Switching Gene Regulatory Networks

Yoli Shavit!2, Boyan Yordanov?, Sara-Jane Dunn?, Christoph M.
Wintersteiger?, Youssef Hamadi?, and Hillel Kugler?3

1 University of Cambridge, UK
2 Microsoft Research
3 Bar-Ilan University, Israel

Abstract. A fundamental question in biology is how cells change into
specific cell types with unique roles throughout development. This pro-
cess can be viewed as a program prescribing the system dynamics, gov-
erned by a network of genetic interactions. Recent experimental evidence
suggests that these networks are not fixed but rather change their topol-
ogy as cells develop. Currently, there are limited tools for the construc-
tion and analysis of such self-modifying biological programs. We intro-
duce Switching Gene Regulatory Networks to enable the modeling and
analysis of network reconfiguration, and define the synthesis problem of
constructing switching networks from observations of cell behavior. We
solve the synthesis problem using Satisfiability Modulo Theories (SMT)
based methods, and evaluate the feasibility of our method by considering
a set of synthetic benchmarks exhibiting typical biological behavior of
cell development.

Keywords: Gene regulatory networks (GRNs), Boolean networks, Biological
Modeling, Satisfiability Modulo Theories (SMT), Synthesis, Self-modifying Code.

1 Introduction

The cell is a fundamental unit of biological systems. Many aspects of cellular
function are interpreted as the consequence of a series of genetic interactions that
ultimately determine the expression levels of genes within the cell. Such inter-
actions are composed into Gene Regulatory Networks (GRNs), which describe
how individual genes regulate one another. Computational modeling allows us
to represent a mechanistic understanding of GRNs, to formally compare model
simulations to experimental data, explore new hypotheses and perform in-silico
experiments.

Recent findings suggest that the process through which cells take on a specific
role, termed differentiation, might be implemented by changing the accessibility
of binding sites required for regulation [23], essentially enabling and disabling
interactions in the GRN. When considering network reconfiguration in cells,
self-modifying programs come to mind. Self-modifying programs are not a new
concept in software, but they have not become mainstream, mainly because in
most contexts they do not add expressive power, and they are hard to write

2 Y. Shavit et al.

and analyze. Consequently, modern program analysis tools have no, or very
limited, means of reasoning about such programs. It does appear, however, that
for biological modeling, supporting the concept of switching networks can provide
a useful abstraction for capturing the processes at work as cells change type.

To capture these phenomena, we introduce the concept of a Switching Gene
Regulatory Network (SGRN), a framework for the analysis and synthesis of self-
modifying biological programs. An SGRN is constructed to incorporate knowl-
edge of network topology and to reproduce and explain experimental observa-
tions of system dynamics, by integrating known biological hypotheses. We for-
malize our approach and provide an encoding of SGRNs and bounded temporal
constraints representing known experimental data, within a framework based on
Satisfiability Modulo Theories (SMT) solvers. This builds upon and extends our
previous work in the area, which supported only fixed GRNs [8, 26]. Finally, we
evaluate the performance of our approach on a set of synthetic benchmarks in
terms of running time, accuracy, and precision and we show that our method
is scalable and that it reliably recovers the changes taking place in the network
topology.

2 Background

We focus on Boolean networks (BNs) [13], a class of GRN models that are
Boolean abstractions of genetic systems, i.e. every gene is represented by a
Boolean variable specifying whether the gene is active or not. The concept of an
Abstract Boolean Network (ABN) was introduced in [8] to allow the representa-
tion of models with initially unknown network topologies and dynamics. ABNs
were then used to investigate the decision-making in pluripotent stem cells. In
the following, we briefly review the relevant definitions from [8], which serve as
a basis for the modeling approach described in later sections.

