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ABSTRACT

Labelled image datasets are the backbone for high-level im-
age understanding tasks with wide application scenarios,
and continuously drive and evaluate the progress of fea-
ture designing and supervised learning models. Recently,
the million scale labelled image dataset further contributes
to the rebirth of deep convolutional neural network and by-
pass manual designing handcraft features. However, the con-
struction process of image dataset is mainly manual-based
and quite labor intensive, which often take years’ efforts to
construct a million scale dataset with high quality. In this
paper, we propose a deep learning based method to construc-
t large scale image dataset in an automatic way. Specifically,
word representation and image representation are learned in
a deep neural network from large amount of click-through
logs, and further used to define word-word similarity and
image-word similarity. These two similarities are used to
automatize the two labor intensive steps in manual-based
image dataset construction: query formation and noisy im-
age removal. With a new proposed cross convolutional filter
regularizer, we can construct a million scale image dataset
in one week. Finally, two image datasets are constructed
to verify the effectiveness of the method. In addition to
scale, the automatically constructed dataset has compara-
ble accuracy, diversity and cross-dataset generalization with
manually labelled image datasets.
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1. INTRODUCTION

Image datasets with category labels serve as the backbone
for high-level image understanding tasks, and typically used
by splitting into training set for model learning and testing
set for performance evaluation. With the help of crowd-
sourcing, ImageNet constructed by manually labeling has
reached million scale [6] and acts as one important factor
for the great success of deep convolutional neural network
by automatically learning visual features [16, 22, 23].

However, the process of manual-based image dataset con-
struction is both time consuming and labor intensive. For
example, ImageNet has taken years’ efforts to label 21841
categories (nouns from WordNet [18]), which is still far from
their goal to label all WordNet nouns, not to mention the
continuously emerging categories such as new products and
cartoon characters. Even worse, the time cost will cause long
latency for application scenarios which require constructing
datasets with their own category lists.

To find ways to shorten the construction process, we ana-
lyze the whole process by breaking down it into three steps:

1. Category list generation, which is often pre-defined ac-
cording to specific task;

2. Query formation, where each category is expanded to
a set of queries by referring synonyms in existing ontol-
ogy such as WordNet, then submitted to image search
engines to collect candidate images.

3. Noisy image removal, manually verifying each candi-
date image to removal noisy images.

Obviously, the most time-consuming part comes from step
2 and 3 especially when the number of categories is large.



Step 2 can be bypassed if categories already exist in some
predefined ontology, but efforts are required for new emerg-
ing categories. While step 3 is extremely time-consuming
since there are thousands of images need to be manually
verified for each category.

In this work, we propose to relieve the cost by automa-
tizing both step 2 and 3, and construct high quality image
datasets in a scalable and timely manner. The proposed
method relies on click-through logs from image search en-
gine where lots interactions between queries and images have
been associated, and learns both image representation and
word representation in a deep learning framework. With the
learned representations, word-word similarity and image-
word similarity can be effectively calculated. The word-word
similarity is used to automatize step 2 by finding similar
words for each category. Meanwhile, image-word similarity
is used to automatically verify candidate images by remov-
ing noisy images that are of low similarity to the catego-
ry. In the used deep neural network, image representation
is modeled by convolutional layers and a fully-connect lay-
er (also some layers without weights such as max-pooling
layer), and word representation is formulated as a weight
matrix of a fully-connected layer following the fully-connect
layer of image representation. To resist heavy tail distribu-
tion in click-through logs, we further introduce a regularizer
called “Cross Filters Regularization” to speed up the training
process.

To verify the effectiveness of the proposed automatic im-
age dataset construction method, we first construct a small
scale dataset with 10 categories, and show its cross-dataset
generalization ability by comparing with other two manually
constructed datasets. Furthermore, to verify the scalabili-
ty of our method, we construct another large scale dataset
with 1000 categories and demonstrate its comparable accu-
racy and diversity with other human labelled high quality
datasets.

