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Abstract 
A speech recognizer is developed using a layered neuml network to im- 

plement speech-frame prediction and using a Markov chain to modulate the 
network 'a weight parameters. We postulate that speech recognition accuracy 
U closely linked to the capability of the predictive model in representing long- 
term tempoml correlations in data. Analytical ezpressions are obtained for 
the correlation functions for various types of predictive models (linear, non- 
linear, and jointly linear and nonlinear) in o d e r  to determine the faithfulness 
of the models to  the actual speech data. The analytical results, computer sim- 
ulations, and speech recognition ezperiments suggest that when nonlinear and 
linear prediction are jointly performed within the same layer of the neural 
network, the model is better able to capture long-term data correlations and 
consequently improve speech recognition performance. 

I. Introduction 

recognizers typically possess strong correlations over time [5, 81. The 
correlations stem, to a large degree, from the complex interactions and 
overlap patterns among various articulators involved in the dynamic 
process of speech production [9]. Standard hidden Markov models 
(HMMs) [l], based on the state-conditioned IID (independent and iden- 
tical distribution) assumption, are known to be weak in capturing such 
correlations. The strength of data correlations in the HMM source 
decays exponentially with time due to the Markov property, while the 
dependence among speech events does not follow such a fast and regular 
attenuation. 

The linear predictive HMM proposed in [14] and [ll] is intended 
to overcome this weakness but shows no clear evidence of superiority 
over the standard HMM in speech recognition experiments [ll]. This 
can be understood because the correlation (or the envelop of the cor- 
relation function) introduced by the state-dependent linear prediction 
mechanism decays also in an exponential manner with time lag [2]. 
This makes the capability of the linear predictive HMM, in dealing 
with speech-frame correlations, essentially the same as that exhibited 
by a standard HMM having just a larger number of states. 

Nonlinear time series models [15, 161 are believed to be capable 
of representing the temporal correlation structure of speech frames in 
a more general and realistic manner. In order to represent the well 
known nonstationary nature of speech frames, the parameters in the 
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time series models can be made to vary with time. One elegant way of 
achieving this is to assume that the evolution of the time series model 
parameters follows a Markov chain. 

In this paper we describe an implementation of this idea where 
three-layered feed-forward neural networks are used as Markov- state- 
dependent nonlinear autoregressive-type skeleton functions (terminol- 
ogy borrowed from [IS]) in a time series model. Layered neural net- 
works are ideal tools for implementing mapping functions applicable 
to speech-frame prediction, an idea originally proposed in [12], for two 
main reasons. First, it has been proved that a network of just one hid- 
den layer is sufficient to approximate arbitrarily well any continuous 
function [3,10]. Thus prediction of highly dynamic and complex speech 
frames can be potentially made as accurate as possible. Second, the 
effective back-propagation algorithm is available for network parame- 
ter estimation. To understand the properties of predictive models, we 
carried out detailed analysis on the statistical correlation structures of 
various fist-order predictive models. One principal conclusion drawn 
from the result of the analysis is that long-term temporal correlations 
in the modeled data cannot be achieved with only one single predic- 
tive term, either linear or nonlinear. However, combinations of linear 
and nonlinear terms are shown, analytically and by simulation, to be 
able to produce such signal correlations, which is a desirable property 
for a speech model. Speech recognition experiments conducted on a 
speaker-dependent discrete-utterance E-set task with various types of 
predictive HMMs demonstrate close relationships between the recogni- 
tion accuracy and the capabilities of the models in handling temporal 
correlations of speech data. 

11. Correlation Structure in Speech Data and Coarticula- 
tion in Speech Dynamics 

Speech patterns are known to be highly dynamic and complex in 
nature [9]. One principal source of this complexity is coarticulation. 
In articulatory terms, coarticulation results from the fact that several 
articulators do not always move instantaneously and simultaneously 
from one targeted articulatory configuration to another. In acoustic 
terms, coarticulation is related to context dependence, whereby acous- 
tic realization of a sound is strongly affected by the sounds just uttered 
and to be uttered next. This context dependence makes any IID source 
model, or the locally IID source model as is the case with the standard 
HMM, a poor choice for.fitting speech data and is a major source of 
errors in speech recognition [6]. Good models should provide correla- 
tion structures rich enough to accommodate the context dependence 
and other types of temporal dependence in speech data. 
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111. Analysis of Correlation Structures for State Condi- 
tioned Predictive Models 

In this section, we conduct analytical evaluation of the correlation 
functions for various types of predictive models (linear, nonlinear, and 
their combination) in order to assess their faithfulness as a speech model 
for use in speech recognition. For the sake of simplicity in exposition 
yet without apparent loss of generality, we assume first-order prediction 
and scalar observations. 