Let G be a finite set of genes and let £ : G x G x B — B denote the set
of directed edges between elements of G, labeled with a regulation activity (T
for positive and L for negative). Given genes g and ¢’, we call g an activator of
g if (9,4, T) € E, a repressor if (g,g9’, L) € E and a regulator if it is either of
those. Due to the Boolean abstraction of genetic states, the state space Q = BIC]
is induced implicitly where, for a given state ¢ € Q and gene g € G, ¢q(g) € B
denotes the state of g. An update function f, : @ — B defines the dynamics
of gene g. For a Boolean network with synchronous updates, the dynamics of
the system are defined in terms of the update functions of all genes applied at
each step, where given a current and next state ¢q,¢ € Q, /\gGG q'(9) = f4(q).
Although the presentation and examples in this paper focus on synchronous
semantics, we also support asynchronous updates, where at each step the update
function of only one gene is applied, while the value of all the other genes remains
unchanged.

A set of 18 biologically plausible update function templates, which are called
regulation conditions, was proposed in [8]. For a given gene g € G, each regulation
condition defines an update function f; : E' x) — B that respects biologically-

Switching Gene Regulatory Networks 3

inspired constraints. One such constraint is monotonicity, where the availability
of additional activators does not lead to the inactivation of a gene, i.e., if a gene
is expressed in ¢’ when only some of its activators are expressed in ¢, then it
must also be expressed in ¢’ if all its activators are expressed in ¢ and there is no
change in the presence of repressors. These regulation conditions only consider
whether none, some, or all potential activators or repressors of g are expressed
in a state q.

To capture the possible uncertainty in the precise network topology, the
ABN formalism allows some interactions to be marked as optional (denoted by
the set E”), each of which could be included in a synthesized concrete model (a
model where all interactions are definite). Thus, in terms of network topology,
an ABN model specifies a set of 212" concrete models, each corresponding to a
unique selection of optional interactions. Additionally, a choice of several possible
regulation conditions for each gene is allowed, leading to the following definition:

Definition 1 (Abstract Boolean Network [8]). An abstract Boolean net-
work (ABN) is a tuple N = (G,E,E?,R), where G is a finite set of genes,
E:GxGxB — B is the set of definite (positive and negative) interactions
between them, E7 : G x G x B — B is the set of optional interactions and
R = {Ry|g € G}, where R, specifies a (non-empty) set of possible regulation
conditions for each gene g € G.

An ABN is transformed into a concrete model by selecting a subset of the
optional interactions to be ing:luded and assigning a specific regulation condition
for each gene. Formally, let E? C E” denote the set of selected optional interac-
tions, £ = EUE? denote the set of all selected interactions and R, € R, denote
the specific regulation condition chosen for each gene g € GG. The semantics of
such a concrete model are defined in terms of a transition system 7 = (Q,T),
where Q = BI€l is the set of states (¢(g) € B is the state of gene ¢ in ¢ € Q) and
the transition relation T : Q X Q — B is defined as

Va.d €Q.T(q,q) < J\ d(9) = Ry(E,q). (1)
geG

A finite trajectory of a concrete model is defined as a sequence of states ¢t =
90,41, - -,qx where ¢; € Q and Yo<i<k -T(¢, ¢i+1). The semantics of an ABN
can be understood in terms of the choice of optional interactions E? and the
choice of a regulation condition for each gene, Rg, together with the transition
system T representing the resulting concrete model.

A set of experimental observations that each concrete model needs to be able
to satisfy are encodedA as predicates over system states which limits the possible
consistent choices of E7 and Rg. For instance, an experiment in which genes g and
g’ are observed to be initially active and become inactive at step K is formalized
as a constraint requiring the existence of a trajectory t = qq, ..., qx such that
q0(9) N qo(g’) N —qx(g) A =gk (g'). The approach developed in [8] allows GRN
synthesis for non-switching networks: given an ABN and a set of experiments,

4 Y. Shavit et al.

find a choice of interactions E? and regulation conditions ég for each gene,
guaranteeing that the resulting concrete model is consistent with all experimental
observations.

