
Pictures: A simple structured graphics model

Sigbjorn Finne and Simon Peyton Jones,

Department of Computing Science,

University of Glasgow.

Abstract

We present in this paper a simple, device-independent model for de-

scribing two-dimensional graphics using a functional language. Graphical

scenes, or pictures, are represented as values that functions can manipu-

late and inspect to create new values. Complete pictures are constructed

by repeatedly composing such picture values together using picture com-

binators. A novel aspect of the model presented is its use of structured

translation to abstractly express the geometric composition of arbitrary

pictures.

The structured graphics model presented has been implemented in

Haskell, and we also give an overview of a general rendering framework

for traversing a picture value. Applications of this renderer include both

output to various graphical systems, testing for picking or selection of a

picture and the computation of the bounding box of an arbitrary picture.

The graphics model forms the basis for all graphical output in a user

interface framework being developed in Haskell.

1 Introduction

Graphics is an under-used resource in applications. To avoid having to

delve into inch-thick manuals to produce the simplest of outputs, textual

output is often used, for better or worse. This is a somewhat unfortunate

situation, as graphics capabilities aren't made use of by applications to

better visualise their output. Simple graphics should be simple to express

and make use of in a program[2].

We present in this paper a simple structured graphics model for ex-

pressing two-dimensional graphical scenes using a functional language.

The declarative model is expressed using a data type called Picture, and

the paper presents and explores the expressiveness of the model, com-

paring and contrasting it with existing techniques for expressing two-

dimensional graphics.

The idea of using a functional language to describe graphics is by no

means a novel one [2, 3, 12, 4, 6, 1]. Our design has been inuenced by

this previous work and builds on it by providing a more abstract account

of picture composition. As an example, a basic operator like horisontal

tiling of two pictures is not provided as a primitive in our model, instead a

mechanism called structured translation is used to abstractly express the

1

horisontal tiling combinator in terms of more primitive constructs. The

advantage of providing such abstract glue for writing picture combinators

is that the set of composition operators can readily be extended by the

programmer if the set already provided doesn't �t the task at hand.

The graphics model presented is independent from a particular graph-

ics system, and a generic renderer that traverses the representation of a

picture to perhaps produce graphical output has been implemented. The

renderer is parameterised on the low-level commands needed to draw a

�xed set of primitives, so to map the picture type to a new graphics

system, you just have to provide an instance for each of these drawing

methods (Section 5.) The functional renderer will then perform the com-

putations required to map the picture description into a sequence of calls

to the drawing operations it is given.

The graphics model and accompanying renderer forms the basis for

graphical output to both workstation and printer in Haggis[5], a user

interface framework written in Concurrent Haskell[10]. The �gures given

in this paper are pictures produced using the system described here,

mapping the picture to Encapsulated PostScript[9]

1

after having �rst

viewed it on a workstation display using Haggis.

2 Motivation

Before going any further, it is worth being a bit more precise about the

term graphics and the use of it throughout this paper. We are concerned

here with providing an appropriate programming abstraction for express-

ing two-dimensional graphical output in a functional language, providing

a model with graphic capabilities similar to that provided by systems

such as PostScript[9] and MetaPost[8]. The main goal is to provide an

abstraction that is convenient and high-level enough for the programmer

rather than creating a representation that could be used as a meta �le

picture format for drawing tools. We are not concerned with the de-

scription of 3D geometries here, and all the challenges that poses to both

programmer and implementor.

What properties would we like such a two-dimensional, functional

graphics model to possess?

� Pictures should be concrete. Representing a graphical object as a

concrete value has its advantages. Apart from isolating and ab-

stracting away the low-level details of a graphics system interface,

having a value representing a picture allows a program to manip-

ulate and inspect pictures to create new values. Representing a

picture as a higher-order function or procedurally by a sequence of

drawing actions is too opaque, as their structure cannot be unrav-

elled by other functions, only composed together in a �xed number

of ways.

Instead we raise the level of abstraction and provide a declarative

description of pictures, where a graphical scene is described con-

cretely via a recursive data type that can be freely combined and

1

PostScript is a trademark of Adobe Systems Incorporated.

manipulated by functions. The application operate in terms of the

objects that they want to output and it is only at the rendering

stage that the value representing the picture is actually mapped

into a sequence of drawing actions.