111.1. Linear prediction 

Yt’s is chosen to have the following form: 
The state-conditioned linear predictive source model for speech data 

where E t  is an IID residual random variable with zero mean and variance 
u2 and the skeleton function is a linear function of the data. 

It is well known [2] that when the predictive coefficient q5 is less 
than one in absolute value, then the process (1) is stationary and its 
autocovariance function declines exponentially as the time lag T with 
the time constant -Zogq5. 

111.2. Prediction with a single nonlinear term 
The state-conditioned nonlinear predictive source model replaces 

the linear predictive term in (1) with a symmetric, continuously differ- 
entiable but otherwise arbitrary nonlinear skeleton function f (  .): 

In this section, f(-)  is restricted to contain only one single nonlinear 
term. In actual implementation of the predictive model, we chose f(-)  
to be a specific nonliner function, such as the tanh function. But 
otherwise f(-)  is not restricted to any specific form when we study 
the statistical properties of model (2) in this section. 

The method we use to derive the correlation function for (2) resem- 
bles the perturbation analysis for the study of nonlinear differential 
equations [13]. To proceed, we construct a family of models which is 
parameterized by a: 

and model (2) is considered as one model in the family (3) whose sta- 
tistical properties change continuously with the parameter a. 

Once the model is parameterized, the autoregression on the data Yt 
can be removed by performing power-series expansion of the nonlinear 
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and in general, 

(In the above, f(.) denotes the derivative of f(-) with respect to its 
argument .) 

n o m  (4) the covariance function for model (3) is calculated to give 

Cov[Y,( a 1, Yt+r(a)l 
= C O V ( E t ’  E t + r )  + a C w [ f ( e t ) ,  Q+rl + aCoV[Et,  f(Et+r-l)l 

+a2Cov[ f( Et-2)f’ ( E t -  1 ), Q+r] t a2Cov[et , f(4+r-2)f’(Et+r-1)1 

+a3cov[f(€t-2)f’(~t-1), f ( ~ t + , - 1 > 1  

+a3Cov[f( %I), f(Et+s-2)f’(Et+r-l)l 

+a4Cov[f(~t-2)~‘(€t-1), f(Et+r-2)f’(Et+r-l)l. ( 5 )  

Among the eight terms in ( 5 ) ,  the first, second, fourth, and sixth terms 
are zero for T 2 0. This is due to the IID assumption for et and 
to the fact that f(.) is a static function containing no memory. The 
fifth term, Cw[~t , f (€ t+~-2 ) f ’ (~ t+~- l ) ] ,  is non-zero only for T = 1 and 
T = 2. The seventh and the eighth terms are non-zero only for T = 1. 
Likewise, any higher order terms of a in the covariance function which 
are omitted due to cutoff in the power-series expansion of Yt(a) would 
contain non-zero values only for small time lags. 

We conclude fiom the above analysis that prediction of a time series 
with a single nonlinear term alone does not produce long-term temporal 
correlations in the model’s output. 

111.3. Joint prediction with nonlinear and h e a r  terms 

erated from the stationary time series model 
In this section we investigate correlation properties of the data gen- 

yt+i = dYt + f (K) + €t+i, t = l I2 , . . . ’T ,  (6) 
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F- 

whose skeleton function has an additional linear predictive term to 
that of model (2) studied in Section III.2. Although a single nonlinear 
predictive term just by itself is unable to generate desirable long-term 
data COrrdatiOnS (Section II1.2), we can expect the interaction of the 
nonlinear term with the additional linear predictive term to produce 
such desirable properties. The following analysis, and the simulation 
results shown in Section IV, confirm this expectation. 

.Following a similar approach to that of Section III.2, the family 
of models constructed for (6) appropriate for the ensuing perturbation 
analysis is 

Yt+l(,) = 4Yt(a) + af(Yt(a)) + Q+l. t = 1,2,.. . ,T. (7) 

We now decompose the stationary random process Yt(a) into its 
stationary component processes by representing it as a power-series 
expansion on a 

1 1 
x + l ( a )  = %+i,o 4- a K + i , ~  + 3a2Y"+1,a 4- 3a3K+l,3 4- * * - (8) 

In order to identify the component processes Yt,i, i = O,l, 2, ..., we 
substitute (8) into (7) and approximate the nonlinear function f(-) by 
truncating its power-series expansion. This gives 

1 1 
Yt+1(a) = 4(Yt,o + aYt,1+ -a2Yt,2 2! + 3!a3Yt,3) 

