
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011 507

Fast Action Detection via Discriminative Random
Forest Voting and Top-K Subvolume Search
Gang Yu, Student Member, IEEE, Norberto A. Goussies, Junsong Yuan, Member, IEEE, and

Zicheng Liu, Senior Member, IEEE

Abstract—Multiclass action detection in complex scenes is a chal-
lenging problem because of cluttered backgrounds and the large
intra-class variations in each type of actions. To achieve efficient
and robust action detection, we characterize a video as a collection
of spatio-temporal interest points, and locate actions via finding
spatio-temporal video subvolumes of the highest mutual informa-
tion score towards each action class. A random forest is constructed
to efficiently generate discriminative votes from individual interest
points, and a fast top-K subvolume search algorithm is developed
to find all action instances in a single round of search. Without sig-
nificantly degrading the performance, such a top-K search can be
performed on down-sampled score volumes for more efficient lo-
calization. Experiments on a challenging MSR Action Dataset II
validate the effectiveness of our proposed multiclass action detec-
tion method. The detection speed is several orders of magnitude
faster than existing methods.

Index Terms—Action detection, branch and bound, random
forest, top-K search.

I. INTRODUCTION

U NDERSTANDING human behaviors is one of the core
problems inmany video-based applications, such as video

surveillance, event-based video indexing and search, and intel-
ligent human–computer interaction. Despite extensive studies
in human action recognition and categorization [3], [4], [6], the
detection and accurate localization of human actions remains
a challenging problem. Different from action categorization,
which only requires identifying which type of action occurs in
a video clip, action detection needs to identify not only the oc-
currences of a specific type of actions but also where (spatial
location in each frame) and when (temporal location) it occurs
in the video [7]–[10]. An example is the detection of a person
waving hands in a crowded and dynamic scene. It is in general a
much more useful and challenging problem than categorization.

Manuscript received November 01, 2010; revised February 25, 2011; ac-
cepted March 03, 2011. Date of publication March 14, 2011; date of current ver-
sion May 18, 2011. The work of J. Yuan was supported in part by the Nanyang
Assistant Professorship SUGM58040015. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Chia-Wen
Lin.
G. Yu and J. Yuan are with the School of Electrical and Electronic En-

gineering, Nanyang Technological University, 639798 Singapore (e-mail:
gyu1@e.ntu.edu.sg; jsyuan@ntu.edu.sg).
N. A. Goussies is with the Universidad de Buenos Aires, C1428EGA Buenos

Aires, Argentina (e-mail: ngoussie@dc.uba.ar).
Z. Liu is with Microsoft Research Redmond, WA 98052-6399 USA (e-mail:

zliu@microsoft.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2011.2128301

To robustly detect human actions, some early methods rely
on the tracking of human bodies. With an accurate tracking of
a human body and its movements, one can recognize and detect
actions. However, this category of methods is of limited use
in real applications, because reliable body tracking remains a
difficult problem in crowded and dynamic scenes. For example,
in a supermarket with many pedestrians, it is very difficult to
detect and track all of the people, let alone to recognize their
actions, e.g. someone raising his/her hands.
Instead of tracking human bodies, some other methods treat

videos as spatio-temporal 3-D data and solve action detection
using spatio-temporal template matching (3-D matching). Sim-
ilar to the sliding window-based object detection, given an ac-
tion template, the re-concurrences of the query action can be
found by evaluating all of the possible video subvolumes. De-
spite previous successes of this approach, there are still two
major challenges.
First of all, in the template matching method, usually only

a single template is provided to perform action detection [21],
[41]. In such a case, a single template cannot well characterize
the intra-class variations of an action and is not discriminative
enough for classification. Second, different from object de-
tection, the search space in the spatio-temporal video space is
extremely large. It thus greatly increases the computational cost
for these template based approaches. For example, it is very
time consuming to search actions of different spatial scales and
different temporal durations in the video space. Although the
recently proposed spatio-temporal branch-and-bound search
method [9], [12] can significantly improve the search speed, it
is still not fast enough to handle high-resolution videos (e.g.
320 240 and higher). Considering that the spatial localization
is computationally more demanding for high-resolution videos,
it is important to provide efficient solutions for high-resolution
videos. Moreover, given a video dataset containing multiple
action instances, it is desirable to efficiently detect all of them
in one round of search.
To address the above challenges in action detection, we pro-

pose a random forest-based template matching method to detect
actions, as shown in Fig. 1. Without performing background
subtraction and human body tracking, each video sequence is
characterized by a collection of spatio-temporal interest points
(STIPs). During the training phase, a random forest is built to
model the distribution of the STIPs from both positive and neg-
ative classes in the high-dimensional feature space. During the
testing phase, each individual point matches the query class
through the pre-built random forest, and provides an individual
voting score toward each action type. Following the mutual in-
formation maximization formulation in [9], action detection be-