� Simple application interface. Commonly used graphics program-

ming interfaces have often painfully complex interfaces for access-

ing the graphical hardware[2]. The multitude of arguments required

just to get simple graphics output from an application leads to either

poorly structured programs or the avoidance of graphics completely.

Simple graphics should be simple to express and integrate into an

otherwise non-graphical application. Expressing graphics declara-

tively using a functional language focuses on the picture values that

the application manipulates, shielding the programmer from having

to deal with the complexities of a particular system.

� Composition. The ability to combine parts to make up a whole

is desirable feature when describing two-dimensional graphics, as

scenes can often be partitioned into a clear hierarchical structure. A

compositional model provides a simple way of building these scenes

by repeatedly combining existing pictures to construct even `bigger'

ones. The picture abstraction should also provide mechanisms for

extending the range of picture combinators.

� Device independence. In the interest of portability, the graphics

model should be as far as possible independent of any rendering

model. The motivation for this independence is the wish to be able

to provide a graphics description that could just as easily be used

to provide output to a printer as to a workstation window.

3 Representing Pictures

Graphical scenes are represented as values of type Picture, a recursive

data type that contains both the geometric primitives supported, and

the core set of operators that transform and combine Pictures together.

Rather than go through the whole Picture (Appendix A has the com-

plete de�nition), type from top to bottom, let's instead focus on a simple

example of a picture and the issues and features that highlight for the

Picture type. The picture is that of a tra�c light (shown here horizon-

tally to save space):

GOR

3.1 Drawing primitives

The Picture type has a set of basic drawing primitives (complete list can

be found in the de�nition of the type in Appendix A.) The circles used

for the tra�c light are straightforwardly expressed:

Curve

Polyline

Rectangle

Arc

Figure 1: Drawing primitives supported by Picture data type.

circle :: Unit -> Picture

circle radius = Arc (radius,radius) (0,2*pi)

The Picture type uses printers' points (i.e., 72 points � 1 inch) for

all the lengths and sizes (which we represent with the type Unit), so

circle 36 returns a circle with radius of 1/2 an inch. The circle is

not primitive, but a special case of the circular arc. The Arc primitive

is parameterised on the length of the major and minor axes plus the

start angle (in radians), and the number of radians to sweep through to

reach its �nal angle. Each picture value is expressed in terms of its local

coordinate system, and the origin of the Arc coincides with the origin of

its coordinate system.

Rectangles and text have their own Picture primitives, Rectangle

(40,40) is a square 40 points wide, with the lower left hand corner of the

rectangle as origin. Similarly, Text "hello" is a picture of the "hello"

string, its origin equal to the origin of the �rst character in the string.

Other drawing primitives supported are poly-lines, B�ezier curves and

rasters (i.e., two-dimensional array of coloured points) etc., some of them

are shown in Figure 3.1, the full list can be found in Appendix A. The

inclusion of both Rectangles and poly-lines as drawing primitives high-

lights a design tradeo�, what should be primitive in a declarative rep-

resentation of pictures? The one extreme of just providing points or

lines as primitives and operations to support the combination of them

(as done by [1, 6]), is low-level and not a descriptive enough representa-

tion of the pictures we want to express and render. At the other end,

making every possible known two-dimensional geometric shape a primi-

tive results in a language that is very precise, but complex. The reason

for making rectangles into primitives rather than express them in terms

of poly-lines, is that they are commonly occurring forms, so functions

that want to inspect Picture values should readily be able to identify

rectangles. Similarly, circles or ellipses were not made primitives, since

testing whether an Arc value is a circle is computationally less expensive

than interpreting the geometric meaning of a poly-line Picture value as

a rectangle.

3.2 Geometric Transformations

To geometrically transform a Picture value, the Transform constructor

can be applied to produce a new Picture,

data Picture =

...

| Transform Transformation Picture

...