Figure 1: A snapshot of click-through logs from Bing
image search. Images marked with red boxes are
noisy images.

The rest of the paper is organized as follow. We cover
related work in Section 2 and then present our automatic
method for image dataset construction in Section 3. In Sec-
tion 4, we apply the proposed method to construct datasets,
and analysis characteristics of the constructed datasets in
detail. Finally, we discussion conclusions and future work in
Section 5.

2. RELATED WORK

Considering the importance of image datasets in the area
of image content understanding, lots of efforts have been
involved in constructing image datasets. Most works are
manually based, while some works explore automatic ways
as ours.

2.1 Manual based image dataset construction

The classical way to build an image dataset is manually
based (e.g., ImageNet [6], CIFAR-10/100 [15], Pascal VOC
series [8], Caltech-101/256 [9, 11], LabelMe [20], SUN [28],
etc.). Most of these datasets are built by sending catego-
ry names to image search engines and aggregating returned
images as candidate images, then cleaning candidate images
by human judgement. Here, we briefly discuss these works
along the steps involved in image dataset construction:

Generating Category List 'The generation of category list
depends on specific tasks. For example, SUN [28] targets
on scene recognition task by defining 899 scene categories.
Borth et al. [1] proposed to detect visual sentiment by con-
structing a dataset around a category list with strong sen-
timent. Datasets such as Tinylmage [25] and ImageNet [6]
directly adopt nouns of WordNet as category list, which cov-
er a large amount of objects but are still far from complete.

Query formation Since most image search engines re-
strict the number of images returned for each query (in the
order of hundreds to one thousand) and only top ranked
images are with acceptable precision. To overcome the re-
striction, synonyms are often used to expand a category into
a query set. Moreover, methods such as appending category
with popular adjectives and words from its parent category,
even translating category to different languages are further
used to enrich the query set. All expanded queries will sub-
mit to several popular image search engines to collect candi-
date images from Internet. The method only works for cate-
gories defined from existing ontology such as WordNet [18],
and cannot generalize to categories that have not been com-
piled into existing ontology. Recently, word embedding [5,
19] provides a learning based method to compute similarity
between words and can be used to bypass the manual com-
pilation of ontology. In this paper, we use learning based
method to obtain word representations, and automatically
expand a category to a query set.

Noisy image removal The candidate images contains lots
noisy images with average accuracy around 10% [6]. Human
efforts are involved to remove noisy images by checking can-
didate images one by one. As this step is quite time consum-
ing and labor intensive, NUS-WIDE only partially labelled
the whole dataset [3], while TinyImage [25] and visual senti-
ment dataset [1] keep all raw candidate images without man-
ual labelling. We are interested in generating high quality
image dataset without manual labelling. By leveraging the
power of deep neural network, noisy images are automati-
cally removed by calculating image-category similarity with
the learned image representation and word representation.

2.2 Learning based image dataset construction

To save labelling cost, some works also explored in the di-
rection of learning based image dataset construction. Collins
et al. [4] proposed to construct image dataset in a semi-
automatic manner by using active learning. Several ran-
domly selected images are firstly labelled by human as seed
training set for classifier learning, then the learned classifier



is used to examine the unlabelled images to find out uncon-
fident images for manual labelling. The process is iterated
until sufficient classification accuracy is obtained.

To further reduce labelling cost, semi-supervised learning
is applied to learn classifiers from small amount of labelled
images and large amount of unlabelled images. These la-
belled images can be manually labelled [21] or top-ranked
images from image search engines [2, 7, 17]. Schroff et al.
proposed a multi-modal approach by employing both text,
metadata and visual features to remove noisy images. Hua
et al. [12] proposed clustering based method and propaga-
tion based method to remove noisy images, where clustering
based method removes large irrelevant image “groups” and
propagation based method further removes relatively small-
er noises. The human cost of this method lies in labelling
clusters to learn cluster level classifier for irrelevant cluster
removal.

