Recovery Guarantees for General Multi-Tier Applications

Roger Barga
Microsoft Research
Redmond, WA USA

Abstract

Database recovery does not mask failures to applica-
tions and users. Recovery is needed that considers data,
messages, and application components. Special cases
have been studied, but clear principles for recovery
guarantees in general multi-tier applications such as
web-based e-services are missing. We develop a frame-
work for recovery guarantees that masks almost all
failures. The main concept is an interaction contract
between two components, a pledge as to message and
state persistence, and contract release. Contracts are
composed into system-wide agreements so that a set of
components is provably recoverable with exactly-once
message delivery and execution, except perhaps for
crash interrupted user input or output. Our implemen-
tation techniques reduce logging cost, allow effective
log truncation, and provide independent recovery for
critical server components. Interaction contracts form
the basis for our Phoenix/COM project on persistent
components. Our framework’s utility is demonstrated
with a case study of a web-based e-service.

1. Introduction

Database recovery does not mask failures to applica-
tions and users. Transaction atomicity guarantees all-or-
nothing but not exactly-once execution. Applications
need explicit code to retry failed transactions. Often
such code is incomplete or missing, exposing failures to
users. Or even worse, a failure occurs without being
noticed, which can occur if the error handling part of an
application crashes. For an e-commerce service, this
can lead to user inconvenience and lost sales when this
happens during shopping cart checkout. However, a
user must not blindly re-initiate a transaction when no
result is received, as the transaction may have suc-
ceeded and re-execution is not usually idempotent.
Some e-services warn users not to hit the check-
out/buy/commit button twice when a long delay occurs.
Users who do not heed this warning may unintention-
ally purchase two seats on the same flight or two copies
of the same book.

TP monitors, exploiting transactional message queues,
have long been the preferred solution for coping with

David Lomet
Microsoft Research
Redmond, WA USA

Gerhard Weikum
University of the Saarland
Saarbruecken, Germany

application failures. However, these prior solutions are
limited to stateless applications and have not been fully
carried over to middle-tier web application servers (e.g.,
Apache or IIS). And some e-services are even more
complex, with layers of application servers (e.g., web
server, workflow server, activity server) accessing sev-
eral database servers but also directly maintaining per-
sistent data in files and requesting services from exter-
nal providers. For example, the Expedia travel service
integrates services from travel industry providers such
as Amadeus or Sabre. It is not clear how to adapt prior
solutions.

For multi-tier applications with communicating compo-

nents, a comprehensive form of data, process, and mes-

sage recovery is needed, going beyond traditional data-

base recovery. Designing such a protocol entails a

number of issues:

e Which component logs which messages or state to
provide recovery, mask failures, and provide exactly-
once semantics to a user?

e How are logs managed, when is a log forced to disk,
and how are logs coordinated for log truncation, cru-
cial for fast restart and thus for high availability?

e How do critical components, e.g., database servers,
avoid being “hostage” to other components (applica-
tions, servers, clients), which may hamper or block
their independent recovery or normal operation?

1.1 Contributions

We develop a framework for recovery guarantees in
general multi-tier applications that answers the above
questions. It masks from users all failures (of clients,
application servers, or data servers) such that a user’s
initial request, which may start a conversation or work-
flow, has exactly-once semantics, meaning 1) no output
to the user is duplicated (to avoid confusion), 2) the
user provides input only once (to prevent irritation), and
3) the user intent, e.g., buying airline tickets, is carried
out exactly once.

We enable these strong guarantees for multi-tier appli-
cations, based on the common concept in fault-tolerant
computing of piecewise determinism. We identify the
logging required for specific non-deterministic events

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02]
1063-6382/02 $17.00 © 2002 IEEE

so that after a failure, an application component can be
replayed from an earlier installed state (in an extreme
case its initial state) and arrive at the same (abstract)
state as in its pre-failure incarnation.

e We introduce interaction contracts between two
components, e.g., (web) application servers, work-
flow engines, mail servers, database servers, and cli-
ent software systems (e.g., browsers). For example,
a committed interaction contract between "persis-
tent" components, whose state needs to survive fail-
ures, requires sender and receiver guarantees to en-
sure that the interaction persists at both components
should either system fail. Contracts also exist for
persistent component interactions with external com-
ponents (including users) and transactional compo-
nents, such as databases, which provide atomic state
transitions but not exactly-once executions.

e We show how to compose bilateral contracts to make
persistent components provably recoverable with ex-
actly-once execution semantics. We strictly separate
contract obligations from their implementation so
that we can provide strong guarantees to users while
many internal interactions can avoid forced logging.
Such optimizations depend on the exact nature of the
components and interactions.

e We present implementation techniques to a) mini-
mize logging cost, especially log forces, b) enable
log truncation to bound restart work and thus provide
high availability, and c¢) permit independent recovery
of certain mission-critical components.

e To demonstrate the applicability of our framework,
we present a case study of a multi-tier e-service that
integrates services from multiple providers.

1.2 Related Work

Recoverability for systems of communicating processes
has been studied in the fault-tolerance community (e.g.,
[JoZw87, SBY88, Cr91, AIMa95, EJW96]), where the
main focus has been long-running computations (e.g.,
scientific applications) with distributed checkpointing,
to avoid a failure losing too much work. Most of this
work has not masked failures from users. Methods
masking failures exploit “pessimistic logging” (see,
e.g., [HuWa95]), with forced log I/Os for sender and
receiver upon every message exchange. Even more ex-
pensive techniques, such as process checkpointing (i.e.,
copying state to disk) upon every interaction, were used
in early fault-tolerant systems of the eighties [Ba8l,
Bo89, Kim84]. So failure masking has been a luxury
affordable only by mission-critical applications (e.g.,
stock exchanges). Only recently have vendors begun to
serve this market with commodity features, but current
solutions require explicit application code for failure
handling and/or “stateless” components, or do not han-
dle failures at all levels of a multi-tier application.

The most successful prior approach is queued transac-
tions in OLTP [BHM90,GrRe93,BeNe96,WVO01], sup-
ported by most TP monitors (e.g., MQ Series, Tuxedo,
MTS). These involve three distributed transactions per
user request to: enqueue the request on the queue (a
separate resource manager); dequeue it, process it in the
database server, and enqueue the reply; and dequeue the
reply. This incurs the cost of three distributed commits
(2PC) and requires “‘stateless” applications where the
only state between transactions is in a database or
queue. It requires significant programming effort to cast
rich stateful applications into this quasi-stateless para-
digm. And little work on failure masking for general,
stateful, applications [FCK87, LoWe98] exists.