Transform returns a new picture by applying a transformation to an

existing picture. Transformation is an abstract data type for 2D trans-

formations, allowing both uniform (scaling, rotating) and non-uniform

transformations (shearing, reection) to be expressed. Some of the most

commonly used modelling transformation functions are:

type Scaling = (Unit,Unit)

type Radians = Unit

type Translation = (Unit,Unit)

identity :: Transformation

scale :: Scaling -> Transformation

rotate :: Radians -> Transformation

xlt :: Translation -> Transformation

combine :: Transformation -> Transformation -> Transformation

A picture combinator for doubling the size of an arbitrary picture is

now simply an application of Transform:

doubleSize :: Picture -> Picture

doubleSize = Transform (scale (2,2))

when doubleSize (circle 20) is rendered, a circle with a radius of

40 (points) will be displayed. As a further example of geometric trans-

formation, here are the drawing elements of Figure 3.1, transformed in

various ways:

(rotate pi)
Curve

(rotate pi/2)
Polyline

 (scale (0.5,0.5))
Rectangle

(scale (2,0.8))
Arc

When rendering a Picture value, the modelling transformation that

Transform applies to a picture will be combined with the accumulated

transformation matrix the renderer function keeps track of, so quadSize

quadSize :: Picture -> Picture

quadSize pic =

Transform tr (Transform tr pic)

where

tr = scale (2,2)

scales a picture by a factor of four by applying a scaling transformation

twice.

3.3 Structured translation

Every picture value is expressed within its own local coordinate system.

The geometric Transform constructor applied to a Picture returns a

new picture with a transformed local coordinate system, so, for instance,

doubleSize doubles the scaling in both directions. Since scaling and

rotation are about the origin of the local coordinate system, we often

need to translate the picture prior to performing a scaling or rotation:

ellipseA =

Transform (rotate (pi/4)) $

ellipse (30,20)

ellipseB =

Transform (rotate (pi/4)) $

Transform (xlt (30,0)) $

ellipse (30,20)

To rotate around the leftmost point on an ellipse (rightmost picture),

we �rst have to translate the ellipse along the X-axis before rotating,

as seen in the de�nition for ellipseB. For ellipses, rotation around the

centre is straigtforward, as the origin of the ellipse picture is the same as

the origin of its local coordinate system.

However, to correctly translate the ellipse in ellipseB depended on

knowing its actual size, which makes it hard to write a general picture

combinator for rotating a picture around the leftmost or western point

of its bounding box, without some extra support. Rather than providing

a function that computes the bounding box (i.e., the smallest rectangle

that encapsulates the picture shape), we provide a mechanism called

structured translation:

data Picture =

...

| Move Offset Picture

...

data Offset =

OffDir CompassDirection

| OffPropX Double -- [0.0..1.0]

| OffPropY Double -- [0.0..1.0]

data CompassDirection

= West | NorthWest

| North |

...

| South | Centre

Structured translation allows you to abstractly translate a picture with

respect to its bounding box, leaving it up to the renderer to compute

the actual translation amount. Generalising the rotation performed by

ellipseB becomes then

westRot :: Radians -> Picture -> Picture

westRot rad pic =

Transform (rotate rad) $

Move (OffDir West) pic

westRot translates pic such that its bounding box is shifted to the right of

the vertical axis and centred around the horisontal axis. The structured

translation constructor Move is parameterised on Offset which is either

a translation to one of eight points on the bounding box perimeter (or

the centre), or a proportional translation in either X or the Y direction.

Nested applications of the Move constructor are handled as follows:

Move dir1 (Move dir2 pic) = Move dir1 pic

i.e., since the Move constructor does not alter the size of a picture's bound-

ing box, the inner application of Move can safely be ignored since the outer

Move will potentially undo whatever translation the inner Move did. This

useful rule is made use of by the rendering function (see Section 5) to

`simplify' a Picture value before rendering.

3.4 Graphical transformations

Another type of transformation is graphical, where you want to change

or set the graphical attributes that a particular picture is to be drawn

with. For example, to create a �lled, green circle for our tra�c light:

greenCircle :: Unit -> Picture

greenCircle rad =

Pen [PenForeground green,

PenFill True] $

circle rad

we apply the Pen constructor to a picture describing a simple circle.

The constructor returns a new picture by adding a set of PenModifier

to a Picture:

data Picture =

...

| Pen PenModifier Picture

...

such that when the circle is rendered, the graphical attributes speci�ed

in the PenModifier value will be used, i.e., that the foreground colour

should be green and that the closed area the circle describes should be

�lled in. The PenModifier value in the Pen constructor consist simply of

a list of graphical attributes, see Appendix A for complete list.