3 Switching Gene Regulatory Networks

We propose an extension of the ABN formalism, where transitions between
unique cell types, characterized by potentially different network topologies, are
directly supported. Let C' denote a set of cell types sharing a set of genes G
and regulation conditions R. Each cell type ¢ € C is modeled as an ABN
N, = (G, E., E’, R), where the set of definite interactions E. and optional inter-
actions E’ could be different for different cell types. Note that, while the network
topology is allowed to change between different cell types, we assume that the
possible regulation conditions R, € R depend only on a gene g € G and remain
consistent across cell types.

Arbitrary transitions between different cell types are not plausible in most
biological systems. For example, two distinct cell types ¢,¢’ € C can represent
a progenitor cell ¢ and a differentiated cell ¢’ that is derived from c¢. While the
progenitor can become a differentiated cell, the reverse does not occur under
normal conditions. For each cell ¢ € C, we capture this information using the
(non-empty) subset D, C C of all possible cell types that ¢ can transition into
directly. In order to capture mechanistic details within the model, our framework
also supports the addition of guards, encoded as state predicates, to further con-
strain cell type switches. In the absence of restrictive guards, switching between
cell types is represented as a nondeterministic choice (when |D.| > 1), without
explicitly modeling either the mechanism or preconditions on the system state
required for such a switch.

This leads to the following definition of SGRNs:

Definition 2 (Switching Gene Regulatory Network). A Switching Gene
Regulatory Network (SGRN) is a tuple Ns = (G,C, D, E., E’, R), where

— G is the finite set of genes,

— C is a finite set of cell types,

— for each ¢ € C, D, C C is the set of cell types that ¢ can transition into
directly,

— E.:GXGxB — B is the set of definite interactions between genes for each
ceC,

— Ec? :G X G xB — B is the set of optional interactions for cell type ¢, and

— R={Ry|g € G}, where Ry specifies a (non-empty) set of possible regulation
conditions for each gene g € G.

Fig. 1 shows an SGRN with 3 cell types: C' = {cg, c1,¢2}, and 6 genes: G =
{90, 91, 92, 93, 94, g5 }. In this example, a (progenitor) cell type, ¢y, may change
into cell types ¢; or ¢z, by reconfiguring its network, so that D., = {¢1,c2}, while
¢1 and ¢z cannot switch their identity (thus D., = {¢1} and D, = {c2}). For

Switching Gene Regulatory Networks 5

each cell type, edges between genes appear in solid or dashed lines for definite
(E.) or optional (E) interactions respectively. Genes appear in dashed circles
to indicate that R consists of multiple possible regulations conditions for each
gene.

Fig. 1. An SGRN with 3 cell types (c0-c2) with 6 genes (g0-g5), illustrating a typical
setting where one cell type (c0) can maintain its identity (self-loops) or give rise to
other cell types by switching its interactions. Edges between genes represent regulatory
interactions, with a bar representing repression and an arrow representing activation,
and appear as solid or dashed lines for definite or optional interaction, respectively.

As in Section 2, the semantics of SGRNs are defined in terms of a transition
system 7 = (Q,T). Here Q = BI¢l x C is the set of states where, for a given
state ¢ € Q, ¢ = (¢¢,49¢), 9c(g) € B indicates the state of a given gene g € G
and qo € C indicates the current cell type. For a concrete switching GRN model,
let E? C E! denote the set of selected optional interactions and E=E.U E?
denote the set of all selected interactions for each cell type ¢ € C. Let Rg € Ry
denote the specific regulation condition selected for each gene g € G, which is

6 Y. Shavit et al.

the same for all cell types. The transition relation 7' : Q x Q@ — B is defined as