Fault tolerance is being discussed also for component
middleware like EJB and CORBA [OMGOO0], but the
focus is on service availability for stateless interactions
(i.e., restarting re-initialized application server proc-
esses). Products (e.g., VisiBroker, Orbix, BEA We-
bLogic, Sun’s J2EE suite) at best support simple
failover techniques that do not relieve the application
programmer from having to code failure handling logic
and are not geared for masking process or message fail-
ures to users.

Others have raised the need for execution guarantees
for e-services (e.g., [Ty98, MaRa99, FrGu00, SPS00,
MaRa01, FBHSO01]), but they have been concerned
with specific applications such as payment protocols
and do not specifically address system-wide failure
masking in general multi-tier architectures, or are lim-
ited to stateless applications. Prior work on user-
transparent database application recovery was restricted
to applications embedded in the data server such as
stored procedures [Lo98] and two-tier client-server sys-
tems [Lowe98, BLAB0OO, BLO1]. Clients are trivially
piecewise deterministic, but application servers typi-
cally receive asynchronous messages. Also, it is not
obvious how the client-server protocol can be applied to
more than two interacting components. Our interaction
contract introduced here is the key for the generaliza-
tion to multi-tier systems.

The recovery framework and protocols developed in
this paper improve the state of the art in a number of
ways. Compared to traditional techniques based on pes-
simistic logging or frequent process state saving, our
protocols are less costly in terms of logging and state
saving while providing very fast recovery. In contrast to
solutions provided by TP monitors and CORBA- or
EJB-oriented application servers, our approach can
handle stateful applications without requiring a new
application programming model. Finally, our method is
unique in providing an end-to-end solution for masking
all failures across an entire multi-tier federation of ap-

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

plication and data servers while, to a large extent, pre-
serving the autonomy of these servers.

1.3 Computational Model

We consider a group of components: clients, applica-
tion servers (e.g., web servers, Java servlet engines,
workflow engines, etc.), data servers (e.g., database
servers, mail servers, document servers), and users
(viewed as components). We assume these compo-
nents, which may be mapped to processes or threads,
are piecewise deterministic (PWD). A PWD compo-
nent is deterministic between two successive messages
from other components, so that it can be replayed from
an earlier state if it is fed the original messages. Such
deterministic replay resends the original messages,
and produces the same component end state. Replay
starts from a previous component state on disk, perhaps
the initial state. We call these saved states “installation
points” (IP’s), not checkpoints, to avoid confusion with
the different notion of checkpoint in database recovery
[GrRe93]. What constitutes component state varies
greatly; sometimes a compact abstract state is sufficient
rather than the full image of a component's address
space. Usually, server state includes persistent data
(e.g., a database), messages, and session information.

A client synchronously communicating with one or
more servers, suspending its execution after a message
send and awaiting a reply message from a uniquely
identified server, is clearly PWD. For an application
server that serves multiple clients and communicates in
an asynchronous manner, the PWD assumption is not
guaranteed without some effort. Such components have
three types of non-determinism:

1. A component, e.g. database or application server,
may execute on multiple concurrent threads ac-
cessing shared data (e.g., SAP-style systems or
eBay-style web sites). Reproducing this access inter-
leaving order is essential for successful replay. We
assume that components do not directly share data.
Multiple components accessing common data require
that data be in a component, e.g., a database server.
Non-determinism is removed by logging the inter-
leaved accesses to that component, while that com-
ponent logs the interleaved access to its data.

2. Component execution may depend on asynchronous
events, e.g., received messages or interrupts that
prompt component execution at arbitrary points.
These events are not reproducible during replay. We
log the order of asynchronous events to guarantee
deterministic replay. Often short logical log entries
are sufficient, e.g. message receive order, if message
contents can be recreated by other means (e.g., from
the sender). However sometimes, physical logging is
inevitable, e.g., when reading the real-time clock.

3. Component re-creation after a crash may not exploit
the same system elements as the original execution, a
form of non-determinism. Ids for messages, proc-
esses, threads, or users may change. To remove sys-
tem resource mapping non-determinism, we “virtu-
alize” these resources, introducing logical ids for
messages, component instances, etc. We log the
logical ids. The logical ids are mapped to different
physical entities after a crash, but at the abstract level
the “logically identified” component becomes PWD.

We assume that failures are (i) soft, i.e., no damage to
stable storage so that logged records are available after
a failure, (ii) fail-stop so that only correct information is
logged and erroneous output does not reach users or
persistent databases, and (iii) failures are the result of
race conditions (timing or "Heisenbugs"), and that re-
play does not reproduce the failure deterministically.

1.4 Outline of the Paper

Section 2 introduces the notion of interaction contracts
between two components and their four flavours, and
discusses its ramifications. Section 3 elaborates on the
implementation techniques for realizing interaction
contracts. Section 4 presents an application case study,
while we end with a brief discussion in Section 5.

2. Interaction Contracts

2.1 Components and Interactions

2.1.1 Component Guarantees

Mostly we are concerned about persistent components
(Pcom’s), for which we guarantee persistent state, i.e.,
state that survives failures (not simply re-initializing a
failed and restarted component as in commercial
failover solutions). But a multi-tier application is rarely
composed solely of persistent components. We treat
other components in their interactions with Pcom’s.
With transactional components (Tcom’s), state and
messages are only guaranteed to persist at transaction
boundaries. Transaction abort resets Tcom state to the
beginning of the transaction, losing intra-transaction
messages. Finally, external components (Xcom’s) can-
not usually provide any guarantees. For example, when
prompted for previous input, a user does not necessarily
deliver identical input.

Implementing persistence guarantees requires a log and
a recovery manager to capture the order of non-
deterministic events. During normal operation log
entries are created in a buffer for received messages,
sent messages, and other non-deterministic events. The
buffer is written to a stable log on disk at appropriate
points or when full. Also, component state may be peri-
odically “installed” (saved) to disk in an installation

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

point to facilitate log truncation, frequently making log
records preceding the installation point unnecessary. A
data server can use its own log for this.

During restart after a failure, the recovery system
scans the stable log. A component is re-incarnated
from its last installation point and replayed from there.
The recovery system intercepts all messages or other
non-deterministic events; information is reconstructed
from the corresponding log entry and fed to the compo-
nent in place of the event. When log entries do not con-
tain message contents, communication with the sender
is required to obtain the contents. For this, a contract
with the sender ensures that the message can indeed be
provided again. Outgoing messages that the replaying
component knows (either directly or via inference) have
been successfully and stably received prior to a failure,
may be suppressed. However, if the component cannot
determine this, then the message needs to be re-sent,
and the receiver must test for duplicates.