There are lots of work related to the step of noisy im-
age removal though not aiming for dataset construction. To
name a few, Weston et al. [27] proposed to represent images
and annotations jointly in a low dimensional embedding s-
pace for relevance estimation, the method is limited by the
used low level visual representations. Frome et al. [10] pro-
posed to map images into a semantic space learned via word
embedding from large scale text corpus. However, the se-
mantic space constructed from text corpus is suitable for
NLP tasks while not necessarily reflects visual similarity.

In summary, exiting learning based methods save human
cost by leveraging the generalization ability of machine learn-
ing models. However, the generalization ability is affected
by both quantity and quality of manually labelled images,
also models’ capability where shallow models are limited. To
the best of our knowledge, we are the first to use deep neural
network for fully-automatic image dataset construction by
gaining generalization ability from large scale click-through
logs.

3. AUTOMATIC APPROACH

We are targeting at constructing image dataset in a scal-
able way while ensuring both accuracy and diversity. The
basic idea is to automatize the two most labor cost steps:
query formation and noisy image removal. In a computa-
tional perspective, the core components for these two steps
are two similarity metrics, one is word-word similarity to
expand each category to a set of similar words, the other
is image-word similarity to remove images not relevant to a
category. Furthermore, these two similarity metrics are well
defined if word representation and image representation can
be effectively obtained. Inspired by the success of deep learn-
ing in learning word representation for NLP tasks [5] and
image representation for image classification [16], we learn
these two representations simultaneously in a deep neural
network. To train such a complex model with millions pa-
rameters, we resort to large scale click-through logs from
image search engine. With the trained model, word rep-
resentation and image representation are naturally defined,
and word-word similarity and image-word similarity are fur-
ther obtained which are used for automatizing the two labor
intensive steps in image dataset construction.

3.1 Representation Learning via DNN

We will first introduce how to model the word representa-
tion, image representation and their associations. All these
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Figure 2: Illustration of our process for automatic
image dataset construction. For a given category
such as “computer”, we first find its similar words
with learned word representation, then collect the
relevant images from click-through logs according to
the similarity between image and similar word set.

computation are then carried by introducing a deep neural
network. The learning process is performed on the deep neu-
ral network through standard method using click-through
logs.

3.1.1 Word Representation

Similar to word embedding technique which has success-
fully used in NLP tasks [5], we also represent each word w in
vocabulary V ! as a vector e,, € RPw in a continuous space,
and denote all word embedding vectors as a matrix E. In-
stead of learning the representation using text corpus with
context constraints which often results only syntactic-level
similarity, the word representation will be directly learned
using click-through logs together with image representation.

3.1.2 Image Representation

Convolutional neural network has demonstrated its supe-
riority in learning image representation from low level to
middle level until high level [29]. The network used for im-
age representation learning contains four convolutional lay-
ers and one fully-connected layer, three max-pooling layers
are used following the first, second and fourth convolution-
al layers, two local contrast normalization layers are used
following the first and second convolutional layers. For im-
age I, its representation is obtained from the output vector
£(I;0image) € RPi of the last fully-connected layer, where
Oimage denotes all parameters in the network for image rep-

In this paper, we use top 50,000 most frequent words in
click-through logs as vocabulary
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Figure 3: Illustration of the deep neural network for image-query association. The output vector f(I) of the

first fully-connected layer gives the image representation.

The weight matrix £ encodes word representations

in the whole vocabulary. « is the bag-of-textual-words vector generated based on queries.

resentation learning and will be omitted for clarity. Here,
we set the dimension of image vector D; equal to the di-
mension of word vector D,, for easing image-word similarity
caculation.

3.1.3 Image-Query Association

The word representation and image representation are de-
termined by E and 0image, respectively. We follow the s-
tandard machine learning pipeline to learn all parameter-
s using supervision from large scale click-through logs. In
click-through logs, large number associations are established
between queries and images through massive user interac-
tions with image search engine. All queries clicked to image
I are merged into a document W; to form the image’s word
based representation. Through average composition, docu-
ment W; can also be represented as a vector in the same
space of word

ew; = Z Q€ (1)
w; EWr

where «; is the tf-idf weight for word w;.