Va,q' € Q. T(q,q) <)\ |ac=c— |qp € DN N\ a6(9) = Ry(Ee, qc)
ceC geG

(2)
Intuitively, Eqn. 2 captures the fact that all genes are updated according to the
selected regulation conditions Rg and the network topology E, corresponding
to the particular cell type c in the current state ¢. In the next state ¢, the cell
type can be updated (non-deterministically) to one of the possible cell types
D. C C that ¢ can transition into directly. As for ABNs, given an assignment of
the optional interactions E? for each cell type ¢ € C, and a specific regulation
condition Rg for each gene g € G, Eqn. 2 allows us to define finite trajectories
of the resulting concrete SGRN models as a sequence of states t = qo,q1,- .., 9K
from @ where Yo<i—o<x - T(qi, qi+1)-

4 SGRN model synthesis

We are interested in concrete SGRN models that are consistent with given ex-
perimental observations. In this section, we formalize this as a synthesis problem
and present the details of our solution and implementation.

A SGRN model Ns = (G,C, D, E., E, R) is transformed into a concrete
model by selecting a specific regulation condition Rg € R, for each gene g € G

and a subset of the optional interactions Ez C E! to be included for each cell
type ¢ € C. Each possible concrete model is represented as a transition system
T = (Q, T), where the system set of states is Q = B!l x C.

Let 7 : @ — B denote a state predicate capturing some observed gene states
or cell type and the tuple (m,7n) denote a constraint that, for a given trajectory
t = qo,...,qK, t satisfies 7 at step n (i.e. 7(¢n) = T). An experiment £ =
{(ms,n;) |t = 0...M}, where m; is a state predicate and n; € [0, K] for all
i € [0, M], is expressed as a finite set of such constraints and formalizes the gene
expressions or cell types observed during a particular execution of the system. We
write ¢ F & when trajectory ¢ satisfies experiment & (i.e. when A\ e 7(qn)).
More complicated expressions can also be constructed as part of an experiment
by combining terms (m,n) using the logical operators {A,V,=, <, —}.

The main problem we consider in this paper is the following:

Problem 1 (Lineage Synthesis) Given an SGRNNs = (G,C, Dc, E.., E?, R)
and a finite set of experiments &y, ..., Em, find an assignment E’Z of the optional
interactions E’ for each cell type ¢ € C and a single regulation condition]:Zg € Ry
for each gene g € G such that, for each i =0,...,m there exists a trajectory t;
of the resulting concrete model that satisfies &; (i.e. t; F &;).

Fig. 2 illustrates a lineage synthesis problem for an example SGRN.
Given an SGRN Ns = (G,C, Dc, E,, E?, R) we encode the choice of optional
interactions EZ for each cell type ¢ € C using a unique Boolean choice variable

Switching Gene Regulatory Networks 7

Fig. 2. A lineage synthesis problem. The SGRN from Fig. 1 and a finite set of ex-
periments define a lineage synthesis problem. A solution for this problem includes the
assignment of definite interactions for each cell type and the choice of a single regulation

condition for each gene.

1 10

co 0o 1 0 0 1 1

8 co 1 0 1 0 0 1
1 0 1 0 0 1

E\perlment 2

0 0
ESE NS08 S8 S 08 S0S 8]
0 1

10 c2 1 0 0 1
0 co 1 1 0 0 1 O
10 co 1 0 I 0 0 1

Synthesis

for each interaction, or more conveniently, as a single bit-vector using the re-
spective SMT theory. Additionally, a single regulation condition Rg from the set
of allowed conditions R, must be selected for each gene g € G. We encode this
as the synthesis of a single bit-vector or integer ‘coefficient’ for each gene, which
is shared across all cell types.

The choice variables for optional interactions of each cell type and regulation
conditions for each gene allow us to consider the transition system 7 = (Q,T) as
defined in Section 3, which represents a given concrete model. The set of states
Q = BI¢l x C is finite since both the number of genes G and the number of cell

8 Y. Shavit et al.

types C are finite. Furthermore, for a given state ¢ € @ where ¢ = (¢¢, gc), the
component of the state space describing the state of all genes ¢¢ is encoded as
a single bit-vector using the SMT theory of bit-vectors. In our implementation,
we represent the cell type component of a state ¢gc using a “one-hot” encoding,
where gc € BICl with the guarantee that the cardinality of gc for any state
g € @Q is 1. This allows us to represent the entire state (¢g,gc) as individual
Boolean variables or as a single bit-vector.