We can now establish an important property that relates
the persistence guarantees of a component to the
underlying implementation mechanisms.

Theorem 1 (for the proof see [BLSWO1]): A compo-

nent can guarantee a) persistent state as of the time of

the last sent message or more recent and b) persistent

sent messages from the last installation point up to and

including the last sent message if it:

e Jlogs all non-deterministic events, such that these
events can be replayed

e forces the log upon each message send (before actu-
ally sending it) if there are non-deterministic events
that are not yet on the stable log, and

e can recreate, possibly with the help of other compo-
nents, the contents of all messages received since its
last installation point.

2.1.2 Interaction Contracts

An interaction contract specifies the joint behavior of
two interacting components in the presence of failures
of one or even both of them. An interaction contract
requires each of them to make certain guarantees, de-
pending on the nature of the contract and components.
Perhaps only one component can provide strong guar-
antees, whereas the other component cannot. Different
contracts provide flexibility in the design space.

An interaction contract between two components speci-
fies guarantees about a state transition. The guaran-
tees are permanent, but log records needed to provide
the guarantee can be garbage collected when both com-
ponents agree they are no longer needed. Such agree-
ments can be set up a priori, for example, by limiting
the logging to the last state transition common to the
two involved components, or dynamically negotiated.

We consider three types of components as contract
partners: persistent components whose state should
persist across failures, transactional components, usu-
ally data servers, that provide all-or-nothing guarantees
for atomic transactions, and external components,
which can be used to capture human users who usually
do not provide any recovery guarantees.

2.2 Persistent-Persistent Interactions

Persistent components, when they interact with other
persistent components, must ensure the persistence of
both state and message at each interaction. Committed
interaction contracts are used for this purpose.

2.2.1 Committed Interactions

A committed state transition involves a pair of persis-
tent components, whose states persist across system
failures. One Pcom sends a message and another re-
ceives it. A committed interaction contract (CIC) is
the fundamental building block for making entire appli-
cations persistent and masking failures to users.

Definition 1: A committed interaction contract con-
sists of the following obligations:

¢ Sender Obligation S1: Persistent State
Sender promises that its state at the time of the mes-
sage or later is persistent.
¢ Sender Obligation S2: Persistent Message
0S2a: Sender promises to send the message periodi-
cally, driven by timeouts, until receiver releases it
(perhaps implicitly) from this obligation.
0S2b: Sender promises to resend the message upon
explicit receiver request until the receiver releases
it from this obligation. This is distinct from s2a,
typically longer lasting and usually more explicit.
¢ Sender Obligation S3: Unique Messages
Sender promises that its messages have unique con-
tents (including all header information such as time-
stamps, http cookies, etc.).

Obligations S1 and S2 ensure that an interaction is re-
coverable, i.e. it is guaranteed to occur (at least once),
though not with the receiver guaranteed to be in exactly
the same state. Obligation S3, i.e. message uniqueness,
is required so that the receiver can detect duplicates
(i.e., resent messages) and does not confuse a message
with another that happens to have exactly the same con-
tent as a previous one (e.g., same shopping cart contents
with the same timestamp and the same cookies etc.).

e Receiver Obligation R1:
Elimination
Receiver promises to eliminate duplicate messages
(which sender may send to satisfy S2a).

Duplicate Message

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

e Receiver Obligation R2: Persistent State.

oR2a: Receiver promises that before releasing
sender obligation S2a, its state at the time of mes-
sage receive or later is persistent without the sender
periodic re-sending. After S2a release, receiver
must explicitly request the message from sender
should it be needed. The interaction is stable, i.e.
it persists (via recovery if needed) with the same
state transition as originally.

oR2b: Receiver promises that before releasing the
sender from obligation S2b, its state at the time of
the message receive or later is persistent without
the need to request the message from the sender.
After S2b release, the interaction is installed, i.c.,
replay of the interaction is no longer needed.

Note the contract asymmetry: The sender makes a
strong immediate promise whereas the receiver merely
promises to obey rules in releasing the contract. The
sender exposes its current state and “commits” to that
state and the resulting message. It doesn’t know the
implications on other components or, ultimately, exter-
nal users, that could (transitively) result from subse-
quent receiver execution. Therefore, the sender must be
prepared to re-send the identical message if needed by
later recovery and also to recreate its exact same state
during replay after a failure.

Each CIC pertains to one message. To fully discharge
the CIC may require several messages. Only when the
receiver later becomes a sender does it commit itself to
the effects of the received message and to the newly
sent one, but this involves a new CIC, perhaps with
another component, perhaps with the original sender.
Before this, receiver forced logging is not required.

Eventual CIC release is essential to free the sender from
its obligations. The sender wants to garbage-collect data
retained for persistence of previously sent messages,
not only in-memory data, but also stable log, periodi-
cally truncating it to shorten restart time and reclaim
disk space. Once a CIC is released, the sender can dis-
card the interaction data; however, the sender still guar-

antees the persistence of its own state at least as recent
as the interaction. This persistent state guarantee falls
out naturally from our implementation techniques.

CIC behavior is depicted as a statechart [HaGe97,
UML99] in Figure 1. Ovals show sender and receiver
states; transitions are labeled with “event [condition] /
action” rules where each element is optional and omit-
ted when not needed. A transition fires if the specified
event occurs and its condition is true, then the state
transition executes the specified action. For example,
the label “/ stability notification™ of the receiver’s tran-
sition from “interaction stable” state into “running”
state specifies this transition fires unconditionally (i.e.,
its condition is “[true]”) and its action is sending a sta-
bility notification. The sender transition labeled “stabil-
ity notification” makes the corresponding state change
when it receives the stability notification (i.e., when the
event “stability notification” is raised). Sender and re-
ceiver return to “running” before proceeding further.
Unlike two-phase commit, a CIC allows intermediate
states for the two components to exist for an extended
period, enabling logging optimizations. Note that, for
simplicity, we have omitted all transitions for periodic
re-sends (e.g., sender’s periodic re-send of the message
until it receives the stability notification).