1520-9210/$26.00 © 2011 IEEE

508 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

Fig. 1. Overview of our random forest-based video subvolume search.

comes finding the spatio-temporal video subvolume with the
maximum total mutual information score.
Compared with the nearest-neighbor-based matching scheme

in [9], our proposed random forest-based approach enables a
much more efficient interest point matching without degrading
the matching quality. Meanwhile, as both positive and negative
action samples are taken into account while building the random
forest, our proposed method not only handles intra-class action
variations well, but also provides more discriminative matching
to detect action instances. To reduce the computational overhead
in searching high-resolution videos, we improve the original
spatio-temporal branch-and-bound search method in [9] on two
aspects. First of all, instead of performing branch-and-bound
search in the original score volume, we propose to search a
down-sampled score volume for efficient action localization.
Our theoretical analysis shows that the error between the op-
timal solution of the down-sampled volume and that of the orig-
inal volume can be upper bounded. Second, we propose a top-K
search method to enable the detection of multiple action in-
stances simultaneously in a single round of branch-and-bound
search. It provides an efficient solution for multiclass multiple
instance action detection.
To evaluate the efficiency and generalization ability of our

proposed method, we perform a cross-dataset action detection
test: our algorithm is trained on the KTH dataset and tested on
the MSR action dataset II, which contains 54 challenging video
sequences of both indoor and outdoor scenes. The extensive
multiclass action detection results show that, ignoring the fea-
ture extraction cost, our proposed method can search a 1-h 320
240 video sequence in less than half an hour. It can detect ac-

tions of varying spatial scales and can well handle the intra-class
action variations including performing style and speed varia-
tions and even partial occlusions. It also can handle cluttered
and dynamic backgrounds. The proposed top-K volume search
algorithm is general and can be used for any other applications
of video pattern search.

II. RELATED WORK

Even though there has been a large body of work in action
categorization [30], [31], [33], [34], [39], [42], action detection
is much less addressed in the literature. Different from action
categorization, action detection is more challenging as it needs

to locate the actions both spatially and temporally in cluttered or
dynamic backgrounds [7]–[10], [12], [19], [20], [40]. Even with
a good action categorization scheme, it can be time-consuming
to search the video space and accurately locate the action. Com-
pared with event detection [28], [29], [32], [43], action detection
focuses on the various activities and movements performed by
humans, which has a wide range of potential applications in our
daily life.
There are mainly two types of existing approaches for ac-

tion detection. The first is the template-based pattern matching
[7], [11], [13], [21], [35]. Two types of temporal templates are
proposed in [11] for characterizing actions: 1) the motion en-
ergy image (MEI), which is a binary image recording where the
motion has occurred in an image sequence, and 2) the motion
history image (MHI), which is scalar-valued image whose in-
tensity is a function of the recent motion. In [14], the motion
history volume (MHV) is introduced as a free-viewpoint repre-
sentation for human actions. To better handle the cluttered and
dynamic backgrounds, an input video is over-segmented into
many spatio-temporal video volumes in [8]. An action template
is matched by searching among these over-segmented video
volumes. However, because only one template is utilized, pre-
vious template-based methods usually have difficulties in han-
dling intra-class action variations. Some discriminativemethods
have been developed to improve template matching. In [15] and
[16], Haar features are extended to 3-D space, and boosting is
applied to integrate these features for final classification. In [18],
a successive convex matching scheme is proposed for action
detection. In [17], a prototype-based approach is introduced,
where each action is treated as a sequence of prototypes. How-
ever, the computational costs of these algorithms are extremely
high. For example, it takes several minutes or even hours to
handle a single short video clip. More specifically, due to the
need to enumerate all the possible subvolumes in a video clip,
the computational complexity grows rapidly as the templates
become more complex.
The second strategy is the tracking-based action detection. It

