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Abstract

A speech recognizer is developed using a layered neural network to im-
plement speech-frame prediction and using ¢ Markov chain to modulate the
network’s weight parameters. We postulate that speech recognition accuracy
is closely linked to the capability of the predictive model in representing long-
term temporal correlations in data. Analytical ezpressions are oblained for
the correlation functions for various types of predictive models (linear, non-
linear, and jointly linear and nonlinear) in order to determine the faithfulness
of the models to the actual speech data. The analytical results, computer sim-
ulations, and speech recognition ezperiments suggest that when nonlinear and
linear prediction are jointly performed within the same layer of the neural
network, the model is better able to capture long-term data correlations and
consequently improve speech recognition performance.

I. Introduction

Speech frames generated by speech preprocessors in automatic speech
recognizers typically possess strong correlations over time [5, 8]. The
correlations stem, to a large degree, from the complex interactions and
overlap patterns among various articulators involved in the dynamic
process of speech production [9]. Standard hidden Markov models
(HMMs) [1], based on the state-conditioned IID (independent and iden-
tical distribution) assumption, are known to be weak in capturing such
correlations. The strength of data correlations in the HMM source
decays exponentially with time due to the Markov property, while the
dependence among speech events does not follow such a fast and regular
attenuation.

The linear predictive HMM proposed in [14] and [11] is intended
to overcome this weakness but shows no clear evidence of superiority
over the standard HMM in speech recognition experiments [11]. This
can be understood because the correlation (or the envelop of the cor-
relation function) introduced by the state-dependent linear prediction
mechanism decays also in an exponential manner with time lag [2].
This makes the capability of the linear predictive HMM, in dealing
with speech-frame correlations, essentially the same as that exhibited
by a standard HMM having just a larger number of states.

Nonlinear time series models [15, 16] are believed to be capable
of representing the temporal correlation structure of speech frames in
a more general and realistic manner. In order to represent the well
known nonstationary nature of speech frames, the parameters in the
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time series models can be made to vary with time. One elegant way of
achieving this is to assume that the evolution of the time series model
parameters follows a Markov chain.

In this paper we describe an implementation of this idea where
three-layered feed-forward neural networks are used as Markov-state-
dependent nonlinear autoregressive-type skeleton functions (terminol-
ogy borrowed from [16]) in a time series model. Layered neural net-
works are ideal tools for implementing mapping functions applicable
to speech-frame prediction, an idea originally proposed in [12], for two
main reasons. First, it has been proved that a network of just one hid-
den layer is sufficient to approximate arbitrarily well any continuous
function [3, 10]. Thus prediction of highly dynamic and complex speech
frames can be potentially made as accurate as possible. Second, the
effective back-propagation algorithm is available for network parame-
ter estimation. To understand the properties of predictive models, we
carried out detailed analysis on the statistical correlation structures of
various first-order predictive models. One principal conclusion drawn
from the result of the analysis is that long-term temporal correlations
in the modeled data cannot be achieved with only one single predic-
tive term, either linear or nonlinear. However, combinations of linear
and nonlinear terms are shown, analytically and by simulation, to be
able to produce such signal correlations, which is a desirable property
for a speech model. Speech recognition experiments conducted on a
speaker-dependent discrete-utterance E-set task with various types of
predictive HMMs demonstrate close relationships between the recogni-
tion accuracy and the capabilities of the models in handling temporal
correlations of speech data.

II. Correlation Structure in Speech Data and Coarticula-
tion in Speech Dynamics

Speech patterns are known to be highly dynamic and complex in
nature [9]. One principal source of this complexity is coarticulation.
In articulatory terms, coarticulation results from the fact that several
articulators do not always move instantaneously and simultaneously
from one targeted articulatory configuration to another. In acoustic
terms, coarticulation is related to context dependence, whereby acous-
tic realization of a sound is strongly affected by the sounds just uttered
and to be uttered next. This context dependence makes any IID source
model, or the locally IID source model as is the case with the standard
HMM, a poor choice for fitting speech data and is a major source of
errors in speech recognition [6]. Good models should provide correla-
tion structures rich enough to accommodate the context dependence
and other types of temporal dependence in speech data.
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III. Analysis of Correlation Structures for State Condi-
tioned Predictive Models

In this section, we conduct analytical evaluation of the correlation
functions for various types of predictive models (linear, nonlinear, and
their combination) in order to assess their faithfulness as a speech model
for use in speech recognition. For the sake of simplicity in exposition
yet without apparent loss of generality, we assume first-order prediction
and scalar observations.

