ranked by the probability of being a part of some
match. The SPath match computation is then run using 8% of
these candidate nodes sorted in descending order of the prob-
ability. Thus for a smaller percentage of candidate nodes, one
can now expect to find a large number of matches compared to
GCOD-RS and hence higher accuracy. Edges are also sorted in
descending order by edge regression model output probability.
Edges below a particular threshold are removed from the graph
and ignored when running SPath computations. This means
that SPath computations will finish faster. We experiment by
varying the percentage of candidate nodes selected and show
the time-accuracy trade-off in Section IV.

The overall GCOutlier Detection Algorithm using regression
models is illustrated in Algorithm 2.

IV. EXPERIMENTS

Evaluation of outlier detection algorithms is quite difficult due
to lack of ground truth. We perform experiments on synthetic
graphs generated using the GT-Graph Software [22]. On syn-
thetic datasets we explore the time versus accuracy trade-off.
The distance parameter D for the SPath index is set to 2. The
execution times are obtained by repeating the experiments 10
times each for 10 queries. We also evaluate the results on
real datasets using case studies. We perform a comprehensive
analysis of the objects in the top outlier cuboids returned by the
proposed algorithm to justify their interestingness. The code



Algorithm 2 Graph Cuboid Outlier Detection Algorithm using
Regression Models (GCOD-RM)

Input: (1) Graph G, (2) Query Q, (3) Index Parameter D, (4) Number of Outliers K
(5) Sampling rate 7 and 6

Output: K GCOutliers.
: Compute SPath Index using D, and the list of Cuboid Edge Count for G once.
Compute node signatures NS¢ for each node in Q.
Use NSg and NSg stored in the SPath index to compute candidate nodes for
every query node.
v < Query node with smallest sized candidate list.
Sample with rate 7 from the candidate list for g, to obtain training data for node
and edge regression models.
Learn a node regression model based on this training data and obtain the probability
score for the remaining candidate nodes.
Learn an edge regression model based on this training data and obtain the
probability score for the edges.

CandidateList < Top 6% nodes in the descending order of the probability
score from the pool of candidate nodes.

9: Compute matches using candidates in CandidateList only for g, using

SPath [11].

10: Map the matches to cuboids.
11: Compute outlier score for each cuboid and rank.
12: Return top K cuboids.

N R o e

and the data sets are available at: https://www.dropbox.com/s/
bz08z8zx54qdigs/GCOutlier.zip?d1=0.

A. Synthetic Datasets

For most of the results presented in this section, we used a
graph with 10* nodes and 10° edges. Each node is assigned
a random type from 1 to 15. Each node is assigned a random
projection attribute value between 1 and 5.

Index Construction Time and Space

To verify the scalability of the approach, we used the GT-
Graph software to build graphs with 10%,10%,10°, 10 nodes
respectively. The number of edges is set to 10 times the number
of nodes. We observed that the index construction time and
the time to compute the cuboid edge count increased linearly
with the size of the graph. Cuboid edge count list computation
is about an order faster than the SPath index construction.
However, the cuboid edge count list requires very little space
(in KBs). It is constant and independent of the graph but
depends upon the number of unique values for the projection
attribute. We omit the plots for lack of space.

Query Execution Time Comparison

We experimented with path queries of sizes from 4 to 10.
We vary the percentage of candidate nodes for a given query.
Tables II show the number of matches for different percentage
of candidate nodes. Note that as the query size increases,
the number of matches increase, thus necessitating the use of
small number of candidate nodes to compute outliers for large
queries.