We follow a bounded model checking (BMC) approach [4], and unroll the
transition relation T of T to define a trajectory t; for each experiment &; (see
Problem 1), for which the corresponding experimental observations from &; are
asserted. Note that while a separate trajectory t; is used for each experiment &;,
we do not require these trajectories to be unique (i.e. it is possible that a single
trajectory t = t; = t; satisfies the constraints of both experiments &; and &;).

Finally, we employ an SMT solver to determine the satisfiability of all gener-
ated constraints (our choice of SMT solver is Z3 [16]). Here, we exploit the fact
that SMT solvers such as Z3 produce an assignment of all the constants used in
the encoding of the problem, which is presented as a certificate of the satisfia-
bility of all constraints. When such an assignment (referred to as a “model” in
this context) is found, we extract the optional interactions EZ selected for each
cell type and the regulation condition Iég selected for each gene. In addition,
since each trajectory t; was represented explicitly as part of the problem, the
exact sequence of states is recovered from the model synthesized by the SMT
solver, to serve as an example demonstrating exactly how the SGRN reproduces
the behavior observed in each experiment &;. In addition to the sequence of
gene expressions at each time point, this information also reveals the cell types
along executions of the system, allowing for further investigation of the captured
cellular differentiation processes.

5 Experimental Results

In order to test our approach and systematically evaluate its performance we re-
quire benchmarks of lineage synthesis problems for SGRNs with different number
of genes and cell types. This is achieved by producing synthetic problems, fol-
lowing the main steps summarized in Fig. 3 and described in Subsection 5.1.
Subsection 5.2 gives the results of our evaluation in terms of accuracy, precision
and running time.

5.1 Benchmark Design

Cell types are defined by directed networks with a scale-free topology (the degree
of the vertices follows a power-law distribution), which is a common feature
of GRNs and other biological networks [2], with the exponent of the degree
distribution set to 2 (for both in- and out- degree distributions). Interactions are
labelled with either a positive or negative sign, such that each gene has at least
one activator. This is in keeping with the assumption that, by default, genes are

Switching Gene Regulatory Networks 9

Fig. 3. The three steps for generating an in-silico lineage synthesis problems involve: (a)
randomly generating a concrete SGRN, where all interactions are definite and a single
regulation condition is allowed for each gene. (b) Generating trajectories of the concrete
SGRN model from (a). This essentially amounts to simulation, which is possible since
the model does not include any uncertainty. (¢) Generating a lineage synthesis problem
with partial information about the interactions in the system (encoded as an SGRN)
and the trajectories it produces (encoded as experimental observations).

cell: cO0 .. cl cl cej.Ll:

gl: 1. 0 0 gl:

g2: 0. 1 1 92

g3: 0. 0 1 gz

gd: 1. 1 1

—>

cells €0 e €2 €2

gl S . 0 0

g2: 0 .. 1 1 (o

g3: 0. 1 1 &,

gd: 1. i 0 ®
(a) Generate the SGRN. (b) Generate trajectories. (c) Set up the problem.
Assign interactions between Trace the gene states as Hide information about
genes in each cell type. the cell switches its type. switches and cells’ topology.

repressed in higher organisms, and must be “switched on” to be expressed and
behave as regulators of their target genes [19]. A regulation condition is randomly
assigned to each gene from a set of 16 out of the 18 regulation conditions defined
in [8], excluding the two functions that allow activation of a gene in the absence
of any activators. For a given model with m cell types, n genes, and a progenitor
cell type cg, we generate 2 - m - n trajectories of length K = 11 starting at c¢g
with a gene state configuration j, and switching to cell type ¢; at a randomly
selected time point s, for i =0 ..m, j =1 . 2n and 1 < s < K. In order
to create the set of 2n starting gene state configurations, we randomly select
2n — 2 integer values in the range (0,2" — 1) (exclusive) and add the values 0
and 2™ — 1, representing the extreme configurations of the system. System states
are represented by bit-vectors of size |G|, where the k" position in the vector
represents the state of the k" gene.