II1.1. Linear prediction
The state-conditioned linear predictive source model for speech data
Y;’s is chosen to have the following form:

Yi+1 = oY2 + €41, t=0,1,..,T. (1)

where ¢ is an IID residual random variable with zero mean and variance
o? and the skeleton function is a linear function of the data.

It is well known [2] that when the predictive coefficient ¢ is less
than one in absolute value, then the process (1) is stationary and its
autocovariance function declines exponentially as the time lag 7 with
the time constant —log¢.

II1.2. Prediction with a single nonlinear term

The state-conditioned nonlinear predictive source model replaces
the linear predictive term in (1) with a symmetric, continuously differ-
entiable but otherwise arbitrary nonlinear skeleton function f(-):

YH—I = f(Yt) + €t+1, t= 01 1’ 7T (2)

In this section, f(-) is restricted to contain only one single nonlinear
term. In actual implementation of the predictive model, we chose f(-)
to be a specific nonliner function, such as the tanh function. But
otherwise f(-) is not restricted to any specific form when we study
the statistical properties of model (2) in this section.

The method we use to derive the correlation function for (2) resem-
bles the perturbation analysis for the study of nonlinear differential
equations [13]. To proceed, we construct a family of models which is
parameterized by a:

Yir1(a) = af(Yi(a)) + €41, (3)

and model (2) is considered as one model in the family (3) whose sta-
tistical properties change continuously with the parameter a.

Once the model is parameterized, the autoregression on the data Y;
can be removed by performing power-series expansion of the nonlinear
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function f(-):

Yi(@) = e+ af(Yo(a),
Yo(a) = e+ af(Yi(a))

= e+af(eq)+ azf(Yo)f'(ﬁ) + -;-a3f2(yo)f"(€1) T
Yi(a) = e+ af(Yz(a))

e3 + af(e2) + o’ f(e))f (e2) + @ f(Yo) f (1) f (€2) + -+,

and in general,
Yi(a) = e+af(er—1)+a®f(e2)f (ee-1 )+asf(et_z)f'(et_z)f’(et_l)+(~ -) ..
4

(In the above, f'(-) denotes the derivative of f(-) with respect to its

argument.)
From (4) the covariance function for model (3) is calculated to give

CovlYy(a),Yetr(a)]

x Cov(e, €rr) + aCov[f(&), €e4r] + aCovles, f€ryr—1)]
+a2Cov[f(er—2)f (€-1), €t4-) + Q2Covles, flettra2)f (€t4r—1)]
+o*Cov[f(er-2)f (€r-1), FlErsr—1)]
+a®Cov[f(er-1), flersr—2)f (Er4r-1)]
+a*Cov[f(er-2)f (€1-1), flersr—2)f (€esr)]- (5)

Among the eight terms in (5), the first, second, fourth, and sixth terms
are zero for r > 0. This is due to the IID assumption for ¢; and
to the fact that f(-) is a static function containing no memory. The
fifth term, Covles, f(€t4r—2)f (€e+r—1)], is non-zero only for r = 1 and
7 = 2. The seventh and the eighth terms are non-zero only for 7 = 1.
Likewise, any higher order terms of a in the covariance function which
are omitted due to cutoff in the power-series expansion of Y;(a) would
contain non-zero values only for small time lags.

We conclude from the above analysis that prediction of a time series
with a single nonlinear term alone does not produce long-term temporal
correlations in the model’s output.

II1.3. Joint prediction with nonlinear and linear terms
In this section we investigate correlation properties of the data gen-
erated from the stationary time series model

Yip1 = ¢Ye + f(Y2) + €e41, t=12,..,T, (6)
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whose skeleton function has an additional linear predictive term to
that of model (2) studied in Section III.2. Although a single nonlinear
predictive term just by itself is unable to generate desirable long-term
data correlations (Section III.2), we can expect the interaction of the
nonlinear term with the additional linear predictive term to produce
such desirable properties. The following analysis, and the simulation
results shown in Section IV, confirm this expectation.

.Following a similar approach to that of Section III.2, the family
of models constructed for (6) appropriate for the ensuing perturbation
analysis is

Yir1(a) = ¢Yi(a) + af(Yi(a)) + €41. t=12,..,T. (7)

We now decompose the stationary random process Y;(a) into its
stationary component processes by representing it as a power-series
expansion on a

1 1
Yir1(a) = Y0+ aYepan + 'é'iaz}’t-’-l,z + aaach,s +---. (8)
In order to identify the component processes Y;;,i = 0,1,2, ..., we

substitute (8) into (7) and approximate the nonlinear function f(-) by
truncating its power-series expansion. This gives

Yivi(a) = o(Yio+ aYen + %azYt,z + %asYt,s)
Folf(Yio) + f (Yeo)(@¥en + Vi + 50%%a)] + et
= (#Yeo + €241) + alpYe1 + F(Y20)] + 02[%¢Yt,2 + f (Yi0)Yia)
o[ H¥is + 5 (Voo)Veal + -+ %)

By equating the coefficients of o' in (8) and in (9), we obtain the
following recursive relations among the component processes Y; 5,k =
0,1,2,...