While each message has its own contract, the nature of
the interactions between two components can enable
further optimizations. Request/reply interactions, as in
the client-server setting, is an important situation be-
cause real protocols are frequently of that form,
whether the reply contains application related informa-
tion or is only an acknowledgement. Consider re-
questor Q and replier P. The pre-condition for the reply
is that Q’s state is persistent and that Q will resend the
request until P announces the commit of its state that
includes the reply. Hence the reply message need not be
sent periodically as Q has already committed to receiv-
ing the reply (i.e., is synchronously waiting for the re-
ply). P needs only resend the reply on request, which in
this case is in response to re-sends of Q.

interaction

(S2a released)

interaction
recoverable:

interaction

(known to be)
installed:

(S2b released

notification

(known to be) stable:

arrival

message

interaction
installed:
R2b promised

/ make state persistent

/ install notification

receiver

Fig. 1: Statechart for committed interaction contract

5

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)

1063-6382/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER
SOCIETY

2.2.2 Immediately Committed Interactions

Sometimes it is desirable to release a sender from its
obligations all at once. This can be useful not only to
the sender, as it enables the receiver to recover inde-
pendently of the sender. This is achieved by strength-
ening the interaction contract into an immediately
committed interaction contract (ICIC).

Definition 2: An immediately committed interaction
is a committed interaction where sender is released
from both message persistence requirements, S2a and
S2b, when receiver notifies sender (usually via another
message) that the message-received state has been in-
stalled, without previously notifying sender that its state
is stable. This makes the interaction both stable and
installed simultaneously.

An ICIC can be viewed as two CIC’s, the first for the
original message and the second for a combined stabil-
ity-and-install notification sent by the receiver. The first
CIC requires the sender to make its state persistent, and
the second CIC, for the notification sent by the original
receiver, requires the receiver to make its state persis-
tent, too. With an ICIC for the entire interaction, the
sender waits synchronously for this notification, and the
receiver’s part in the committed interaction is not defer-
rable. This is like an optimized two-phase commit in-
volving two participants, the sender as coordinator,
making its commit right away, a form of “first agent
optimization” (i.e. a “dual” of the well-known last agent
optimization [GrRe93, BeNe96]). This a priori com-
mitment is feasible because the sender guarantees that it
will re-send the message until the receiver eventually
commits the interaction.

With a committed interaction, whether either party re-
quires logging depends on if there are non-deterministic
events that need to be made repeatable. If not, then no
logging is required, as the interaction is made persistent
via replay, including the message contents. With an
ICIC, the receiver must make the message contents
stable so that its state, which includes the receipt of the
message, is persistent without contacting the sender.
Thus, an ICIC can be more expensive than a committed
interaction both in log forces (when logging is used for
message persistence) and in how much is logged (both
message arrival and contents).

Because ICIC’s always require forced logging by the
receiver to immediately install the interaction, they are
not always appropriate. It is the avoidance of this cost
and its adverse impact on system throughput that makes
the simple committed interaction useful. In traditional
OLTP, expensive ICIC’s have been the method of
choice. CIC’s substantially reduces the overhead of a
recovery contract. ICIC’s do, however, ensure inde-

pendent recovery of the receiver; otherwise the receiver
must rely on the sender for recreating the message con-
tents. We discuss such recovery dependencies in more
detail in Section 3.3.

2.3 Persistent-External Interactions

Sender and receiver must be Pcom’s to engage in com-
mitted interactions. External components (Xcom’s)
may not be persistent, and hence cannot have commit-
ted interactions. Importantly, one form of Xcom is a
human user. Our intent is to come as close as possible
to providing an immediately committed interaction with
Xcom’s, including users. This leads us to introduce
external interaction contracts (XIC’s).

Definition 3: An external interaction contract is be-
tween a Pcom that subscribes to the rules for an ICIC,
and an external component, which does not. The im-
pact on the Xcom (or users) is described below.

o Output Message Send (X1). A Pcom (usually a cli-
ent machine) sends (displays) a message to an Xcom
(e.g., external user), after having logged the message
send. The sender Pcom crashes before knowing
whether the message was seen. Hence it must re-send
the message. Because an Xcom might not eliminate
duplicates, a user may see a duplicate message.

e Input Message Receive (X2). An external user
(Xcom) sends a message, via keyboard, mouse, or
other input device, to a (client) Pcom. The Pcom
crashes before logging the message. On restart, the
user must re-send the message. But the user (an
Xcom) has not promised to re-send the message
automatically, but rather makes only a "best effort"
at this. Moreover, the failure is not masked.

The property of interest here is that in the absence of a
failure during the XIC interaction, the result of an XIC
is an immediately committed interaction that masks
internal failures from the external components.

2.4 Persistent-Transactional Interactions

Another contract type covers interactions with a trans-
actional component (Tcom), e.g. data server. These are
request/reply interactions, where either a) a request
message initiates the execution of a transaction (e.g.,
invoking a stored procedure) at the server and produces
a reply reporting the transaction outcome or b) a se-
quence of request/reply interactions (e.g., SQL com-
mands) occurs, the first initiating a transaction and the
last being the server’s reply to a commit or rollback
request. The Tcom’s state transition is all-or-nothing,
but the interaction is not guaranteed to complete. In
current practice, the Tcom final reply might not be de-
livered even though the transaction commits. We re-
quire a stronger guarantee. Furthermore, if a transaction

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

aborts, the Tcom may forget the transaction, which can
pose extra difficulties for failure handling at the re-
questor Pcom. This, frequent and widely accepted,
behavior is captured by a transactional interaction
contract (TIC) between a Pcom, the requestor, and a
Tcom, the server that processes the transaction:

Definition 4: A transactional interaction contract
between a Pcom and a Tcom consists of the following.

The Tcom promises:

e Atomic state transition (T1). The Tcom eventually
proceeds to one of two possible states, committing or
aborting the transaction (or not executing it, equiva-
lent to aborting). This state transition is persistent.

e Faithful reply message (T2). The Tcom’s reply
message to the Pcom’s commit-transaction or roll-
back-transaction request faithfully reports the
Tcom’s commit or abort. If a transaction aborts fol-
lowing a sequence of interactions within the transac-
tion, abort is signaled to the Pcom in reply to the
next request (e.g., through a return error code).

e Persistent commit reply message (T3). Upon
commit, the Tcom replies acknowledging the commit
request, and guarantees persistence of this reply.

The Pcom promises:

e Persistent state and commit request message (P1).
The Pcom’s commit request and the Pcom’s state as
of the time in which the transaction reply is expected
or later must persist. This guarantee thus includes all
earlier Tcom replies within the same transaction
(e.g., SQL results, return codes). Persistence of the
expected reply state means that the Tcom, rather than
repeatedly sending its reply (under T3), need send it
only once, perhaps not at all when a transaction
aborts. The Pcom asks for the reply message should
it not receive it. This persistence guarantee must not
depend on the Tcom being able to resend replies.