Figure 6 shows comparison of execution times for GCOD-RS
and GCOD-RM for varying percentage of candidate nodes.
The execution times are mentioned in milliseconds. Also, the
graph is plotted for queries with size 4. The trend is similar for
queries of other sizes too. The plot is drawn for 7 = 0.4. We
varied 7 as 0.2, 0.3 and 0.4 and again observed similar trends
except that the difference in execution times was smaller for
0.2 and 0.3 compared to this plot. The difference between the
two curves denotes the time required to generate the training
data (i.e., run SPath for 7 fraction of candidate nodes) and for
training the regression models.
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Fig. 6. Execution Time Comparison between GCOD-RS and GCOD-RM

- 1

o

2L

& 0.95

@

o

© 09

o

2

& o085

L

S 08

v

C

& 0.75

< 10 30 50 70

€ % nodes

Y

&  —e—GCOD-RS(|VQ|=4) —e—GCOD-RS(|VQ|=6)

GCOD-RS(|vQ]|=8) GCOD-RM(|VQ]|=4)
—e—GCOD-RM(|VQ|=6) —e—GCOD-RM(|VQ|=8)
Fig. 7. Spearman’s Rank Correlation Coefficient Comparison between

GCOD-RS and GCOD-RM

Accuracy Comparisons

We compare the GCOutlier score rankings obtained by varying
the percentage of candidate nodes for queries of different sizes.
Figures 7, 8 and 9 show the comparison between GCOD-RS
and GCOD-RM in terms of accuracy with respect to three
metrics: Spearman’s Rank Correlation Coefficient, Kendall’s
Tau Rank Correlation Coefficient and Precision @10.

It is interesting to find that even by taking a smaller percentage
of nodes, which helps in reducing our computation time,
a good accuracy is achieved. Considering just 10% of the
candidate nodes provides more than 60% accuracy across all
metrics. Also, in general GCOD-RM provides better accuracy
compared to GCOD-RS.

Finally, we combine the execution time and accuracy (Spear-
man’s coefficient) for the two algorithms for various query
sizes to present the time-accuracy trade-off in Figure 10. As
we can see, the trade-off favors GCOD-RS for smaller query
sizes, but the trade-off is better for GCOD-RM for larger
query sizes. We observed similar trends using other accuracy
metrics.

B. Real Datasets

We experiment with two real datasets: Delicious and Four
Area.


https://www.dropbox.com/s/bzo8z8zx54qdigs/GCOutlier.zip?dl=0
https://www.dropbox.com/s/bzo8z8zx54qdigs/GCOutlier.zip?dl=0

Table II.

Number of Matches for Various Experimental Settings

% nodes | [Vol=4 | [Vol=5 | [Vol=6 | [Vol=7 | [VoI=8 | [Vq|=9 | [Vq|=10
10 645 1845 7545 11605 39240 125615 241409
20 1578 3311 16359 21212 91575 348980 469198
40 2932 7042 36787 47798 181020 714290 841570
60 4514 11037 48377 75825 255496 1088511 1255223
80 6018 14257 62922 106550 335870 1511451 1600618
100 7691 18312 79029 128562 | 447797 | 1851787 | 1979479
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Fig. 8. Kendall’s Tau Rank Correlation Coefficient Comparison between
GCOD-RS and GCOD-RM

Delicious: The Delicious network consists of tagging events,
users, URLs and tags with ~83K nodes and ~588K edges. De-
licious provides a basic categorization on the home page which
we used to associate a few tags to categories. We consider
this category as the projection attribute, and hence project the
graph across these 10 dimensions: Arts and design, Education,
Fashion, Entertainment, Food, Lifestyle, News and Politics,
Sports, Tech and Science, Travel. Personalized PageRank is
used to propagate category labels from labeled tags to other
nodes. Average number of urls tagged by a user is 2.59, the
average number of tags for a url is 3.41 and the average number
of authors tagging a particular url is 1.15.