Yivi0 = @Yio + €41,

Yit10 = ¢Yia + f(Yeo),
Yip2 = oYz +2f (Yeo)Yer, (10)
Yerr8 = Yes+3f (Yeo)Yeo,

According to (10), we can proceed to derive the autocovariance
function for Y;(a) denoted by

7= Cov[Yg(a), },H'T(a)]'
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Using (8) and truncating the expansion up to the first order, we
have
¥ = Cov[Yio + aYy1,Yiero + a¥eqral] (11)

Use of the stationarity property of Y; o and Y leads to

v = ¢*v+a’Cov[f(Yeo10), f(Yerr-10)]
+daCov[Yi_10 + a¥i_1,1, f(Yisr-1,0)]
+¢aCov[Yeyr_1,0+ a¥ipr_11, f(Ye-1,0)]-

Re-arranging terms and using the stationarity property of Y; o and
Y; again give v which is equal to

(T_l(ﬁ—,){dzcov[f(yt—x.o), f(Yetr-10)[+2¢aCov[Y 0+aYi, f(Yeiro)l}-
(12)
Y:.0, the zero-th order expansion of Y;(a), is a linear process and its
properties are well understood (Section III.1). To obtain the desired
form for v, we need an explicit expression for the component covariance
in (12) involving nonlinear process Y; 1. Repetitive use of the recursive
relations in (10) gives

Cov[Ys, f(Yitro)] = Cov[¢Yi 11 + f(Yi-1,0), f(Yi4r0))]
= ¢Cov[Yi_1,1, f(Yegr0)] + Cov[f(Yiz10), f(Yetro0))
= @Cov[@Yi_21 + f(Yi—2.0, f(Yitr0)] + Cov[f(Yi-10), f(Yitro)]

t—1
= Zcﬁ‘Cov[f(Yz-i-l,o),f(Yt+r,0)]

1=0

Substitution of this result into (12) leads finally to

Yy = (—1—_1—¢55{a200v[f(Yt_1,0), f(Yitr—10)] + 20aCov[Ys 0, f(Yisr0)]

t-1

+2¢a’ Z ¢*Cov[f(Yi-i=1,0), f(Ye4r0)]}-

=0

The first two terms.in the above expression are exponentially de-
clining as a function of time lag 7 because the component processes
involved are just static functions of linear processes. The remaining
summation, however, would in general decay more slowly because of
the many contributing terms.

We conclude from the above result that in a model where linear and
nonlinear terms are jointly used for prediction, the correlation function
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tends to decay more slowly than in models utilizing either linear or
nonlinear predictive terms separately. In other words, if a model is
to be constructed to represent natural data which is known to possess
long-term inter-time correlation, such as speech, a model of joint linear
and nonlinear predictive terms would be superior to (i.e. more faithful
than) that of only one predictive term, either linear or nonlinear.

IV. Simulation Results on the Predictive Models

Computer simulations were carried out to check the analytical re-
sults obtained in Section III, where many approximations were em-
ployed to allow for the analysis to be carried out in a closed form. Us-
ing a random number generator which produces Gaussian IID residuals
€ with a zero mean and unit variance, we created artificial “speech”
data according to models (1), (2) and (6), respectively. The simulated
data consisted of a total of 100,000 points, from which the sampled
autocorrelation functions were computed for each model. The auto-
correlation functions for models (1), (2) and (6) were superimposed on
the same plot for comparison. Figs.1a,b,c,d correspond to four different
forms of nonlinear functions f(-) in models (2) and (6): tanh, sigmoid,
symmetric square root, and symmetric one-quarter power function, re-
spectively. Parameter ¢, interpreted as the neural network weight, is
assumed a fixed value less than one (this guarantees stationarity of the
modeled processes). It is apparent that regardless of the form of non-
linearities, joint use of linear and nonlinear prediction terms (model 6)
produces significantly stronger correlations in the simulated data than
the use of separate prediction terms at any 7 > 0. This conforms to
the analytical results obtained in Section III.