Image I and its associated document W7 is similar based
on the judgement of user clicks, should also be similar mea-
sured by image representation and word representation, i.e.,

sim(Wr, I) = (ew,, £(I)) )

=( 3 aiew, £(D)) (3)
w; EWp
= > ailew,, f(1) (4)
= :E:: C¥i<‘3uu7 f(])> (5)
w; EV
= (o, Ef(I)) (6)

Eq(5) summarizes over all words in vocabulary V where the
weights of words not in Wy are zero. Ef(I) can be computed
as the output of a fully-connected layer with weight matrix
E and input f(I). Then all computations can be carried in
a deep neural network as illustrated in Figure 3.

To avoid trivial solution that maximizes sim(Wy,I) by
simply scaling E or f(I) , we further modify the dot product
into cosine similarity

. (e, E£(1))
W) = o e g
Then the objective function on the whole click-through dataset
is defined as

1 & 8
Jo0) = -5 > sim(Wr,, 1) + S el (8)
i=1

where § summarizes all parameters in E and €image-

3.1.4 Cross Convolutional Filters Regularization

The query distribution in click-through dataset has a very
long tail. That is only a few of words are frequently ap-
peared, while most words are with low frequency. It also
means large amount of similar inputs are fed into DNN fre-
quently during the training process, which leads detection
of high-frequency patterns with large neuron responses, and
filters in convolutional layers are prone to activate for those
highly frequent inputs. Thus, there usually are lots of high-
ly similar filters in convolutional layers at the beginning of
training. These highly similar filters not only waste the ca-
pacity of the model, but also cause the neural network con-
verge slowly.

To speed up the training process, we add a new regularizer
called Cross Convolutional Filters Regularization (CFR) to
penalize highly similar filters by adding a regularization term
to the objective function. Then the final objective function
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Figure 4: Visualization of filters at the 19th epoch of training. we show the strongest activations in a random
subset of the last convolutional layer’s feature maps across the click image dataset. The corresponding image
patches for each feature map are also shown in the figure: a) DNN, b) DNN+CFR.
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where L is the total number of convolutional layers in the
neural network, s; is the number of filters in layer [, and
6! is the parameter vector of the ith filter in layer I. The
first term measures the fitness of the neural network on the
click-through dataset. The second term is a weight decay
term that penalizes weights with large magnitude and used
to avoid overfitting. The third term is cross convolutional
filters regularization, which aims to penalize highly similar
filters.

Figure 4a and 4b visualize the learned filters before and
after adding CFR at the early stage of training. The filters
are from the last convolutional layer and visualized by image
patches with the strongest activations and their deconvolu-
tion versions as proposed by [29]. Obviously, CFR can help
the network learn more diverse filters, while without CFR,
capacity is wasted with lots of similar filters. Figure 5 com-
pares the learning curve of average cosine similarity in the
training process, CFR can significantly speed up the training
process.

3.1.5 Training Details

The training process of the whole model follows standard
training setting of deep neural network. Specifically, we
trained our model using stochastic gradient descent with a
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Figure 5: Learning curves of DNN and DNN with
CFR. DNN with CFR reaches 0.13 average cosine
similarity three times faster than without CFR.

mini-batch size of 128 samples, weight decay of 5 x 1074,
cross convolutional filters regularization of 5 x 1074, and
dropout rate of 0.5 for the first fully-connected layer. The
learning rate was initially set to 1, and then decreased by
a factor of 10 when average cosine similarity score on vali-
dation set stops improving. In total, the learning rate was
decreased 4 times.

We initialized the weights in each layers from a normal
distribution with the zero mean and 0.01 variance. The
neuron biases in the first full-connected hidden layer and



Figure 6: t-SNE visualization of learned word representations of 5,000 randomly selected words, each word
is projected as a point in the two dimensional space. Left: each point is pasted with an image clicked by the
word. Right: each point is pasted with the string of the word. Middle: Zoom-in to three regions.

the second, fourth convolutional layers were initialized with
the constant 1, while the neuron biases in the remaining
layers were initialized with zero.