relies on human tracking to provide a subvolume for catego-
rization. In [10], a multiple-instance learning-based approach is
applied to human action detection, which relies on head detec-
tion and tracking. Similarly, the techniques presented in [37] and
[38] also require human tracking as a preprocessing step.
Generally speaking, both the template-based and tracking-

based detection approaches have their own limitations. The
tracking-based approach is largely constrained by the tracking
precision. Since human tracking in a complex and dynamic
environment is itself a challenging problem, it is not practical
to rely on tracking to solve the action detection problem. On the
other hand, the template-matching-based approach is usually
computationally intensive. Although the branch-and-bound
search proposed in [9] can speed up the action detection, the
computational cost is still very high for high-resolution videos
(such as 320 240 or higher) due to the large search space.
Thus, a more efficient algorithm is required. Moreover, the
template mainly relies on positive samples thus is not discrim-
inative.

III. MULTICLASS ACTION RECOGNITION

A. Mutual Information-Based Classification

We represent an action as a collection of STIPs [1], where
denotes an -dimensional feature vector describing

YU et al.: FAST ACTION DETECTION VIA DISCRIMINATIVE RANDOM FOREST VOTING AND TOP-K SUBVOLUME SEARCH 509

a STIP. The reasons to represent the videos with STIP are its
superior performance and that the HOG&HOF description is
suitable for our random forest-based framework. A comparison
of different detectors and descriptors can be seen in [49]. Denote
the class label set as .
In order to recognize different action classes, we evaluate the

pointwise mutual information1 [45] between a testing video clip
and one action class as

(1)

where refers to the STIP point in and we assume that
is independent of each other. Each

is the pointwise mutual information between a STIP
point and a specific class .
In the previous work [9], is computed as follows:

(2)

where is the number of classes. The likelihood ratio in (2) is
calculated as

(3)

where and are the nearest neighbors of in the posi-
tive class and negative class, respectively, and is the ratio of
the number of positive STIPs to the number of negative STIPs
in the training dataset.
Despite its good performance, (3) has two limitations, which

are given here.
• In order to calculate the likelihood ratio in (3), we need
to search the nearest neighbors and . Although
locality sensitive hash (LSH) has been employed for fast
nearest-neighbor search, it is still time consuming for a
large high-dimensional dataset.

• Only two STIPs are used to approximate the likelihood
ratio in (3), which is not accurate.

To address the two problems, we reformulate the voting score
in (2) as

(4)

As is a constant prior, the problem boils down to
computing the posterior . To enable an efficient

1[Online]. Available: http://en.wikipedia.org/wiki/Pointwise_mutual_infor-
mation

computation, we approximate this probability with a random
forest.

B. Random Forest-Based Voting

Random forest was first proposed to solve the classification
problem [24]. Later, it was extended to handle regression prob-
lems and is used for many multimedia applications, as in [5],
[6], [25]–[27], [36], and [46]. In our paper, random forest is em-
ployed to estimate the posterior probability .
To build the forest from a training dataset, we use a method

motivated by [5]. However, compared with [5], which treats a
random forest as a classifier and votes for the hypothesis given a
feature point, our random forest is used to estimate the posterior
distribution of each STIP point.
Two kinds of descriptors for STIP: histogram of gradient

(HOG) and histogram of flow (HOF), are used to build the
random forest. In the following, we first describe how to build
a single decision tree, and then the forest is constructed by
independent trees. Assume we have STIP points in the

training set, defined as , where
; and refer to the HoG

feature and HoF feature, respectively; is the label of
the STIP (if we want to detect actions from category ,
we consider STIPs with as positive examples and other
STIPs as negative examples). In order to build a tree and split
the training set, a random number is first generated
to indicate which kind of feature to use for splitting (
refers to the HOG feature and refers to the HOF feature).
Then, two more random integer numbers and will be
generated, indicating the dimension indices of either HOG or
HOF feature. After that, a “feature difference” can be evaluated
with , . For each , we
assign it to the left child node if or right
child node if .
The threshold is selected by minimizing the binary classi-

fication error

(5)

where

(6)

In (6), is a indicator function, that is, if
and 0 otherwise. Also, is the action type we want to detect. The
first two terms refer to the misclassification errors of the left and
right nodes, respectively, when the labels of the nodes are both
. The last two terms refer to the misclassification errors of the
left and right nodes, respectively, when the labels of the nodes
are not .
The above three parameters (, , and) can be integrated

into a single hypothesis. For example, we can generate a hy-
pothesis to partition the dataset using the following three steps.