The elements of the PenModifier list gives you a �ne-grained control

over how you want to draw a picture, but sensible defaults are de�ned for

all values, so the Pen constructor is only required if you want to override

these default values.

In the case of nested application of Pen constructor, the PenModifier

attributes are `lexically' scoped, i.e., the (attribute,value) pair set in an

application of Pen overrides any previous value set for that attribute. To

illustrate, when drawing the following picture value

picture =

Pen [PenFill False,

PenForeground black] $

Pen [PenFill True,

PenForeground grey80] $

circle 30

should give you the picture on the right. When the circle is rendered, the

foreground colour will be grey50 and the circle should be �lled, since the

innermost application of Pen override the attribute values of the outer

application.

Note that the graphical attribution done by Pen creates a new Picture

value, and avoids having to use some shared, mutable graphics state. The

graphical transformer, Pen, simply associates a set of graphical attribute

values with a picture.

Representing the three lights in the tra�c light becomes now just:

filledCircle :: Colour -> Unit -> Picture

filledCircle col rad =

Pen

[PenForeground col,

PenFill True] (circle rad)

redLight, orangeLight, greenLight :: Unit -> Picture

redLight = filledCircle (red::Colour)

orangeLight = filledCircle (orange::Colour)

greenLight = filledCircle (green::Colour)

3.5 Composing pictures

To build the tra�c light picture we presented at the start of this Sec-

tion, the di�erent Picture values for the lights will have to be combined

together. The Picture type provides three basic composition operators:

� Overlays take the sum of two pictures, combining two Picture val-

ues by aligning their origins and drawing one on top of the other:

data Picture =

...

| Overlay Picture Picture

...

i.e., Overlay picA picB is a picture formed by putting picA on top

of picB, so that their origins match up:

picture =

Overlay

(ellipse (40,20))

(ellipse (20,40))

The bounding box of the combined picture is the union of the

bounding boxes of the two pictures.

� Clipping combines two pictures by aligning their origins like Overlay,

but interprets one picture as de�ning the clip mask to be used when

drawing the second:

...

| Clip Picture Picture

..

Clip clip clipped is a new picture that clips the second picture

by the clip mask de�ned by the �rst:

picture

= Clip

(Pen largeFont (text "Clip"))

lines

The bounding box of the constructed picture is equal to the bound-

ing box of the picture describing the clip mask.

� Constrained overlay. The picture union operator, Overlay, allows

you to combine two Picture values, but the composition does not

impose any constraints between the sizes of the two Pictures com-

bined. Having an overlay operator that imposes such constraints

between the two pictures turns out to be quite useful in a number

of cases, e.g.,

inBox :: Picture -> Picture

is a picture combinator that puts a bounding rectangle around an

arbitrary picture. This could combinator could of course be ex-

pressed if we had a function for computing the bounding box of

a picture, but in the same way as in Section 3.3, we introduce a

higher-level mechanism for expressing size constraints between two

pictures being combined:

...

| ConstrainOverlay RelSize RelSize

Picture Picture

data RelSize =

RelNone

| RelFixed Bool Int

| RelProp Bool Double

ConstrainOverlay RelNone (RelProp True 2.0) picA picB is a

picture that when rendered, will align the origins of picA and picB,

drawing picA on top of picB. The operator will also scale picB in

the Y direction such that the size of its bounding box will double

that of picA along this axis. (The boolean used in RelProp indicates

whether it is picA that should be related to picB or vice versa.) The

RelSize data type contains the di�erent types of size constraints

we can place between the two dimensions, RelNone indicates that

no size constraints should be imposed.

The ConstrainOverlay constructor provides a superset of the func-

tionality of Overlay,

Overlay = ConstrainOverlay

RelNone RelNone

but we choose to provide the Overlay constructor separately.

Combining the Overlay operator with the structured translation op-

erator in Section 3.3, picture combinators that tile two pictures together

can be expressed:

beside :: Picture -> Picture -> Picture

beside picA picB =

Overlay

(Move (OffDir East) picA)

(Move (OffDir West) picB)

above :: Picture -> Picture -> Picture

above picA picB =

Overlay

(Move (OffDir South) picA)

(Move (OffDir North) picB)

The beside combinator overlays two pictures, but translate their local

origins such that picA will be shifted to the left of the vertical axis and

picB wholly to the right. above uses the same trick, but this time the

translation is with respect to the horisontal axis.