It should be noted that CFR is only used in the early stage
of training and removed when learning rate decreased to
0.01. After warm start with less highly similar filters, CFR
is removed to let give the objective function more flexility
to fit training data.

3.2 Constructing Image Dataset

In this section, we present the automatic way to construct
image dataset from click-through logs based on the learned
word representation e,, and image representation f(I). The
process starts with a set of category words C = {ck}le pre-
defined according specific task on hand, and outputs a set of
images for each category. Since the process is the same for
every category, we will only detail the construction process
for category c as an example.

3.2.1 Query Formation

For category ¢, we first expand it to a set of similar words
from vocabulary V. The learned word representation is used
for measuring word-word similarity

: (ec, ew;)
sim(c, w;) = T————-—. (10)
lleell - llew, |
Accordingly, similar words for category c is defined by
Se = {w;slsim(c, w;) > &w,w; € V} (11)

With the generated similar word set S., candidate image set
Z. for category c are collected by aggregating images clicked
to queries that contain words in S..

3.2.2  Noisy Image Removal

Candidate images still contain many noises, this step is to
remove noisy images by leveraging both image representa-
tion f(I) and word representation e,. Given similar word

set Sc and candidate image set Z., image set D, for category
c after noisy removal is obtained by

e = {I|sim(I,8.) > &,1 € 7.} (12)

where similarity between image I € Z. and similar word set
S. is measured as
sim(1,S.) = max sim(w, ¢) - sim(w, I). (13)

The similarity prefers images that are similar to some word
in S; and the word is similar to category c. From another
perspective, words close to the category have the capacity
to keep more images which is consistent with intuition.

The threshold &; for noisy image removal in Eq (12) is set
to 0.35 considering the number of images can be collected
for each category and &; can be set higher when more click-
through logs are available.

4. EXPERIMENTAL RESULTS

We use the click-through logs publicly available from Bing
image search 2. There are two sets of click-through logs:
Clickture-Lite and Clickture-Full[13]. Clickture-Lite con-
tains 11.7 million queries and 1 million images, while Clicture-
Full is much larger which contains 73.6 million queries and
40 million images. In our experiments, we use Clickture-Lite
to train the DNN, and apply the trained DNN on Clickture-
Full to construct image dataset. We construct two image
datasets to verify our proposed method. The first image
dataset named as AutoSet-10 is constructed for 10 cate-
gories from CIFAR-10. The second image dataset named
as AutoSet-1K, is constructed for 1000 popular categories
which were frequently searched by users.

http:/ /research.microsoft.com/en-us/projects/clickture/



Table 1: For six query words, we show their top-10 similar words based on our method and context based
word embedding [19]. Words with italic font are visually dissimilar. Our results contains some typos from
user queries, but no plurals as we merged plurals in V.

Category KNN based on visual based word embedding KNN based on context based word embedding
dog puppy, dogss, breed, hound, spaniel dogs, puppy, cat, pet, pup
boxer, cocker, retriever, beagle, mastiff canine, puppies, cats, kitten, terrier
airplane airplan, aeroplane, boeing, 747, dreamliner airplanes, aeroplane, plane, flying, aircraft
P lockheed, sukhoi, beechcraft, bomber, fighter planes, takeoff, airliner, helicopter, jet
iphone ipone, 4s, iphone4s, iphone5, iphon ipad, ipod, 3gs, iphoned, android
P 4gs, iphoned, 5, phoneb, otterbox itouch, 3g, ios, iphones, itunes
. pharaoh, egyption, mummification, horu, thoth egypt, aztec, egyptians, arabian, greek
egyptian . . . . . .
tutankhamun, heiroglyphic, bastet, egiptian, mummy. egyption, mayan, arabic, pharaohs, sphinx
. hubble, galaxy, supernova, astronomy, telescope universes, cosmos, worlds, existence, cosmic
universe . ; } . .
milkyway, nebula, comet, protostar, andromeda planet, infinite, realm, humanity, exist
pokeman, legendary, victini, bulbasaur, zekrom gameboy, pikachu, gba, nintendo, naruto
pokemon . . ) : g
charizard, pokemoncard, shiny, emboar, arceu mew, yugioh, mario, zelda, digimon
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Figure 7: Cross dataset generalization of CNNs trained on AutoSet-10, CIFAR-10 and ImageNet-10, then
tested on: a) AutoSet-10, b) CIFAR-10 and c) ImageNet-10.