510 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

Step 1) Generate to indicate the feature type to
use.

Step 2) Generate the dimension index and and com-
pute the feature difference ,

.
Step 3) Split the dataset into two parts based on a threshold

on feature difference and obtain a misclassification
error.

We generate hypotheses independently (in our ex-
periments) and select the one with the smallest misclassification
error. After this, one node will be built and the training set will
be partitioned into two parts. For each part, a new node will be
further constructed in the same way. This process is repeated
until any of the two conditions below is satisfied: 1) the depth
of the tree reaches the maximum number or 2) the number of
points in the node is smaller than a predefined threshold.
Now, we discuss how to compute with a

random forest. Suppose we have trees in a forest and the
STIP will fall in one of the leaves in a tree. Assume that,
for a tree , the STIP point falls in a leaf with positive
samples and negative samples. The posterior distribution
of can be approximated by the average density of the
nodes in different trees as

(7)

Then, (4) can be replaced with

(8)

In the training dataset, the numbers of STIP points are dif-
ferent for different action classes. Therefore, it is inaccurate to
compute the prior probability directly from the dis-
tribution of training dataset. In our experiments, we introduce
the parameter and optimize it in the
experiments.
The benefits of using the random forest are numerous. First,

each tree in the forest is independent of other trees when evalu-
ating in (7). The average of them thus reduces
the variance of the estimation. Second, random forest is fast
to evaluate during the testing stage. The runtime cost for each
STIP only depends on the depth of each tree and the number of
trees. It is not affected by the number of points in the training
data. Hence, it is much faster than LSH-based nearest-neighbor
search. In the experiment section, we will show that random
forest-based voting approach is over 4000 times faster than the
LSH-based approach. Another advantage of random forest com-
pared with LSH is that, when constructing the trees, the label
information of can be integrated. Thus, the trees follow the
data distribution of the training data. This improves the general-
ization ability. Finally, the construction of random forest is flex-
ible. Besides the label information, it is easy to combine other
types of feature descriptors and spatial information of STIPs.
According to the literature, the work in [6], [46], and [47] also

employs tree structures for action recognition. We first consider
the differences between [46] and our work. The feature that is
employed in [46] is densely sampled while we use the sparse
STIP features. Second, the method in [46] votes for the center
of the action while our random forest weighs each STIP point so

that the nontrivial scale estimation can be partially solved with
branch-and-bound search. Third, the votes in [46] are estimated
from the frequency view so that it would generate positive votes
even for the background. On the contrary, our votes employs
the mutual information based measure [see (4)], which is more
discriminative thanks to the introduction of negative votes. The
trees in [6] are used for indexing and searching nearest neigh-
bors while trees in [47] serve as a codebook. Since we employ
random forest to weigh each STIP point, the motivations and
implementations are different from those in [6] and [47]. Be-
sides, our work can deal with not only action classification but
also action detection, while the methods [6] and [47] are only
applicable to action recognition.
After obtaining the individual voting score of each STIP, the

spatio-temporal location and scale of the target action will be
determined by the branch-and-bound search as described in
Section IV.

IV. ACTION DETECTION AND LOCALIZATION

The purpose of action detection is to find a subvolume with
themaximum similarity to the predefined action type. Following
[9], with each STIP being associated with an individual score

, our goal is to find the video subvolume with the max-
imum score

(9)

where is a video subvolume,
where L, R, T, B, S and E are the left, right, top, bottom, start,
and end positions of ; and is the
whole video space. A subvolume is said to be maximal if
there does not exist any other subvolume such that

and . The action detection problem is to find
all the maximal subvolumes whose scores are above a certain
threshold.
A spatio-temporal branch-and-bound algorithm was pro-

posed in [9] to solve the single subvolume search problem.
Instead of performing a branch-and-bound search directly
in the 6-D parameter space , the method performs a
branch-and-bound search in the 4-D spatial parameter space.
In other words, it finds the spatial window that maximizes
the following function:

(10)

where is the spatial window,
is the temporal segment, and .
One advantage of separating the parameter space is that

the worst-case complexity is reduced from to
. The complexity is linear in , which is usually the

largest of the three dimensions. For this reason, it is efficient in
processing long videos, but, when the spatial resolution of the
video increases, the complexity goes up quickly. The method
in [9] was tested on videos with low resolution (160 120).
In this paper, we are interested in higher resolution videos
(320 240 or higher). We found that, for videos taken under
challenging lighting conditions with crowded background such
as those in the publicly available MSR Action dataset II,2 the
action detection rates on 320 240 resolution videos are much
better than those on 160 120. Unfortunately, the subvolume

2The MSR action dataset II is available at http://research.microsoft.
com/en-us/um/people/zliu/ActionRecoRsrc/default.htm.

YU et al.: FAST ACTION DETECTION VIA DISCRIMINATIVE RANDOM FOREST VOTING AND TOP-K SUBVOLUME SEARCH 511

Fig. 2. Approximation of the spatial down-sampling. Left: score image in the original resolution. Right: down-sampled score image. Every four small pixels in
a cell from the original resolution sum up to one score in the low resolution, for example, the value in the top-left pixel from the right figure

. We notice that the optimal solution found in the down-sampled video space is worse than that in the original space .

search for 320 240 videos is much slower. For example, [9]
takes 20 h to search the MSR Action dataset II which consists of
54 video sequences each 1 min long with 320 240 resolution.
Moreover, in [9], the multi-instance detection problem

was converted to a series of single subvolume search
problem. They first find the optimal subvolume such
that . After that, it sets the scores of all
of the points in to 0, and finds the optimal subvolume ,
and so on. To further speed up the search process during the
branch-and-bound iterations, a heuristic was used in [12]. If
a candidate window with a score larger than the detection
threshold is found, the subsequent searches are limited to the
subwindows contained in . It guarantees that it will find a
valid detection, but the detected subvolume is not guaranteed
to be optimal.
In the next two subsections, we present two techniques to

speed up the subvolume search algorithm. The combination of
the two techniques allow us to perform subvolume search on
320 240 videos in real time.

A. Spatial Down-Sampling

To handle high-resolution videos, the technique is to spa-
tially down-sample the video space by a factor before the
branch-and-bound search. Note that the interest point detection,
descriptor extraction, and the scores are all done in the original
video sequence.
For a video volume of size , the size of the

down-sampled volume with scale factor is
. For any point where ,

, and , its score is defined as the sum of
the scores of the points in , that is, is defined
as

(11)

Given any subvolume ,
where , , , , , and are the left, right, top, bottom,
start, and end positions of , respectively, denote as its
corresponding subvolume in original video , that is,

(12)

As they are the same subvolume, it is easy to see that

(13)

A subvolume is
called an -aligned subvolume if and are multiples of
and the width and height are also
multiples of . Equation (12) provides a one-to-one mapping
between the volumes in and the s-aligned subvolumes in .
Instead of searching the original video space, we can

search the down-sampled video space of a much smaller
size . However, as the down-sampling
process also introduces the approximation errors, it affects the
search results. In general, for any , there exists a

. It thus shows that the maximum subvolume
found in the down-sampled space is at most as good as the one
found in the original space

(14)

We illustrate a concrete example in Fig. 2. For simplicity, in
Fig. 2, we choose the down-sampling factor and discuss
the problem in the space (only one frame is considered). The
left figure shows the original video space, and its down-sam-
pled version is in the right figure. Each pixel is associated with
a voting score. The orange rectangle highlights the optimal solu-
tion in the original video space, namely the bounding box of the
highest total sum. After the down-sampling, the grey rectangle
is the detection result in the down-sampled video. By mapping
it back to the original space, we obtain an approximate solution
highlighted by the red rectangle. It overlaps with the optimal
solution in the original space, but the total sum is slightly less.
To further quantify the approximation error, we derive the upper
bound of the error caused by the down-sampling, as explained
in Theorem 1.
Theorem 1: Bound of the Approximation Error: Let
denote the optimal subvolume in , that is,

. Assume
where and are the width and height of ,

respectively, and further assume the total score of a subvolume
is on average proportional to its size. Then, there exists an
-aligned subvolume satisfying

(15)

The proof of this theorem is given in the Appendix.
Let denote the optimal subvolume

in . Based on (15), we have

(16)