To construct an instance of the lineage synthesis problem, each model (gen-
erated as described above) is used to produce a SGRN and its trajectories are
encoded as experimental observations. We assume no information about the ex-
act regulation conditions available and, therefore, all 16 choices are allowed for
each gene. Let E; denote the interactions of cell type c in the “true” model and
E* = Ucec EY denote the interactions appearing in any cell type. We construct
the SGRN by assigning a small proportion (20%) of E¥* as definite for cell type ¢
(representing known interactions) and marking the rest of E* as optional, which
defines the sets E, and E_ respectively (Fig. 4). Each trajectory is then used to
generate an experiment with the gene states observed at each time step, and the
cell type observed at the start and at the end of the experiment (time steps 0
and 10, correspondingly). In total, this amounts to 2-m-n experiments included
in a lineage synthesis problem of m cells and n genes.

10 Y. Shavit et al.

Fig. 4. A true, a hypothesized, and a synthesized progenitor cell type in an SGRN with
6 genes (g0-g5) and 3 cell types. The true cell type (a) was generated with a scale-free
topology. The union of all cell types in the SGRN was used to create the hypothesized
cell type (optional interactions appear as dashed lines) with a small proportion of its
true interactions known (solid lines). Genes appear with dashed circles to indicate that
their regulation condition is not fixed. The synthesized cell type is part of our solution
for a lineage synthesis problem generated for this SGRN and recovers the true cell type
with the exception of the negative interaction from g5 to g4.

‘)
5.9¢)

Tk

(a) True (b) Hypothesis (c) Synthesis

5.2 Results

We demonstrate our technique on benchmarks of lineage synthesis problems with
1-7 cell types and 4-10 genes, generated as described above. For each problem
we record the running time required to solve and we evaluate solutions by means
of accuracy and precision in relation to the ‘hidden’ true model from which each
problem was generated.

Let E’ denote the “true” interactions of cell type ¢, E. (E?) denote the
definite (optional) interactions of the corresponding SGRN cell type, and E,
(E?) denote the synthesized (optional) interactions. A True Positive (Negative)
is an interaction that is (not) in Ez and (not) in E¥ (note that we evaluate the
synthesis of only those interactions that were optional in the SGRN since definite
interactions will always be part of the synthesized model). A False Positive is an
interaction in E? that is not in £} and a False Negative is an interaction in E*

that is not in E‘Z The precision of a solution for a given cell type is then defined
as TPZ%, and its accuracy as %, with TP, TN, FP and F'N, the
number of True Positives, True Negatives, False Positives and False Negatives,
respectively. The total precision and accuracy of a solution is the mean precision
and accuracy across all cell types in the problem.

The results of our evaluation (Fig. 5a,b) show that our approach can suc-
cessfully recover hidden topologies of SGRNs, achieving 0.81 accuracy and 0.78

precision (on average, across 2-7 cell types and 1-10 genes). As evident from

Switching Gene Regulatory Networks 11

the heatmaps in Fig. 5a.,b, cell types are synthesized with good accuracy across
problems (17% with accuracy > 0.9, 86% of cases with accuracy > 0.7 and all
problems with accuracy > 0.6) and with good precision in the majority of cases
(71% of cases with precision > 0.7). For our benchmarks, the performance seems
to be independent of the number of cells or genes. The running time of our syn-
thesis is also feasible for the SGRNs under consideration, with all problems in
the benchmark set solved in under an hour on a personal computer (Intel Core
i3-4010U 1.7GHz, 4GB RAM, Windows 8.1 64-bit OS) and with an average
running time of 730.25 seconds (Fig. 5¢).