4.1 Learned Representations

With the learned image representation and word repre-
sentation, images and words are representated as points in
high dimensional space. In Figure 6, we use dimension re-
duction tool t-SNE [26] to map a set of 5,000 randomly se-
lected words as points in two dimensional space, each point
is pasted with an image clicked to the word or string of the
word. It can be observed that visually similar words are
closely distributed in a meaningful way. For example, words
related to handheld are close in the space.
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Figure 8: Average accuracy of top-K similar words
on 100 randomly words based on our method and
context based word embedding [19].

4.2 AutoSet-10

Moreover, we carry a quantitative evaluation for the learned
word representation and compare it with state-of-the-art
word representation learned from large scale text corpus (in-
cluding 840 billion tokens) with context constraints [19]. For
a set of 100 randomly selected words, we use different word
representations to find their top similar words from the vo-
cabulary. The groundtruth of these similar word pairs are
manually judged, a pair is labelled as true if the two words
are describing the same visual pattern otherwise false. Some
exemplar words and their similar words calculated by d-
ifferent word representations are present in Table 1, words
with italic font are not visually similar. Obviously, our word
representation reflects more about visually similar. Quan-
titative comparison is based on the following performance
metric

S 1 (w w)}
I a— (14)

where 1{-} is an indicator function, so that it equals to 1 if
(wg,w) is true visually similar word pair and 0 otherwise.
Figure 8 shows the average acc@K on the 100 randomly se-
lected words based on the two word representations, and our
word representation learned together with image achieved
higher accuracy than word representation learned from con-
text based word embedding, thus our word representation

accQK =
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Figure 9: A snapshot of six categories and their sample images in AutoSet-1K.

is more suitable to expand category for image dataset con-
struction.

We first construct a small scale dataset named as AutoSet-
10 using the same 10 categories of CIFAR-10 [15]. AutoSet-
10 consists of 70000 images in 10 categories, and randomly
split into 60000 images as training set and 10000 images as
testing set. CIFAR-10 contains 60000 images in total, 50000
images as training set and 10000 images as testing set, which
are pre-split. In addition, we construct a subset of ImageNet
named as ImageNet-10 using the same 10 categories, and
randomly split into 10000 images as training set and 2000
images as testing set.

To compare these three datasets, we conduct a set of im-
age classification experiments to verify their cross-dataset
generalization ability [24]. Cross-dataset generalization mea-
sures the performance of classifiers learned from one dataset
on the other dataset.

The same configuration of convolution neural network is

used to build the classifiers, which is modified from [14])(layers-

conv-local-11pct.cfg) by replacing local-connected layers with
convolutional layers. Allimages in AutoSet-10 and ImageNet-
10 are resized and central cropped into same size as CIFAR-
10, i.e., 32 x 32. Randomly cropped 24 x 24 image patches
with horizontal flips are used as data augmentation for train-
ing. Initial learning rate is set to 0.001 and decreased by a
factor 10 twice when the validation error stops descreasing.
Figure 7 shows the classification error rates. Each dataset
produces one CNN using its training set, and all three CNNs
are compared on test set of AutoSet-10 (a), CIFAR-10 (b)
and ImageNet-10 (c). In all three cases, at the same num-
ber of training samples, the best performance is achieved
by training and testing on the same dataset. Since the s-
mallest dataset ImageNet-10 only have 1000 training images
per category, we compare the performance of three different
dataset at the point of 1000 training samples, it shows that

the generalization ability of the three dataset is very close
and AutoSet-10 performs slightly better than ImageNet-10
on CIFAR-10. Since AutoSet-10 is larger than the other t-
wo datasets, it achieved the best performance on two testing
sets when all training samples are used. The comparison at
the same number of training samples shows the comparable
generalization ability of AuotSet-10 with other two manu-
ally constructed datasets, and AutoSet-10 can further get
better generalization benefits from its scale up ability.
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Figure 10:
AutoSet-1K.
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4.3 AutoSet-1K