Four Area: This is a subnetwork from DBLP for the four areas
of data mining (DM), databases (DB), information retrieval
(IR) and machine learning (ML) and consists of papers from
20 conferences (5 per area) till 2008. There are ~74K nodes
and ~320K edges. Each conference is associated with one of
these research areas. Research area labels are propagated to
other nodes. We project the data on these research areas and
ranges of years. We consider these 4 ranges: 1989-1993, 1994-

—e—GCOD-RS(|VQ|=4) ——GCOD-RS(|VvQ]|=6)
GCOD-RS(|vQ|=8) GCOD-RM(|vQ|=4)
—e—GCOD-RM(|VQ|=6)—e—GCOD-RM(|VvQ|=8)

Fig. 9. Precision @10 Comparison between GCOD-RS and GCOD-RM

ul  Q url uUser Q user Author Q, Author
User Url Paper
7\
url url User User Author Author

Fig. 11. Queries: Q1 and Q2 for Delicious Dataset, ()3 for 4Area Dataset

1998, 1999-2003 and 2004-2008. Average number of authors
for a paper is 2.62.

SPath index construction took 9 minutes for Delicious and
1.84 hours for 4Area. SPath index sizes are ~500MB and
~1.84GB for Delicious and 4Area resp. Cuboid edge count
list is a few KBs for both datasets. For experiments on these
datasets we perform interesting sub-graph queries as shown in
Figure 11.

Results on Delicious Dataset

We projected out graph across 10 dimensions. Thus, given
a query, it can have matches across any of the 2!0 possible
cuboids. Based on the nodes containing the matches the possi-
ble cuboids are determined. Query ()1 aims to find categories
for which the users have tagged at least four urls. We found



that the maximum number of such queries were found in the
‘Sports’ category which consists of tags like bike, football,
rugby and so on. Query ()2 aims to find categories for which
the url have been tagged by at least four users. We found that
the maximum number of such queries were found in the cuboid
of three categories viz. ‘Arts and Design’, ‘Lifestyle’ and ‘Tech
and Science’ which consists of tags like opensource, mobile,
online, makeup, spa, design, music and so on. On average,
query execution time is 1.9 minutes for ); and 6.9 minutes
for Qg.

Results on Four Area Dataset

We projected our graph across four areas and four range of
years. This gives us a total number of 8 dimensions and hence
28 possible cuboids. Thus, given a query, it can have matches
across any of 28 cuboids. Query @3 aims to find research areas
and range of years for which the paper has been authored by
four authors. It was found that the maximum number of such
queries were found across the cuboid of five dimensions viz.
Databases and 1989-1993, 1994-1998,1999-2003 and 2004-
2008. This means that a high percentage of database papers
have been written by 4+ authors across various time ranges.
On average, query execution time is 5 minutes for Q)s.

V. RELATED WORK

Outlier detection has been an active area of research since
many decades. A number of surveys [12], [13] and books [14],
[15] give a thorough analysis on the existing techniques in
outlier detection. The proposed work is closely related to
outlier analysis in graphs. Several attempts have been made
on detecting outliers in graphs. Previous attempts on outlier
detection were on static graphs and used techniques like
Minimum Description Length [16], egonets [2], and commu-
nity detection [17]. In case of temporal networks, techniques
explored include similarity between graph snapshots [18],
spectral methods [19], community outliers [3], [20], [21], etc.
As discussed in Section I, recently query based outlier detec-
tion have become quite popular where outliers are discovered
from a graph in the context of a subgraph query. However, the
proposed work is different from the existing ones as it allows
to detect cuboid outliers using the graph OLAP framework,
from a heterogeneous network.

VI. CONCLUSION

We proposed the problem of finding outlier cuboids (GCOut-
liers) from graph OLAP with a query sensitive perspective.
The GCOutlier detection task is challenging because of a large
number of subgraph matches for a given query and also a large
number of projection attribute values (or dimensions). We pro-
posed two methods which performs approximate computation
of GCOutliers. Using several synthetic datasets, we found a
favorable time versus accuracy trade-off. Also experiments on
real datasets showed interesting GCOutlier examples. In the
future, we plan to answer questions like: Can we smartly select
the initial set of candidate nodes for training the regression
models to improve the time-accuracy trade-off further? What
could be a more effective set of features for the regression
model? Can we estimate outlierness density of cuboids without
actually computing all matches? What could be other interest-
ing ways of defining cuboid outlierness?
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