512 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

As an example, suppose the spatial dimension of is 320
240 and the scale factor . The spatial dimension of the
down-sampled volume is 40 30. If we assume the window
size of the optimal subvolume is 64 64, then the average
relative error is at most

(17)

We have run numerical experiments to measure the relative
error of the optimal solutions in the down-sampled volumes.
We used 30 video sequences of resolution 320 240. There
are three action types. For each video sequence and each ac-
tion type, we obtain a 3-D volume of scores as defined in (8).
We choose , and down-sample each 3-D volume to spatial
resolution of 40 30. There are 113 actions in total. For each ac-
tion, we compute its corresponding down-sampled subvolume
and evaluate the relative error which is the score difference di-
vided by the original action score. The mean is 23%, and the
standard deviation is 26%. We can see that the numerical exper-
iments are consistent with the theoretical analysis.

B. Top-K Search Algorithm

The multi-instance search algorithm in [9] repeatedly applies
the single-instance algorithm many times until some stop cri-
teria is met. In practice, there are typically two different stop
conditions that can be used. The first is to stop after , itera-
tions where is a user-specified integer. The second is to stop
when the detection score is smaller than a user-specified detec-
tion threshold . In either case, suppose the number of detected
instances is , then the worst case complexity of the algorithm
is .
We notice that, in the 1-D case, Brodal and Jorgensen [2] de-

veloped an algorithm that finds the top-K subarrays in
time. This is much more efficient than repeatedly applying the
single-instance algorithm times, which has the complexity

. In a 3-D case, we would also like to have an algorithm
that is more efficient than simply applying the single-instance
algorithm times. We consider two different variants corre-
sponding to the two stop criteria. The first, called search, can
be applied when we are interested in finding all of the subvol-
umes above a user-specified threshold . The second, called
top-K search, can be applied when we are interested in finding
the top-K subvolumes.
1) Search: Here, we describe an algorithm that finds

all of the subvolumes with scores larger than a user-specified
threshold . The pseudo-code of the algorithm is shown in
Algorithm 1. Following the notation in [9], we use to denote
a collection of spatial windows, which is defined by four inter-
vals that specify the parameter ranges for the left, right, top,
and bottom positions, respectively. Given any set of windows
, we use to denote its upper bound which is estimated

in the same way as in [9] and [48]. We use to denote the
largest window among all of the windows in . Initially, is
equal to the set of all of the possible windows on the image and
is the corresponding upper bound, as in Line 5 of Algorithm

1. From Lines 6–19, we split and store the results if the top
state is over a threshold and iterate this process. From
Lines 20–22, we have a subvolume detected. The whole
process iterates until the score for the detected subvolume is
below the threshold.

Algorithm 1 search.

1: Initialize as empty priority queue

2: set

3: push into

4: repeat

5: Initialize current best solution ,

6: repeat

7: retrieve top state from P based on

8: if then

9: split into

10: if then

11: push into

12: update current best solution

13: end if

14: if then

15: push into

16: update current best solution

17: end if

18: end if

19: until

20: ;

21: add to the list of detected subvolumes.

22: for each point , set .

23: until

In terms of the worst case complexity, the number of branches
of this algorithm is no larger than , since the algorithm
does not restart the priority queue . Each time it branches, the
algorithm has to compute the upper bound whose complexity is

. Therefore, the worst complexity involved in branch and
bound is the same as in [9]: . In addition, each time it
detects a subvolume, the algorithm has to update the scores of
the video volume which has complexity . If there are
detected subvolumes, the complexity for updating the scores is

. Overall, the worst case complexity of this algorithm
is . When is large, this is much better
than .
2) Top-K Search: Here, we describe how to modify Algo-

rithm 1 for the case when we are interested in finding the top-K
actions, and we assume we do not know the threshold .
The pseudo-code of the algorithm is shown in Algo-

rithm 2. The algorithm is similar to Algorithm 1. In Line 6,
are set as all of the possible windows on the

image and its upper bound score, respectively. From Line 6–20,
we split and store the results if the top state is over the Kth
top score and iterate this process. From Lines 21–24, we have
a subvolume detected. The whole process iterates until

YU et al.: FAST ACTION DETECTION VIA DISCRIMINATIVE RANDOM FOREST VOTING AND TOP-K SUBVOLUME SEARCH 513

K subvolumes are detected. There are four major differences.
First, instead of maintaining a single current best solution,
it maintains -best current solutions. Second, it replaces the
criteria with to determine whether we
need to insert or into the queue . Third, it replaces
the inner-loop stop criteria with .
Finally, the outer-loop stop criteria is replaced with

. In this algorithm, the number of outer loops is . Thus,
the worst case complexity is also .