To show the scalability in number of categories, we build
a large scale image dataset named as AuotSet-1K consists of
2.5 millions of images for 1000 popular categories that are
frequently searched by users. The 1000 categories not only
include the long existing categories such as “dog” or other
natural objects, but also include many new categories such
as products, TV dramas and digital games. Some examplar
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Figure 12: Average images and image samples of AutoSet-1K, ImageNet and Caltech-101 from two categories:
“elephant” and “airplane”. Left chart shows the comparison of the lossless JPG file sizes of average images,
we downsampled the average image to 32 x 32 and sizes are measured in byte. Diverse image set results in a

smaller lossless JPG file size.

categories with randomly sampled images are showed in Fig-
ure 9. The whole construction process of AutoSet-1K takes
a week include the training of deep neural network, which is
also an advantage over manually based methods that often
need years’ efforts to reach datasets with such scale.

In addition to short latency for constructing large scale
dataset, we further analysis the quality of AutoSet-1K from
three aspects as following.

Scale AutoSet-1K contains 1000 popular categories, and
on average over 2500 images for each category. Figure 10
shows the numbers of images per category in AutoSet-1K.
Different with static image datasets, AutoSet-1K can be dy-
namically increased with few efforts.

Accuracy To evaluate accuracy of AutoSet-1K, we ran-
domly sampled 150 categories and 100 images per category.
Each category and its images are manually judged, the ac-
curacy on each category are showed in Figure 11. The av-
erage accuracy of AutoSet-1K is 95.2% which is much high-
er than 42.3% of candidate images directly collected from
click-through logs, but still little lower than 99.7% achieved
by ImageNet. To be noted that, there are several failure
categories in AutoSet-1K such as “jordan” with low accura-
cy 72%, as lots of images about “jordan shoes” instead of
“Michael Jordan” exist in click-through logs and mistreated
as “jordan” too.

Diversity In order to illustrate the diversity of images
belong to a category, we followed the method in [6], which
compare the average image of each category and measure
lossless JPG file size which reflects the amount of informa-

tion in an image. Diverse image set should result in a blur-
rier average image, and the JPG file size of average image
of diverse images should be smaller. We resize all images to
256 x 256, and create average images with randomly selected
60 images for each category. Figure 12 shows the average
images of two categories: “elephant” and “airplane”, similar
to ImageNet, the average image of AutoSet-1K is also very
blurrier and hard to recognize out the object, while the av-
erage image of Caltech-101 is more structured and sharper.
AutoSet-1K has comparable JPG file size with ImageNet,
but significantly smaller than Caltech-101.

S. CONCLUSION AND FUTURE WORK

In this paper, we proposed a deep learning based method
to automatically construct image dataset from large scale
user click-through logs. DNN is used to learn image repre-
sentation and word representation for calculating word-word
similarity and image-word similarity, and further used to au-
tomatize two labor costing steps in image dataset construc-
tion: query formation and noisy image removal. Moreover,
cross convolutional filter regularization is proposed to speed
up the training process. The auto-constructed image dataset
has no scale up issue, and with high accuracy, diversity and
good cross dataset generalization.

One limitation of our method is the unigram based vo-
cabulary, while some categories cannot be represented as
unigrams such as “hot dog”. In the future, we will replace
the unigram based vocabulary with phrase based vocabu-



lary, which will greatly increase the size of vocabulary and

require better design of the training system.
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