(9) 
1 1 

+a3[;4Yt,3 + ,f'(Yt,O)K,2l+ * - * - 
By equating the coefficients of ai in (8 )  and in (9), we obtain the 

following recursive relations among the component processes Yt,k, k = 
0,1,2, ... : 

According to (lo), we can proceed to derive the autocovariance 
function for Yt(a) denoted by 

Y = C4Yt(a) ,Yt+4a) l .  
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Using (8) and truncating the expansion up to the f is t  order, we 
have 

7 cOv[Yt,o + aYt,17 %+r,O + aYt+7,1]* (11) 
Use of the stationarity property of Yt,o and Yt,l leads to 

7 = d27 + a2C0.[f(Yt-1,o), f(Yi+r--l,O)l 

+4aCov[Yt-1,0 + aYt-l,l, f(Yt+r-l,O)l 

+daCo4Yt+r--1,0 + aYt+r-1,1, f(Yt-1,o)l. 

Re-arranging terms and using the stationarity property of Yt,o and 
Yt,l again give 7 which is equal to 

1 
{ a2Cov[f(Yt-  1,0), f(Yt+r-l ,0) ]+ 24aCov[Yt,o -kaYt,1 ? f( X+T,o)l)* 

(1 - 42) 
(12) 

Yt,o, the zero-th order expansion of Yt(a), is a linear process and its 
properties are well understood (Section 111.1). To obtain the desired 
form for 7, we need an explicit expression for the component covariance 
in (12) involving nonlinear process &,I.  Repetitive use of the recursive 
relations in (10) gives 

COV[Yt,l, f(Yt+r,o)I = Cov[dYt-1,1 + f(Yt-l,O), f(Yt+,,o)l 
4Cov[Yt--1,1, f(Yt+,,o)l + Cov[f(Yt-l,o), f(Yt+r,o)l = 

= dCov[d~-2,1 + f (&-2,0,  f(&+T,o)] + C o v [ f ( ~ - l , o ) ,  f ( Y t + T , o ) ]  

t-1 

= 4 [ f ( yt - i - 1 ,o ) 9 f ( yt+ T,o) ]  
;=0 

Substitution of this result into (12) leads finally to 

1 
7 = -  { a2 cov  [ f (Yt - 1 ,o) , f (Yt +r - 1 ,o )I + Wac 021 [Yt ,o 9 f (Yt+T,O 11 

(1 - d2) 

+2da2 4Co4f(Yt-;-l,o), f ( Y t + T , O ) I ) .  
t-1 

i=O 

The first two terms.in the above expression are exponentially de- 
clining as a function of time lag 7 because the component processes 
involved are just static functions of linear processes. The remaining 
summation, however, would in general decay more slowly because of 
the many contributing terms. 

We conclude from the above result that in a model where linear and 
nonlinear terms are jointly used for prediction, the correlation function 
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tends to decay more slowly than in models utilizing either linear or 
nonlinear predictive terms separately. In other words, if a model is 
to be constructed to represent natural data which is known to possess 
long-term inter-time correlation, such as speech, a model of joint linear 
and nonlinear predictive terms would be superior to (i.e. more faithful 
than) that of only one predictive term, either linear or nonlinear. 

IV. Simulation Results on the Predictive Models 
Computer simulations were carried out to check the analytical re- 

sults obtained in Section 111, where many approximations were em- 
ployed to allow for the analysis to be carried out in a closed form. Us- 
ing a random number generator which produces Gaussian IID residuals 
et with a zero mean and unit variance, we created artificial “speech” 
data according to models (l), (2) and ( 6 ) ,  respectively. The simulated 
data consisted of a total of 100,000 points, from which the sampled 
autocorrelation functions were computed for each model. The auto- 
correlation functions for models (l), (2) and ( 6 )  were superimposed on 
the same plot for comparison. Figs.la,b,c,d correspond to four different 
forms of nonlinear functions f(.) in models (2) and (6): tanh, sigmoid, 
symmetric square root, and symmetric one-quarter power function, re- 
spectively. Parameter +, interpreted as the neural network weight, is 
assumed a fixed value less than one (this guarantees stationarity of the 
modeled processes). It is apparent that regardless of the form of non- 
linearities, joint use of linear and nonlinear prediction terms (model 6) 
produces significantly stronger correlations in the simulated data than 
the use of separate predktion terms at any T > 0. This conforms to 
the analytical results obtained in Section 111. 