Fig. 5. Heatmaps of experimental results for a benchmark of lineage synthesis problems
with 1-7 cells and 4-10 genes. Darker pixels indicate higher accuracy (a) and precision
(b), while lighter pixels indicate poorer performance. Running times (c) are indicated

on a color scale from white to black, with darker pixels for longer running times.

1.0 3500

~

6

5

3

2

Number of Cell Types
4

0.0 4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10 00
Number of Genes Number of Genes Number of Genes
(a) Accuracy (b) Precision (c) Running Times (sec.)

6 Related Work

Since the early days of computer science, the concept of self-modifying programs
has been a natural one to explore, especially after the introduction of the Von
Neumann architecture [17], in which both the program and the data were stored
in the same memory, leading to the possibility of allowing program modification
during runtime. This model was supported in early computer architectures (cf.
e.g., [3]) and applied in some specific domains, however it did not become a
mainstream paradigm.

Boolean networks have been suggested for studying cell differentiation [13,
24]. In this context the concept of switching was mainly used to describe changes
in the state of the nodes (genes) rather than the reconfiguration of the topology
of the network itself. The change in the gene’s state could be a result of exe-
cuting the GRN and by including additional effects such as the spatio-temporal
dynamics of the neighbouring cellular (tissue) environment (for example: [7, 10]).
However, little attention was given to the rewiring of the network as a mechanism
to achieve differentiation or changes in the cellular function.

12 Y. Shavit et al.

Petrinets and their extensions have been used in modeling of GRNs (see
e.g., [5,11]) and in particular the extension of self-modifying nets [25] enables to
describe reconfiguration of Petrinets. This is achieved by allowing an arc to refer
to a place, implying that the number of tokens in this place should be added/re-
moved while firing the transition. The number of tokens in a place can change
during execution leading to the ‘reconfiguration’ of the net. Self-modifying nets
and further extensions have been used in modeling of metabolic networks [12],
where self-modification permits the representation of concentrations and kinetic
effects. It is known that self-modifying Petrinets are more expressive than con-
ventional Petrinets, making the reachability problem undecidable [25], whereas
in our work we defined a framework in which the basic dynamic properties of
the system remain decidable.

Bayesian networks have been extensively applied to the problem of inference
of gene regulatory networks from time series data [9]. Unlike our work, these
methods handle continuous variables and stochastic events, but they lack some
of the general advantages of reasoning based approaches, including proofs that
solutions do not exist and effective ways to symbolically reason about sets of so-
lutions. More recently, there has been research on generalizing Bayesian networks
inference to the case of time varying networks (e.g., [21,22, 1,18, 6, 14]).

Related concepts of switching have also been introduced and explored in other
fields. For example, mode-automata was proposed as a formalism for modelling
reactive systems, in order to capture explicitly a decomposition of the system’s
global behaviour into multiple independent tasks [15]. In our work, however, such
a decomposition is not fully known a priori and our focus is on synthesizing the
structure of the system in different cell types, which can be viewed as modes,
together with the transitions between them. Thus, our approach is also related
to methods for the synthesis of controllers for discrete event systems (e.g. [20])
- a problem that has received considerable attention. However, the problem we
address requires the synthesis of a system for each cell type such that the overall
behaviour reproduces certain experimental observations, rather than synthesiz-
ing a controller that, when coupled with the system, restricts its behaviour to
some desirable subset.

7 Conclusion

Computational methods are becoming a powerful tool for experimental biologists
to improve the understanding of cellular decision-making. In particular, formal
reasoning and different synthesis approaches are attractive as they enable the
automatic generation of models that are guaranteed to satisfy a given set of con-
straints representing known experimental measurements. Motivated by recent
biological evidence suggesting that it makes sense to view a molecular program
within a cell as a self-modifying program, we introduce a framework that allows
us to represent cellular reconfiguration, and effectively synthesize models that
are consistent with experimental constraints and hypotheses. This opens the
way to combined computational and experimental research to improve our un-

Switching Gene Regulatory Networks 13

derstanding of how cells differentiate into specific cell types during development,
as well as how cells may modify their behavior under artificial culture conditions
used for research and medical applications. A long-term research goal is to gain
a mechanistic understanding of how self-modifying biological programs operate
and investigate whether the underlying principles nature utilizes can inspire new
directions for the design of self-modifying software.