Guarantee P1 is conditional, applying only for commits,
not for aborts. P1 also removes the need for a Tcom to
persist earlier messages in the transaction. Guarantee
T3, in conjunction with P1 means that the Tcom need
only capture the transaction’s effects on its database
and final commit reply, since earlier messages in the
transaction are not needed for Pcom state persistence.
Thus the Tcom supports testable transaction status so
that the Pcom can inquire whether a given transaction
that has a persistent commit request was indeed com-
mitted. If the Tcom does not want to provide this test-
ability over an extended time period, guarantee T3 can
be implemented analogously to an ICIC with more ea-
ger measures by the receiving Pcom.

When a transaction aborts, the only guarantee is the

transaction’s effect on Tcom state is erased. If the Tcom

aborts the transaction or the Pcom requests a transaction
rollback, neither messages nor the Pcom’s intra-
transaction state need persist. There are two cases:

1. When the Tcom fails or autonomously aborts the
transaction, the Pcom must re-initiate the transaction,
but the Tcom treats this as a completely new transac-
tion, a standard practice in transaction processing.

2. When the Pcom fails in the middle of the transaction,
the Tcom will abort (e.g., driven by timeouts for the
connection) and forget the transaction. When the
Pcom later attempts to resume the transaction, the
Tcom will respond with, e.g., a “transac-
tion/connection unknown” return code and the Pcom
proceeds as in the first case.

2.5 System-wide Composition of Contracts

We combine bilateral interaction contracts between
component pairs into a system-wide agreement that
provides the desired guarantees to external users. The
key to such a recovery constitution is that multi-tier
system behavior is based on these different kinds of
interactions: internal ones that do not involve user or
data server, external ones between a user and a (client)
component, and transactional ones between components
and data server. Then interaction contracts provide the
following general solution:
1. Each internal interaction between a pair of Pcom’s
has a committed interaction contract (CIC or ICIC).
2. Each external interaction between Pcom and Xcom
(user) has an external interaction contract (XIC).
3. Each request/reply interaction from Pcom to Tcom
has a transactional interaction contract (TIC).
Note: Tcom’s are not allowed to call Pcom’s (else such
persistent effects might not be undoable, breaching the
transactional all-or-nothing paradigm) or Xcom’s.

Our recovery constitution allows arbitrary interaction
patterns, including, e.g., asynchronous message ex-
changes, callbacks from a server to a client or among
servers, or conversational message exchanges with ei-
ther one of two components being a possible initiator
(e.g., in collaborative work applications). The only re-
striction is that Tcom’s not call Pcom’s or Xcom’s but
only reply to requests from Pcom’s. Then, the follow-
ing very general theorem holds:

Theorem 2 (for the proof see [BLSWO1]): Consider an
arbitrary graph of message exchange relationships
among a set of components with an arc from component
A to B if A sends a message that B receives. The graph
must have no edges between Tcom’s and Xcom’s, and
the only edges from Tcom’s to Pcom’s are Tcom replies
to Pcom transactional requests. Then the following
holds: If there is a CIC (or ICIC) for each pair of

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

Pcom’s that interact directly, an XIC for each message
sent or received by an Xcom, and a TIC for each mes-
sage sent or received from a Tcom, then all failures can
be masked with the exception of failures during the last
external interaction.

Theorem 2 is the basis for building multi-tier systems
with message, component state, and data recovery with
failure masking. However, it does not capture impor-
tant pragmatic issues. It says nothing about when CIC
or ICIC contracts are released (we implicitly assumed
they were never released) and the garbage collection
and log truncation at the components. Before we de-
scribe this, we must discuss our underlying implemen-
tation techniques. We return to this issue in Section 3.

Inability to mask send or receive failures can occur only
with a failure during an external interaction. This is
possible with any conceivable recovery algorithm with-
out special hardware support. For output messages, if a
device has testable state, e.g., an ATM for dispensing
cash with a mechanical counter that records when
money is dispensed, then output messages (e.g., cash)
are guaranteed to be delivered exactly once.

3 Implementing Recovery Contracts

To illustrate Theorem 2, consider a three-tier system, a
client and two application server tiers, e.g., a workflow
server with whom the client interacts directly and an
activity server receiving requests from the workflow
server. Assume all components are PWD. Interaction
contracts ensure exactly-once semantics. However,
these contracts may be implemented in different ways.
By treating user input as an external interaction, the
client can recreate all its requests (and its own state) to
the workflow server (except for a failure during the user
interaction). So the CIC’s for client requests to the
workflow server don’t need forced logging. The work-
flow server needs to log client request order, and make
sure it is stable before sending requests to the activity
server. The workflow server can enforce its CIC’s for
both requests to activity server and replies to client
without explicit measures by itself. Requests can be
recreated by deterministic replay, with client requests
re-obtained from the client. To re-create replies to the
client the workflow server relies on the activity server
for activity server replies. Finally, the activity server
needs forced logging for its CIC’s when sending replies
to the workflow server because call order to the activity
server is non-deterministic.

Note that interaction contracts and implementation
measures are separate levels of abstraction in our
framework. It is possible to set up strong contracts, in
the sense of Theorem 2, for all bilateral interactions
while implementing some of them with little or no

overhead. Indeed, there are many potential ways for a
collection of components to support CIC’s. Here we
describe one such way to do this.

3.1 Log Management

Each component needs its own log. The issues for
normal operation are what to log, when to force the log,
and how to minimize overall overhead of logging.

3.1.1 Data Servers

Data servers have the hardest logging requirements.
They are usually heavily utilized, support many concur-
rent “users”’, maintain valuable data, and are carefully
managed for high availability. When an application
interacts with a data server, the data server constructs a
session for it. When there is inter-transaction state (in-
cluding perhaps control state), we regard this session as
a Pcom maintained by the data server. It is subject to
the usual events, deterministic and non-deterministic,
related to the sending and receiving of messages. A
session component indirectly interacts with other ses-
sion components via a potentially non-deterministic
sequence of data accesses mediated by a data compo-
nent (a Tcom). If there is no session state, but only
accesses to data, only the data component need exist.

We partition our persistence requirements into four
elements: data component state, session component
state, received messages, and sent messages.

Data Component State: Data servers log entries for
updates of persistent (database) data in physiological,
physical or logical form [Mo092, GrRe93, BeNe96,
LoTu99], to provide persistent data. The data compo-
nent for a database system is always a Tcom. In addi-
tion to logging for persistent data, the data component
needs to log the final reply message for a caller’s com-
mit-transaction request, and the server log needs to be
forced before sending this final reply. For aborted
transactions no log forcing is necessary.