V. Speech Recognition Experiments

The various predictive HMMs discussed so far were evaluated on a
speech recognition task using a database of speaker-dependent speech
recorded at the University of Waterloo [7]. The task domain of the
recognizer was a total of six CV syllables where C encompasses six
stop consonants /p/, /t/, /k/, /b/, /d/, /g/ and V is the vowel /i/.
All the syllables were uttered with a short pause in between by na-
tive English speakers in a normal office environment. We chose this
task for two reasons. First, stop confusion and E-set discrimination
are known to be difficult tasks and are of fundamental significance for
general speech recognition problems [4, 5]. Second, acoustic realiza-
tion of stop-vowel syllables exhibits the typical nature of coarticulation
and forms special sets of temporally correlated speech data. In order to
faithfully represent such speech data, a model would have to be capable
of handling long-term temporal correlations. The stop-E-set discrim-
ination task allows us to perform comparative tests on the capability
and the effectiveness of various types of predictive models and to assess
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the practical value of the analytical results obtained in Section III in
speech recognition.

Sampled speech data were obtained using a DSP Sona-Graph work-
station. Data were collected by digitally sampling the speech signal at
16 kHz. A Hamming window of a 25.6-ms duration was applied ev-
ery 10 ms. Within each window, a 7-dimensional vector consisting of
mel-frequency cepstral coefficients was computed as raw speech data to
be fed to the predictive HMMs. These coefficients were appropriately
scaled to accommodate the limited dynamic range in the neural net-
work’s operation. (We did not use delta cepstral coefficients over time
as expanded feature sets since we felt this would violate the principle
of consistency; models are considered good only if they can generate
observations which are statistically consistent with raw data. Our in-
tention was to develop predictive HMMs as data-generator models and
we believe that the advantages of using delta coefficients can be coher-
ently embedded in the predictive mechanisms of the models.)

In implementing the neural predictive HMMs, each syllable in the
vocabulary was represented by a three-layered, feed-forward fully con-
nected neural network. The network’s weight parameters are modu-
lated by a four state left-to-right Markov chain. The network consisted
of seven input units, one accepting each scaled cepstral coefficient. Five
hidden units were employed which were either all linear, all nonlinear,
or two linear and three nonlinear depending on the type of the pre-
dictive model considered. Seven output units were all assumed linear,
each having the desired value of a corresponding predicted cepstral
coefficient one frame ahead. For comparison purposes, we also imple-
mented the standard HMM, which is locally IID and is a degenerated
case of the predictive HMM’s when the skeleton is fixed at a state-
dependent constant (i.e. Gaussian mean). To make a fair comparison,
the standard HMM was implemented with an identical structure to the
predictive HMM with the mere difference of replacing data prediction
with locally IID data generation. The covariance matrices in the stan-
dard HMM were assumed identity matrices in keeping with the use of
the unweighted least-mean-square error function in the training and
testing for the predictive HMMs.

The segmental K-means algorithm was used for training the stan-
dard HMM and, in combination with the standard back-propagation
algorithm, for training all three types of the predictive HMMs. Details
of the training algorithm, as well as the classification algorithm, were
described in [12] and omitted here. Training and testing data were
obtained from three male speakers. For each speaker, the training set
consisted of eight tokens for each of the six syllables in the vocabulary.
The test set consisted of 14 tokens for each of the six syllables, giving
a total of 84 test tokens for each speaker. Comparative recognition ac-
curacy on the test data for the standard HMM recognizer (locally ITD
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source with a fixed-valued “predictive” term) and for the HMM recog-
nizers using various forms of speech-frame prediction is shown in Table
1. We draw particular attentions to the significantly higher recogni-
tion rate obtained with mixed linear and nonlinear hidden units in the
neural network architecture compared with other types of recognizers.

VI. Conclusion

It is concluded from this work that the signal prediction mechanism
implemented by carefully structured neural networks is a potentially
effective scheme for high-accuracy speech recognition. In the specific
task of stop-E-set recognition, use of nonlinear prediction in conjunc-
tion with linear prediction was demonstrated to be superior to linear
or nonlinear prediction alone, as well as to the standard HMM. This
superiority is believed to result from the higher capacity provided by
this joint prediction mechanism in representing the inherent long-term
correlations between successive speech frames. Analytical evaluation
and computer simulations of the correlation functions for various types
of simplified predictive models provide strong support for this postula-
tion.

Speaker | Standard Linear Nonlinear Jointly
HMM Pred. HMM | Pred. HMM | Pred. HMM
1 80.9% 88.1% 89.3 % 89.3 %
2 85.7% 84.5% 928 % 97.6 % |
3 91.7% 91.7% 96.4 % 100.0 %
Ave. 86.1% 88.1% 928 % 95.6%

Table 1: Comparative recognition accuracy on CV syllables for HMM
recognizers using standard HMM and various forms of speech-frame
prediction implemented with a layered neural network architecture.
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