Acknowledgments. Yoli Shavit is supported by the Cambridge International
Scholarship Scheme (CISS). The research was carried out during her internship
at Microsoft Research Cambridge, UK.

References

10.

11.

12.

13.

14.

15.

Ahmed, A., Xing, E.: Recovering time-varying networks of dependencies in social
and biological studies. Proc. Nat. Acad. of Sciences 106(29) (2009)

Albert, R.: Scale-free networks in cell biology. J Cell Sci. 118 (2005)

Bashe, C., Johnson, L., Palmer, J., Pugh, E.: IBM’s early computers. MIT Press
(1986)

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, vol. 1579 of LNCS, Springer (1999)

Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformat-
ics 8(4) (2007)

Dondelinger, F., Lébre, S., Husmeier, D.: Non-homogeneous dynamic bayesian net-
works with bayesian regularization for inferring gene regulatory networks with
gradually time-varying structure. Machine Learning 90(2) (2013)

Doursat, R.: The growing canvas of biological development: Multiscale pattern
generation on an expanding lattice of gene regulatory nets. In: Minai, A., Braha, D.,
Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems, pp. 205-210. Springer
Berlin Heidelberg (2008)

Dunn, S., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essential
transcription factor program for naive pluripotency. Science 344(6188) (2014)
Friedman, N.; Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to an-
alyze expression data. J. Comp. Bio. 3(7) (2000)

Giavittob, J., Klaudela, H., Pommereau, F.: Integrated regulatory networks
(IRNs): Spatially organized biochemical modules. Theoretical Computer Science
431(0), 219-234 (2012)

Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.
FMCSB 5016 (2008)

Hofestadt, R., Thelen, S.: Quantitative modeling of biochemical networks. In Silico
Biology 1(1) (1998)

Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3) (1969)

Khan, J., Bouaynaya, N., Fathallah-Shaykh, H.: Tracking of time-varying genomic
regulatory networks with a lasso-kalman smoother. EURASIP J. Bioinf. and Sys.
Bio. 3 (2014)

Maraninchi, F.; Rémond, Y.: Mode-automata: About modes and states for reactive
systems. In: European Symposium On Programming (1998)

14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Y. Shavit et al.

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: TACAS. LNCS, vol.
4963. Springer (2008)

von Neumann, J.: First draft of a report on the EDVAC. Tech. Rep. Contract No.
W6700RD4926, Moore School of Elec. Eng., Univ. of Pennsylvania (1945)
Parikh, A., Wu, W., Curtis, R., Xing, E.: TREEGL: reverse engineering tree-
evolving gene networks underlying developing biological lineages. Bioinf. 27(13)
(2011)

Phillips, T.: Regulation of transcription and gene expression in eukaryotes. Nature
Education 1 (2008)

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206-230 (1987)

Rao, A., Hero, A., States, D., Engel, J.: Inferring time-varying network topologies
from gene expression data. EURASIP J. Bioinformatics Syst. Biol. 1 (2007)
Song, L., Kolar, M., Xing, E.: Time-varying dynamic Bayesian networks. In: Ad-
vances in Neural Information Processing Systems (NIPS) (2009)

Stergachis et al.: Developmental fate and cellular maturity encoded in human reg-
ulatory DNA landscapes. Cell 154 (2013)

Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and
memory. ii. logical analysis of regulatory networks in terms of feedback circuits.
Chaos 11(1), 180-95 (2001)

Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Proc. 5th Collo-
quium on Automata, Languages and Programming. LNCS, vol. 62. Springer (1978)
Yordanov, B., Wintersteiger, C., Hamadi, Y., Kugler, H.: Z34Bio: An SMT-based
framework for analyzing biological computation. In: SMT (2013)