Session Component State: We also maintain persistent
state for the session components when that state persists
across transactions. SQL session state such as cursors
or temporary tables can span transaction boundaries.
This server maintained state is covered by interaction
contracts. Phoenix/ODBC [BLABOO, BLO1] persisted
this state to provide persistent sessions.

A program executing in a session, e.g. stored procedure,
need not persist if it lives entirely within a transaction.
When it lives across transactions, e.g. a multi-
transaction stored procedure, replay makes it persistent,
via interaction contracts. During restart after a server
failure, incomplete requests (interactions with the data
component) must be replayed without altering previ-

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

ously committed data changes. This is done by mes-
sage logging as described below. Optimizations exploit-
ing the fact that all data server components share the
same log manager are also possible.

Session Received Messages: Asynchronous message
receives require logging (but no log forcing), logical
logging being sufficient for CIC interactions. Logical
log entries capture non-deterministic interleaving and
uniquely identify sender and message, but do not con-
tain message contents. Other “received” events need to
be logged, too, log entries depending on the type of
event (e.g., reading the system clock (an Xcom) re-
quires logging its time).

Session Sent Messages: Data servers need to recreate
sent messages. Logging for this can be either physical,
including message contents, or logical. Messages can
be treated like any other effect of request execution.
CIC’s require, however, that the server force its log to
include the (chronologically ordered) log records that
ensure the persistence of a sent message before actually
sending the message.

3.1.2 Application Servers and Clients

The advantage of CIC’s versus ICIC’s in reducing re-
covery overhead shows up clearly with application
servers and clients. For these components, often (but
not necessarily) the only non-determinism is the result
of user input or data server interactions. Further, these
components usually have little reason for using ICIC’s.
What such components need to do for a CIC is to guar-
antee that replay will recreate their state and sent mes-
sages. In the absence of non-determinism, this is fre-
quently possible without forcing the log at interactions
between system components. Only user interactions
need to be force-logged as external interactions.

For interactions with data servers (i.e., Tcom’s),
Pcom’s (application servers or clients) must ensure
state persistence as of the commit-transaction request.
If the transaction consists of a sequence of request/reply
interactions, the Pcom needs to create log entries for the
replies and its commit-transaction request and force the
log before sending the commit request. Otherwise (i.e.,
for transactions with a single invocation request, e.g., to
execute a stored procedure, and single reply) no forced
logging is needed, unless the commit request is pre-
ceded by non-deterministic events that have to be
tracked. If the Pcom issues a rollback request no force
logging is needed. The Pcom needs application logic
for aborted transactions anyway.

Logging or installation points are needed because com-
ponents must eventually release each other and data
servers from the committed interaction requirement to
resend messages upon request. But this is not forced

logging, and a single application thread state installa-
tion or log write can serve to release contracts involving
many committed interactions.

3.2 Component Restart after Failure

After a failure, each Pcom performs local recovery that
re-incarnates the component at its last installation point
and replays the component from there. The log is
scanned in order to recreate persistent data and compo-
nent state. To recreate component state, non-
deterministic events are replayed from the log and the
appropriate information, reconstructed via recovery, is
fed to the component. This information can be from the
local log, or requested of other components. The com-
ponent is re-executed between message receives. All
Pcom’s use this procedure.

After recovery, a Pcom resumes normal operation. Part
of this is periodic resend of committed-interaction mes-
sages that a receiver has not yet made stable. For a sta-
ble interaction, the message only needs to be resent
when the receiver explicitly asks for it, so it needs to
continue to be available. For an installed interaction (an
ICIC is promptly installed), no action is needed, as the
message contents are stable at the receiver.

A component may receive messages from other com-
ponents that are resends of messages received before its
failure (in its prior incarnation). There are two cases:

1. The restarted component finds a log entry for a mes-
sage. It asks the sender to deliver the message again
if waiting for a spontaneous resend takes too long.

2. The component doesn’t find a log entry for the mes-
sage. It restarts as if that message was never re-
ceived. The message is treated as a new message.
This works because the component cannot have
committed its state (with the message receive) to
other components, else a log force would have put
the message on the log.

3.3 Recovery Independence

With complex multi-tier systems that span autonomous
organizations, it is crucial that components can recover
independently of other, potentially less reliable or un-
trusted components. These considerations lead to two
notions of independent recovery as discussed below.

3.3.1 Isolated Recovery

To avoid one component’s recovery forcing a second
component to perform an expensive recovery when the
second has not failed, we want “isolated” component
recovery, i.e., no cascading restarts typical of many
“optimistic” fault-tolerance algorithms [AIMa95,
EJW96]. Interoperating components providing cross-
organizational e-services are largely autonomous, and
cascading restarts are absolutely unacceptable.

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

Nonetheless, an isolated component must resend mes-
sages as long as its contracts are not released. A solu-
tion is the volatile message lookup table (MLT)
[LoWe98] that stores in main memory all uninstalled
sent messages. These messages can be resent without
component replay or reading the log. The MLT is re-
constructed during recovery if the component fails; so it
is always present during normal execution. Should the
MLT become too large, we shrink it by replacing some
(the oldest or longest) messages by their positions in the
log. This is safe as the corresponding log entries can be
obtained from the stable log, albeit at higher cost.

3.3.2 Autonomous Recovery

A (server) component wants to avoid communicating
with and thus depending on other components during its
recovery. This autonomous recovery [LoWe98] for
the server in a client-server setting can be generalized
to component ensembles. A component of an ensem-
ble may rely on ensemble components, but wants to be
autonomous of outside components. One example en-
semble is a data server and application server at an e-
commerce site, clients being outside the ensemble.

Autonomous recovery avoids having to ask that mes-
sages be resent from outside components for successful
ensemble restart. This is achieved by using immedi-
ately committed interactions (ICIC’s) for all messages
received from such components. Messages within the
ensemble need no force-logging when there is no non-
determinism in the interactions. Should an ensemble
component fail, it relies on other ensemble components
to resend messages, but not on outside components.
This requires a log force only upon the next message
sent to an outside component. ICIC’s for received mes-
sages require two forced log 1/Os for every interaction.

3.4 Garbage Collection

Garbage collection is critical for server components,
which need to discard information from the MLT to
reclaim memory and reclaim log space for fast restart
and thus high availability. Contracts with other compo-
nents can hamper garbage collection. Therefore, an-
other facet of component autonomy is to ensure that log
and MLT entries kept on behalf of other components
can be dropped within reasonable time. Each kind of
log record has its own truncation point.