As an example of these various composition operators, we can �-

nally present the construction of the tra�c light example presented at

the beginning of this Section, starting with a combinator for placing an

arbitrary text string within a coloured oval:

light :: Colour -> String -> Picture

light col lab =

ConstrainOverlay

(RelFixed True 20)

(RelFixed True 20)

(withColour black $ centre $ Text lab)

(filledCircle col 2)

light will centre the text string lab within an ellipse that will have

a horisontal and vertical extent 20 units bigger than that of the extent

of the picture representing the string. Using this combinator we can

construct the pictures for the individual lights:

redTLight = light red "R"

orangeTLight = light orange "O"

greenTLight = light green "G"

To align the the lights horisontally, we want to use the horisontal

tiling operator beside, but have to add some `air' between the lights

�rst:

besideSpace :: Unit -> Picture -> Picture -> Picture

besideSpace spc picA picB =

beside

picA

(Transform (xlt (spc,0)) $

moveWest picB)

besideSpace using a Transform constructor to enlarge the bounding

box of picB before invoking beside. The lights then become just:

lights =

foldr1

(besideSpace 10)

[redTLight, orangeTLight,

greenTLight]

GOR

The �nal step is then adding a black background for the casing for

the tra�c lights:

trafficLight =

ConstrainOverlay

(RelFixed True 20)

(RelFixed True 20)

(Move (OffDir Centre)

lights)

(Move (OffDir Centre)

(Rectangle (2,2)))

GOR

The example, while small, demonstrate the compositional program-

ming style that follows naturally, where complete Pictures are formed

by repeatedly applying picture combinators to existing Pictures.

4 Example

To further demonstrate and bring together the various features that the

Picture data type provides, let's consider the problem of plotting 2D

Figure 2: graph (scatter) dataPts - scatter plot of annual data

graphs. A common situation is to have a set of data generated by a pro-

gram that we want to visualise quickly using a graph. For the purpose of

this example, let us assume that the data measure the annual distribution

of some value, producing output like Figure 2. The X axis represents the

months and the Y axis the values we've measured each month in. The

Picture representing this graph consists of several smaller pictures joined

together, starting with the gridded background:

grid :: Size -> Size -> Picture

grid (w,h) (stepx,stepy) =

let

pen =

[PenForeground grey50,

PenLineStyle (LineOnOffDash 1 1)]

no_lines_x = h `div` stepx

no_lines_y = w `div` stepy

in

Pen

pen $

Overlay

(Move (OffDir Centre) $

Rectangle (w,h))

(overlay

(Move (OffDir Centre) $

hlines stepx no_lines_x w)

(Move (OffDir Centre) $

Transform (rotate (pi/2)) $

hlines stepy no_lines_y h)

The grid function, given a size and spacing between the grid lines

in both directions, returns a Picture of the grid, built by overlaying

horisontal and vertical lines. To make the grid-lines appear discretely in

the background, we apply a pen modi�er that dashes the lines and renders

them in grey (see Appendix for de�nition of the graphical attributes . The

picture of the horisontal lines hlines is also a combined picture:

hlines :: Unit -> Unit -> Unit -> Picture

hlines spc no x =

nabove

(map (Transform (xlt (0,spc)))

(replicate no $ hline x))

nabove :: [Picture] -> Picture

nabove = foldr (above) NullPic -- empty picture

The horisontal lines are composed out of a collection of lines arranged

vertically using above. To achieve the necessary spacing between the

lines, each line is translated so as to enlarge the bounding box the above

uses to compute the geometric arrangement between two pictures.

The axes of the coordinate system is also created by combining smaller

pictures together, this time two arrowed lines:

axes :: Size -> Picture

axes (w,h) =

overlay

(leftArrowLine w)

(upArrowLine h)

The arrowed lines can also be subdivided into a picture element for

the arrow line and head that has been combined together, but for lack of

space we will leave out their de�nition here.