Algorithm 2 Top-K Search.

1: Initialize as empty priority queue

2: set

3: push into

4:

5: repeat

6: Initialize where

7: repeat

8: retrieve top state from P based on

9: if then

10: split into

11: if then

12: push into

13: update

14: end if

15: if then

16: push into

17: update

18: end if

19: end if

20: until

21: ;

22: output as the -th detected subvolume

23: for each point , set .

24:

25:until

V. EXPERIMENTS

A. Action Classification

To evaluate our proposed random forest based approach for
multiclass action classification, we test on the benchmark KTH
dataset. The experiment setup is the same as in [1] and [9],
where clips from 16 persons are used for training, and the other
nine persons are used for testing. The confusion matrix is listed
in Table I. We also compare our results with the state-of-the-art

TABLE I
CONFUSION MATRIX FOR KTH ACTION DATASET.

THE TOTAL ACCURACY IS 91.8%

results in Table II. With the same input features, our method per-
forms as well as the method using support vector machine for
classification [4]. Although our performance is slightly worse
than the nearest-neighbor-based classification in [9], as will be
shown later, our approach is significantly faster as it avoids the
nearest neighbor search.

B. Action Detection

To evaluate our multiclass action detection and localization,
we perform cross-dataset training and testing. We first build a
random forest using the KTH dataset (with 16 persons in the
training part) and then test on a challenging dataset (MSRII)
of 54 video sequences where each video consists of several ac-
tions performed by different people in a crowded environment.
Each video is approximately one minute long. The videos con-
tain three different types of actions: handwaving, handclapping,
and boxing. Some videos contain different people performing
different actions simultaneously. There are also instances where
a person performs two different actions consecutively.
For all of our experiments, we have fixed , .

Moreover, unless explicitly mentioned, we down-sample the
score volume to 40 30 pixels.
Fig. 3 compares the precision-recall for the following

methods (the original videos are of high resolution 320 240).
1) Accelerated spatio-temporal branch-and-bound search
(ASTBB) of [12] in low-resolution score volume (frame
size 40 30).

2) ASTBB of [12] in 320 240 videos.
3) Multiround branch-and-bound search of [9] in low-res-
olution score volume (frame size 40 30).

4) Top-K search at original size 320 240.
5) Top-K search at down-sampled score volume (size 40
30).

6) search at down-sampled score volume (size 40 30).
7) Random forest-based weighting followed by top-K
search at down-sampled score volume (size 40 30).

Except for 7), which uses our random forest based voting
score, the other methods apply the LSH-based nearest-neighbor
voting score as in [9]. The parameter
in (8) for method 7) is set to 2.1, 1.7, and 0.9 for handclap-
ping, handwaving, and boxing, respectively. Also, we use the
walking actions from KTH as the negative dataset when con-
structing forests. For the purpose of generating precision-recall
curves, we modified the outer-loop stop criteria (line 25, Algo-
rithm 2) to repeat until , where is a small threshold.
In this way, it outputs more than K subvolumes, which is nec-
essary for plotting the precision-recall curve. Some sample de-
tection results obtained by our approach 7) are shown in Fig. 5.
To demonstrate the capability of handling nonstationary actions,
we show a walking detection result at the bottom row. The de-
tection is done by using KTH walking as the positive training

514 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

Fig. 3. Precision-recall curves for action detections with different methods. (a) Handclapping. (b) Handwaving. (c) Boxing.

TABLE II
COMPARISON OF DIFFERENT REPORTED RESULTS ON KTH DATASET

TABLE III
TIME CONSUMED FOR VOTING ONE STIP AND ONE VIDEO SEQUENCE (FOR

EXAMPLE, 10000 STIP POINTS). ONLY CPU TIME IS CONSIDERED

data while the KTH handwaving, handclapping, and boxing are
used as the negative training data.
The measurement of precision and recall is the same as what

is described in [9]. For the computation of the precision, we con-
sider a true detection if: ,
where is the annotated ground truth subvolume, and is the
detected subvolume. On the other side, for the computation of
the recall we consider a hit if:
.
We first compare the results based on LSH voting approaches.