1. To recover component state, only log entries for
messages and non-deterministic events that follow
the most recent installation point are needed. To ad-
vance this truncation point, one performs another in-
stallation point for the component’s state.

2. Log entries for data updates can be discarded which
have LSN’s (i.e., log sequence numbers [GrRe93,
BeNe96]) less than the minimum of the LSN of the
oldest update that has not yet been written back from

the cache to disk and the LSN of the oldest update of
all active transactions. A technique for advancing
this minimum LSN is to flush the data pages with the
oldest dirty updates from the cache.

3. Log entries for MLT entries kept to honor CIC’s
with other components (for possible recovery of
these other components) can be discarded up to the
oldest of log records for messages not yet (known to
be) installed. To advance this truncation point re-
quires asking other components to force their log or
create an installation point. Once these actions are
taken and our component receives an acknowledge-
ment (i.e., install notification), it can garbage-collect
the information. If autonomous garbage collection is
desired, then the component should only use ICIC’s.

The log can only be truncated up to the earliest of the
truncation points. Often, this log entry can be copied
forward in the log, though required interleaving with
other log records must be preserved. However, “live”
messages are only used to recover the MLT. We need
only ensure that the original LSNs and message se-
quence numbers are kept in the log entries themselves.

Receivers usually release CIC’s fairly continuously,
periodically taking installation points and forcing the
log. These events can be signaled lazily to senders. A
low-cost technique is to piggyback on the next message
to a sender a message sequence number of the oldest
still uninstalled message from the sender. Other tech-
niques can be based on predefined agreement, interac-
tion patterns, or session boundaries. For example, end-
of-session notification (perhaps via session time-out)
might mean releasing the contracts for all session mes-
sages. Sometimes the next request from the same com-
ponent could be an implicit form of such a release.

3.5 Phoenix/COM+

We are currently implementing the recovery guarantees
framework as part of the Phoenix project on robust ap-
plications, in a system we call Phoenix/COM+. In
Phoenix/COM+ we integrate interaction contracts into
the Microsoft Component Object Model (COM) run-
time environment, allowing programmers to build per-
sistent component-based applications without requiring
modifications to their applications.

With Phoenix/COM+, a programmer registers compo-
nent classes as PCOM’s or TCOM’s. At runtime, ap-
plications are embedded into the COM+ runtime and an
interceptor captures method calls and returns between
components. Calls and returns between PCOM’s are
treated as CIC’s, between PCOM and TCOM as TIC’s,
and between a PCOM and any other component
(XCOM) as XIC’s. Phoenix/COM+ flushes log records
as necessary, and coordinates log truncation. In the

10 | ‘

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

event of a failure, Phoenix/COM+ masks the error and
automatically recovers failed components from log re-
cords using redo recovery. The result is a persistent
component-based application, without any special ap-
plication code or operator intervention. While our cur-
rent implementation of the recovery guarantees frame-
work is COM+ specific, the techniques are relevant to
other runtimes, such as CORBA or Java Beans.

4 Application Scenario

The following application scenario demonstrates the
benefits of our framework. The application is a multi-
tier travel services e-service, e.g. Expedia or Traveloc-
ity. The system architecture, illustrated in Figure 2, can
be characterized as a four-tier system with clients using
Internet browsers, two tiers of application servers in the
middle, and a suite of backend data servers.

Client
Expedia Application
Web Server

Expedia] Sabre Applicalion

Amadeus
Apphcalmn Server Server Apphgauon Server

v
Database Database Ddldb ase
Server Server Scrvcr

Fig. 2: Components in electronic travel service.

Database
Server

A client sends a travel request to the Expedia applica-
tion server. The client, whose state is extended via
cookies or applets for personalization, e.g., frequent
flyer numbers, forwards such information to the Expe-
dia web server, which may persist it at a data server.
The web server runs workflow-style servlets on behalf
of client requests. It hosts business logic and maintains
itineraries for users. It keeps user state spanning con-
versational interactions with the client for the duration
of a user session, typically using session objects to hold
shared data on the web server. To query flight fares,
hotel rates, etc., the web server interacts with applica-
tion servers, including servers of autonomous travel
companies with their own backend data servers, e.g.,
Amadeus and Sabre. One of the application servers is
an integrated part of Expedia, again a server running
servlets that communicate with a database for long-term
information about customers. The client interacts with
a data server to store user information such as credit
card numbers, e.g. at a service such as Passport.

Client and Expedia components, web server and appli-
cation server, and Amadeus and Sabre application serv-
ers are Pcom’s, and data servers are Tcom’s. Non-
determinism resulting from Amadeus or Sabre interac-

tions is captured via ICIC forced logging. But mes-
sages leading up to a purchase that are directed to the
Expedia application server are treated as CIC’s, and do
not require forced logging. Queries to the Expedia data
server are treated as TIC’s. Interaction contracts for our
e-service are set up as follows:

[user&client] The client handles user input and output
with XIC’s, promptly force logging. Current Internet
browsers do not provide native support for logging, but
could be enhanced through a plug-in or an applet.

[client&>data server] Interactions between client and
data server are TIC’s. The data server commits modifi-
cations to the database when sending its final reply to
the client, and force logs this final reply message.

[client&Expedia web server] Between client and up-
per tier web server, client request and server reply are
handled with CIC’s. No forced logging is required as
client XIC logging captures all non-determinism.

[Expedia web server&Expedia application server]
Expedia web server and application server requests and
replies are CIC’s. Forced logging isn’t needed. Client
XIC logging captures all non-determinism.

[Expedia web server&external application server]
Between Expedia web server and external application
servers, ICIC's, with forced logging by both servers, are
used to capture the potential non-determinism as these
external servers are autonomous.

[application server->data server] Requests from ap-
plication server to data server are transactional, and
require a TIC. A commit request exposes the effects of
application server execution via changes to data server
state, and hence this state must persist. However, since
prior ICIC’s with Expedia server or client have cap-
tured all non-determinism already, forced logging is not
required. Being able to recreate the application server’s
request, so as to provide exactly-once semantics, is ex-
actly what is missing in many of today’s e-services.

[data server—>application server] A data server
commits modifications to a shared database when send-
ing its final reply to the application server, exposing
changes to other application servers. Thus the TIC re-
quires a persistent reply message. This final reply (i.e.,
for the SQL “commit work) must be forced logged,
which also captures the committed database changes.

The contracts above are necessary for system-wide re-
coverability. The data server may also require garbage
collection and independent recovery. Specifically, the
data server can treat its transaction ending reply to the
application server as an ICIC so that it can discard mes-
sages once it knows that the application server has re-
ceived them, and hence truncate its log at its discretion.