To get the picture of a gridded coordinate system, we simply overlay

the picture returned by axes with that for the grids, making sure of

moving the reference point for the grid to its lower left corner, so that

the gridding starts at the origin of the axes:

cartesian :: Size -> Size -> Picture

cartesian sz steps =

overlay

(axes sz)

(Move (OffDir SouthWest) $

grid sz steps)

To plot data points within the coordinate system, the picture(s) rep-

resenting the points just have to be placed on top. Here's how a scatter

plot of a set of coordinates could be done:

scatter :: [Coord] -> Picture

scatter = noverlay $ map (plotAt)

where

plotAt pos =

Transform

(xlt pos)

(filledCircle 2)

noverlay :: [Picture] -> Picture

noverlay = foldr (overlay) NullPic

The di�erent points are plotted by translating a circle to each data

point and then overlaying all the resulting pictures. Since overlaying is

performed by matching up the origins of two pictures, and the points

to be plotted are all expressed within the same coordinate system, the

pictures will also have the same origin. The resulting plot can then be

superimposed on a coordinate system to produce the plot in Figure 2:

graph :: ([Coord] -> Picture)

-> [Int]

-> Size

-> Size

-> Picture

graph plot pts size steps@(dx,dy) =

let

coords = zip pts [dx `div` 2,dx..]

in

overlay

(plot coords)

(cartesian size steps)

The graph takes a function for producing the plot of the supplied data

together with the data points themselves and a size plus grid steps. For

the purpose of this example, we assume that the size and data points are

in the same range, adding the code that checks and appropriately scales

the data to �t has been omitted for reasons of space.

Now let's change the plot by having the points connected up via a

solid line instead:

solid :: [Coord] -> Picture

solid ls =

overlay

(polyline ls)

(scatter ls)

The scatter plot as produced with scatter is overlaid with a poly-line

connecting all the data points up. Using solid in a call to graph will

produce output like this:

4.1 Histogram

Instead of plotting data points, we could instead plot the data using a

histogram and to make the resulting graph a bit more understandable,

add month labels to the X-axis. The month labels can be added by

overlaying the X axis with the appropriate labels:

xAxis :: [String] -> Int -> Int -> Picture

xAxis labels sz spc =

overlay

(leftArrow sz)

(Move (OffDir NorthWest) $

noverlay

(zipWith (\ p pic -> Transform (xlt (p,-15)) pic)

[spc',(spc+spc')..]

(map (label) labels)))

where

spc' = spc `div` 2

label str =

Transform (rotate pi/2) $

Move (OffDir East) $

text str

The labels in the X direction are placed on top of the axis by rotating

each label 90 degrees clockwise beforehand. The rotated labels are then

placed along the X axis. To incorporate the labelled axis, the functions

cartesian and axes have to be altered to thread the labels through to

xAxis, but we will leave out the details here.

Plotting a histogram instead of a scatter-plot is straightforward, just

substitute scatter with histo in a call to graph:

histo :: [Int] -> Int -> Picture

histo pts spc =

foldl

(besideB)

NullPic

(map (bar) ls)

where

bar sz =

Move (OffDir South) $

Overlay

(Rectangle (spc,sz))

(fillColour grey80 $

Rectangle (spc,sz)))

besideB :: Picture -> Picture -> Picture

besideB picA picB =

Overlay

(Move (OffDir SouthEast) picA)

(Move (OffDir SouthWest) picB)

The bars are created by going through the data points left to right.

Note that instead of using beside to combine the bars together, we use

the combinator besideB to align the bars by their bottoms instead. Visu-

alising the data using histo will then produce output like the following:

D
ec

N
ov

O
ct

Se
p

A
ug

Ju
l

Ju
n

M
ay

A
pr

M
ar

Fe
b

Ja
n

The graphing example shows that using the Picture data type, it is

relatively easy to write application-speci�c combining forms for gener-

ating drawings. While this is a toy example, an interesting experiment

would be to try to build a complete graph drawing library using Pictures

and a functional language, and see how well the structured graphics model

scales to larger examples.

5 Rendering Pictures

To convert a Picture value into actual output, a generic rendering frame-

work fo the type have been implemented. The rendering function is pa-

rameterised on both Picture and the Painter to invoke to handle the

drawing of the drawing primitives:

render :: Painter -> Picture -> IO Rectangle

Before traversing the Picture, the renderer tries to simplify the Picture

value by removing constructs that does not contribute (see Section 3.3 for

how nested applications of the Move constructor can be removed.) After

having walked over the Picture structure and performed I/O actions to

draw the primitives, the function returns the bounding box of the picture

just rendered. The Painter is a dictionary of methods for, amongst other

things, drawing the primitives:

data Painter

= Painter

...