V. Speech Recognition Experiments 
The various predictive HMMs discussed so far were evaluated on a 

speech recognition task using a database of speaker-dependent speech 
recorded at the University of Waterloo [7]. The task domain of the 
recognizer was a total of six CV syllables where C encompasses six 
stop consonants /p/, / t / ,  /k/, /b/, /d/, /g/ and V is the vowel / i / .  
All the syllables were uttered with a short pause in between by na- 
tive English speakers in a normal office environment. We chose this 
task for two reasons. First, stop confusion and E-set discrimination 
are known to be difficult tasks and are of fundamental significance for 
general speech recognition problems [4, 51. Second, acoustic realiza- 
tion of stop-vowel syllables exhibits the typical nature of coarticulation 
and forms special sets of temporally correlated speech data. In order to 
faithfully represent such speech data, a model would have to be capable 
of handling long-term temporal correlations. The stop-E-set discrim- 
ination task allows us to perform comparative tests on the capability 
and the effectiveness of various types of predictive models and to assess 
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the practical value of the analytical results obtained in Section 111 in 
speech recognition. 

Sampled speech data were obtained using a DSP Sona-Graph work- 
station. Data were collected by digitally sampling the speech signal at 
16 kHz. A Hamming window of a 25.6-ms duration was applied ev- 
ery 10 ms. Within each window, a 7-dimensional vector consisting of 
mel-frequency cepstral coefficients was computed as raw speech data to 
be fed to the predictive HMMs. These coefficients were appropriately 
scaled to accommodate the limited dynamic range in the neural net- 
work’s operation. (We did not use delta cepstral coefficients over time 
as expanded feature sets since we felt this would violate the principle 
of consistency; models are considered good only if they can genemte 
observations which are statistically consistent with raw data. Our in- 
tention was to develop predictive HMMs as data-generator models and 
we believe that the advantages of using delta coefficients can be coher- 
ently embedded in the predictive mechanisms of the models.) 

In implementing the neural predictive HMMs, each syllable in the 
vocabulary was represented by a three-layered, feed-forward fully con- 
nected neural network. The network’s weight parameters are modu- 
lated by a four state left-to-right Markov chain. The network consisted 
of seven input units, one accepting each scaled cepstral coefficient. Five 
hidden units were employed which were either all linear, all nonlinear, 
or two linear and three nonlinear depending on the type of the pre- 
dictive model considered. Seven output units were all assumed linear, 
each having the desired value of a corresponding predicted-cepstral 
coefficient one frame ahead. For comparison purposes, we also imple- 
mented the standard HMM, which is locally IID and is a degenerated 
case of the predictive HMM’s when the skeleton is fixed at a state- 
dependent constant (i.e. Gaussian mean). To make a fair comparison, 
the standard HMM was implemented with an identical structure to the 
predictive HMM with the mere difference of replacing data prediction 
with locally IID data generation. The covariance matrices in the stan- 
dard HMM were assumed identity matrices in keeping with the use of 
the unweighted least-mean-square error function in the training and 
testing for the predictive HMMs. 

The segmental K-means algorithm was used for training the stan- 
dard HMM and, in combination with the standard back-propagation 
algorithm, for training all three types of the predictive HMMs. Details 
of the training algorithm, as well as the classification algorithm, were 
described in [12] and omitted here. Training and testing data were 
obtained from three male speakers. For each speaker, the training set 
consisted of eight tokens for each of the six syllables in the vocabulary. 
The test set consisted of 14 tokens for each of the six syllables, giving 
a total of 84 test tokens for each speaker. Comparative recognition ac- 
curacy on the test data for the standard HMM recognizer (locally IID 
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source with a fixed-valued “predictive” term) and for the HMM recog- 
nizers using various forms of speech-frame prediction is shown in Table 
1. We draw particular attentions to the significantly higher recogni- 
tion rate obtained with mixed linear and nonlinear hidden units in the 
neural network architecture compared with other types of recognizers. 

VI. Conclusion 
It is concluded from this work that the signal prediction mechanism 

implemented by carefully structured neural networks is a potentially 
effective scheme for high-accuracy speech recognition. In the specific 
task of stop-E-set recognition, use of nonlinear prediction in conjunc- 
tion with linear prediction was demonstrated to be superior to linear 
or nonlinear prediction alone, as well as to the standard HMM. This 
superiority is believed to result from the higher capacity provided by 
this joint prediction mechanism in representing the inherent long- term 
correlations between successive speech frames. Analytical evaluation 
and computer simulations of the correlation functions for various types 
of simplified predictive models provide strong support for this postula- 
tion. 

Table 1: Comparative recognition accuracy on CV syllables for HMM 
recognizers using standard HMM and various forms of speech-frame 
prediction implemented with a layered neural network architecture. 
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