The number of forced log writes, which we characterize
below, dominates the cost of our protocols. Let the user

11

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

session consist of # input messages and u output mes-
sages, and let the client generate one request to its local
data server and x requests to the Expedia server for each
user's input message. In turn, Expedia will create y
requests per incoming request to each of the three ap-
plication servers, and let each of the external applica-
tion servers creates z requests per incoming request to
its local data server. Under these assumptions, tech-
niques based on pessimistic message logging require
2u + 4u + 4ux + 12uxy + 12uxyz forced log writes. Our
protocol, using XIC’s between user and client, TIC’s
between client and its local data server, CIC’s between
client and Expedia, ICIC’s between Expedia and exter-
nal application servers, and TIC’s between external
application servers and their local data servers, would
require only u + u + 0 + 12uxy + 3uxyz forced log
writes, a saving of 4u +4ux +9uxyz disk 1/Os.

5 Concluding Remarks

We have developed a framework for recovery guaran-
tees in general multi-tier applications. Our notion of
committed interaction contract with exactly-once exe-
cution and failure masking is particularly useful for e-
services, which exhibit many idiosyncrasies due to fail-
ures that are exposed to users. Interaction contracts
avoid these problems and can contribute to the con-
struction of more dependable e-services. For practical
viability, it is important that our protocols have been
designed to minimize logging overhead.

Our framework applies to a spectrum of multi-tier e-
services, whether underlying components are database
systems, mail servers, message queues, workflow serv-
ers, or other kinds of specialized application compo-
nent. Our key contribution of recovery guarantees for
persistent components complements and is orthogonal
to the more established notion of transactional compo-
nent. We have shown how to orchestrate persistent and
transactional components into a system. We have
started work implementing of recovery guarantees as a
runtime service for the COM+ middleware environment
[Kirt97], in a project that we call Phoenix/COM+.

References

[AIMa95] L. Alvisi, K. Marzullo: Message Logging: Pessi-
mistic, Optimistic, and Causal, Int’l Conf. on Distributed
Computing Systems, 1995.

[BLSWO01] R. Barga, D. Lomet, G. Shegalov G. Weikum.:
Recovery Guarantees for Internet Applications. Submitted for
publication (2001).

[BLABOO] R. Barga, D. Lomet, S. Agrawal, T. Baby: Persis-
tent Client-Server Database Sessions, EDBT’2000.

[BLO1] R. Barga, D. Lomet: Measuring and Optimizing a
System for Persistent Database Sessions, ICDE’2001

[Ba81] J.F. Bartlett: A NonStop Kernel, SOSP’81.

[BHM90] P. Bernstein, M. Hsu, B. Mann: Implementing
Recoverable Requests Using Queues, SIGMOD’90.

[BeNe96] P. A. Bernstein, E. Newcomer: Principles of Trans-
action Processing, Morgan Kaufmann, 1996.

[Bo89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, W.
Oberle: Fault Tolerance under UNIX. ACM TOCS 7,1, 1989.
[Cr91] F. Cristian: Understanding Fault-tolerant Distributed
Systems. CACM 34, 2, 1991.

[EJW96] E.N. Elnozahy, D.B. Johnson, Y.M. Wang: A Sur-
vey of Rollback-Recovery Protocols in Message-Passing Sys-
tems. Technical Report, Carnegie-Mellon University, 1996.
[FBHSO01] X. Fu, T. Bultan, R. Hull, J. Su: Verification of
Vortex Workflows, Int'l Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, 2001.

[FCK87] J. C. Freytag, F. Cristian, B. Kéhler: Masking Sys-
tem Crashes in Database Application Programs, VLDB’87.
[FrGu00] S. Frolund, R. Guerraoui: Implementing e-
Transactions with Asynchronous Replication, Int’l Conf. on
Dependable Systems and Networks, 2000.

[GrRe93] J. Gray, A. Reuter: Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[HaGe97] D. Harel, E. Gery: Executable Object Modeling
with Statecharts, [IEEE Computer 30, 7, 1997.

[HuWa95] Y. Huang, Y-M. Wang: Why Optimistic Message
Logging Has Not Been Used In Telecommunications Sys-
tems. FTCS’95.

[JoZw87] D. B. Johnson, W. Zwaenepoel: Sender-based
Message Logging. FTCS’87.

[Kim84] W. Kim: Highly Available Systems for Database
Applications. ACM Computing Surveys 16. 1.

[Kirt97] M. Kirtland: Object-Oriented Software Develop-
ment Made Simple with COM+ Runtime Services. Microsoft
Systems Journal, 12, Nov. 1997.

[Lo98] D. Lomet: Persistent Applications Using Generalized
Redo Recovery. ICDE’98.

[LoWe98] D. Lomet, G. Weikum: Efficient Transparent Ap-
plication Recovery in Client-Server Information Systems,
SIGMOD’98.

[LoTu99] D. Lomet, M. Tuttle: Logical Logging to Extend
Recovery to New Domains, SIGMOD’99.

[Ma99] P. Maes, R. Guttman and A. Moukas. Agents that
Buy and Sell: Transforming Commerce. CACM, March 1999.
[MaRa99] C.P. Martin, K. Ramamritham: Recovery Guaran-
tees in Mobile Systems, ACM Int’l Workshop on Data Engi-
neering for Wireless and Mobile Access, 1999.

[MaRa01] C.P. Martin, K. Ramamritham: Guaranteeing Re-
coverability in Electronic Commerce, 3rd Int'l Workshop on
Advanced issues of E-Commerce and Web-Based Information
Systems, 2001.

[M092] C. Mohan, et al: ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial
Rollback Using Write-Ahead Logging, TODS 17, 1, 1992.
[OMGO00] Object Management Group: Fault Tolerant
CORBA Spec, http://cgi.omg.org/cgi-bin/doc?ptc/00-04-04
[SPS00] H. Schuldt, A. Popovici, H-J. Schek: Automatic
Generation of Reliable E-Commerce Payment Processes, 1st
Int’l Conf. on Web Information Systems Engineering, 2000.
[Ty98] J. D. Tygar: Atomicity versus Anonymity — Distrib-
uted Transactions for Electronic Commerce, VLDB’98.
[UML99] OMG Unified Modeling Language (UML) Version
1.3, http://www.rational.com/uml.

[WV01] G. Weikum, G. Vossen: Transactional Information
Systems. Morgan Kaufmann, 2001.

12 | ‘

Proceedings of the 18th International Conference on Data Engineering (ICDE’02) COMPUTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