-- drawText str ctm

(String -> Transformation -> IO ())

-- drawRectangle sz ctm

(Size -> Transformation -> IO ())

-- drawEllipse (w,h) (a1,da) ctm

(Size -> Angles -> Transformation -> IO ())

...

When the renderer encounters one of the primitives mentioned in

Section 3.1, it looks up and invokes the corresponding method in the

Painter. Currently, two graphical Painters exist for producing output

in PostScript and to Haggis [5], but the Painter interface has also been

used to implement picking, i.e., testing whether a point intersects the

picture, and to incrementally update parts of a Picture structure.

6 Related work

As stated in the introduction, the work reported here build on previous

approaches to graphics using a functional language. One of the earliest

attempts at using a functional language to express graphics was Hender-

son's functional geometry[6]. Using Escher's square limit as an example,

a set of basic tiles were repeatedly combined together using a small set

of tiling picture combinators. The repertoire of primitive drawing ele-

ments were restricted to lines (a simpli�cation which Arya's functional

animation also uses, [1]), each of which had to be explicitly placed within

some tile coordinate system. Only combinators for horisontal and verti-

cal tiling were provided. The Picture data type extends this early work

by providing a fuller set of drawing primitives and picture transformers,

and through the use of structured translation, the set of composition

mechanisms can easily be extended, c.f., above and beside.

Several `functional' systems have made use of PostScript[9] as the

basic drawing model, layering functional abstractions on top it[4, 12].

These approaches make good use PostScript's page description model,

but forces the programmer to use PostScript's model of stencil and paint

for describing the basic picture elements. While powerful, the inherent

statefulness of the stencil and paint model can lead to unexpected results

when used from within a lazy functional language.

Although the Picture graphics model di�ers signi�cantly from the

PostScript model, a module for describing PostScript stencil paths in

terms of Pictures have been de�ned:

module Path

(

Path,

...

currentPoint, --:: Path -> Coord

moveTo, --:: Coord -> Path -> Path

rline, --:: Size -> Path -> Path

...

)

Graphical output is described by incrementally building larger and

larger Paths. The Path module does not provide the full set of features

that a PostScript interpreter has, but it shows that the Picture type

could be used as a basis for creating other graphics abstractions. One

interesting point to note is that the Path module elevates the path to a

�rst-class value, something that is not the case for PostScript interpreters.

Another area of related work is the declarative description of graphics

using constraint-based systems [11, 14, 8, 7]. Through the use of con-

straints, relationships between components of a picture can be expressed

declaratively. The drawing of a picture is preceded by a pass where the

constraint expressions are satis�ed. Whether the generality and exibil-

ity that these constraint-based systems o�er compared to the Picture

data type is worth the additional overhead of solving and maintaining

these relationships, is an open issue.

7 Conclusions and Future Work

We have in this paper presented a simple model for expressing structured

graphics in a functional language. The Picture type was introduced,

providing to the functional programmer a concrete representation of two-

dimensional graphical scenes. As an example of the Picture model in

action, a set of basic graph drawing combinators were developed on top

of the model.

The Picture type o�ers yet another demonstration of how straight-

forward it is to de�ne and use `little languages' in a functional language.

By de�ning a data type Picture containing the core primitives and oper-

ators for pictures, full use could be made of the �rst-class property that

values enjoy in a functional language. Using standard combining forms

such foldr and map, the repertoire of Picture combinators could then

be readily extended. This ability to create such new abstractions via a

little data type is not news to a functional programmer, but the graphics

model presented hopefully provides a simple abstraction that will make

it easier to use graphics from within a functional program.

An interesting area of future work is how to make the Pictures come

alive. In Haggis[5], layout combinators exist for interactive widgets,

that perform operations similar to the tiling Picture combinators used

in this paper, and, ideally, we would like to be able to provide a common

set of such combinators, covering both static pictures and interactive

objects. We are currently experimenting with a basic mechanism for

tagging parts of a picture, and through a Painter (see Section 5) that

instead of generating drawing output, tests and records the picking of

tagged parts of a Picture, we're able to reuse the generic renderer to

perform picking as well as drawing.

Another area for future work would be to try and apply the techniques

used here for two dimensional graphics to three dimensions. Promising

results have already been achieved by the TBAG system [13], which uses

a functional model for building three-dimensional interactive worlds.

References

[1] Kavi Arya. Processes in a functional animation system. In Proceed-

ings of the 4th ACM Conference on Functional Programming and

Computer Architecture, pages 382{395, London, September 1989.

[2] Joel F. Bartlett. Don't Fidget with Widgets, Draw! Technical

Report 6, DEC Western Digital Laboratory, 250 University Avenue,

Palo Alto, California 94301, US, May 1991.

[3] Brian Beckman. A scheme for little languages in interactive graphics.

Software-Practice and Experience, 21(2):187{207, February 1991.

[4] Emmanuel Chailloux and Guy Cousineau. Programming Images in

ML. In Proccedings of the ACM SIGPLAN Workshop on ML and

its Applications, 1992.

[5] Sigbjorn Finne and Simon Peyton Jones. Composing Haggis. In

Proceedings of the Fifth Eurographics Workshop on Programming

Paradigms in Computer Graphics, Maastrict, Netherlands, Septem-

ber 1995.

[6] Peter Henderson. Functional geometry. In ACM Symposium on

LISP and Functional Programming, pages 179{187, 1982.

[7] Allan Heydon and Greg Nelson. The Juno-2 Constraint-Based Draw-

ing Editor. Technical Report 131a, DEC Systems Research Center,

Palo Alto,CA, December 1994.

[8] John Hobby. A User's Manual for MetaPost. Technical report, Bell

Labs, 1994.

[9] Adobe Systems Inc. PostScript language reference manual. Addison

Wesley, second edition, 1990.

[10] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concur-

rent Haskell. In ACM Symposium on the Principles of Programming

Languages, St. Petersburg Beach, Florida, January 1996.

[11] Donald E. Knuth. T

E

X and METAFONT, New Directions in Type-

setting. Digital Press and the American Mathematical Society, Bed-

ford, MA, 1979.

[12] Peter Lucas and Stephen N. Zilles. Graphics in an Applicative Con-

text. Technical report, IBM Almaden Research Center, 650 Harry

Road, San Jose, CA 95120-6099, July 8 1987.

[13] Greg Schechter, Conal Elliott, Ricky Yeung, and Salim Abi-Ezzi.

Functional 3D graphics in C++ - with an object-oriented, multiple

dispatching implementation. In Proceedings of the 1994 Eurographics

Object-Oriented Graphics Workshop. Eurographics, Springer Verlag,

1994.

[14] Christopher J. van Wyk. A High-Level Language for Specifying

Pictures. ACM Transactions on Graphics, 1(2):163{182, April 1982.

A Complete Picture type

The complete de�nition of the Picture is as follows:

2

2

Note that the Picture type is an instance of the Text class, which means that it can

directly be used as a meta�le format for graphical output as well.

type Unit -- repr. of a pr. points.

type Size = (Unit,Unit)

type Coord = (Unit,Unit)

type Angles = (Unit,Unit)

type Translation = (Unit,Unit)

data Picture

= NullPic | Point | Text String

| PolyLine [Translation] | Rect Size

| Arc Size Angles | Curve Coord Coord Coord

| Raster Raster | Pen PenModifier Picture

| Move Offset Picture

| Transform Transform Picture

| Tag Tag Picture

| Overlay Picture Picture

| ConstrainOverlay RelSize RelSize Picture Picture

| Clip Picture Picture

deriving (Eq,Text)

data RelSize

= None | Fixed Bool Int | Prop Bool Double

deriving (Eq, Text)

type Tag = Int

data Offset

= OffDir CompassDirection

| OffPropX Double

| OffPropY Double

deriving (Eq,Text)

A.1 Graphical attributes

The Pen constructor associates a set of graphical (attribute,value) pairs

with a picture. The attributes currently supported are (the de�nition

of the types used by some of the attributes have been elided for lack of

space):

type PenModifier = [PenAttr]

data PenAttr =

| LineWidth Ixont

| Foreground Colour

| LineStyle LineStyle -- dashed lines or not?

| JoinStyle JoinStyle -- for polyline joints

| CapStyle CapStyle -- end point caps.

| Fill Bool -- fill picture or not?

| Invisible Bool -- should the picture be drawn?

| Font Font -- what font to use.

| Function PenFunction -- blit op to eventually apply