Fig. 3 lists the Precision-Recall curves for the three different ac-
tion classes, respectively. Fig. 4 shows the average PR curve
for the three actions. The average PR curve is computed by
averaging precision and recall results among the three action
types while adjusting a threshold. This can give a general idea
of the overall performance for different algorithms. From the
precision-recall curves, we can see that although the acceler-
ated search of [12] provides excellent results in high resolution
videos, its performance on down-sampled low resolution videos
is poor compared with other search schemes. Moreover, all the
methods applied to the high resolution videos provide similar
performance. In particular, the methods of top-K search with
branch-and-bound search at down-sampled size (v) and search
with branch-and-bound search at down-sampled size (vi) are
among the best ones. These results justify our proposed search
and top-K search algorithms. Although the branch-and-bound
is performed in the down-sampled size videos, it still provides
good performance. However, the search speed is much faster.
To compare the performance of action detection between LSH
and random forest, (v) and (vii) are two search schemes with
the same environment but different voting approaches. Random

Fig. 4. Comparisons of average precision-recall curves.

TABLE IV
TIME CONSUMED FOR EACH METHOD TO SEARCH ACTIONS IN THE 54 VIDEOS

forest (vii) is superior to LSH (v) in handwaving but poorer in
boxing. Since the boxing action is highly biased in KTH dataset
(much more boxing actions are performed from right to left), it
reduces the discriminative ability of the trees. For LSH, how-
ever, because it searches only one nearest positive and nega-
tive in the neighborhood, the effect of such bias can almost be
ignored.

C. Computational Cost

The feature extraction step is performed with publicly avail-
able code in [1]. Although their code may not be very fast, there
are faster implementations available. Therefore, the computa-
tion time for feature extraction is not considered in this paper.
We suppose that all of the STIP points are already extracted and
stored in the memory. Then, the computational time of our algo-
rithms is dominated by two operations, computing the score for

YU et al.: FAST ACTION DETECTION VIA DISCRIMINATIVE RANDOM FOREST VOTING AND TOP-K SUBVOLUME SEARCH 515

Fig. 5. Detection results (Random Forest+Top-K) of handclapping (first row), handwaving (second row), boxing (third row), and walking (fourth row) are listed
in columns 2–5 with red, green, blue, and yellow (online version) to show the bounding boxes, respectively. The cyan dashed regions are the ground truths. The first
column shows sample images from training set.

TABLE V
COMPARISON OF TOTAL TIME COST FOR ACTION DETECTION. ONLY CPU TIME IS CONSIDERED

each STIP and branch-and-bound search. For the first part, LSH
takes, on average, 18.667ms per STIP point while random forest
only takes 0.0042 ms. To deal with a video clip with 10 000
STIPs, it will take around 186.67 s for LSH but only 42 ms for
random forest, that is, random forest-based approach is 4000
times faster than LSH-based approach.
Table IV shows the time consumed for the search part. All

of the algorithms are implemented using C++, performed on
a single PC of dual-core and 4-G main memory: 1) acceler-
ated search of [12] in low-resolution videos (frame size 40
30); 2) accelerated search of [12] in high-resolution videos;
3) multiround branch-and-bound search of [9] in low-resolu-
tion videos (frame size 40 30); 4) search, with branch-
and-bound search at down-sampled size 40 30; and 5) top-K
search, with branch-and-bound search at down-sampled size
80 60, (f) top-K search, with branch-and-bound search at
down-sampled size 40 30.
Table IV shows that, although the method of [12] works

well for low-resolution videos, the search speed becomes much
slower for high-resolution videos. Moreover, as shown in
Fig. 4, when performing on the down-sampled score volumes,
the heuristic method of [12] (curve (i)) is a lot worse than the
other methods. This is an indication that it is not a good idea

to perform heuristic search on down-sampled score volumes.
In comparison, search provides much better search quality.
Among all the search schemes, the fastest method is the top-K
search with branch-and-bound at down-sampled score volume
of 40 30. It takes only 26 min to process the 54 sequences
whose total length is about one hour in total.
Finally, we compare LSH and random forest in terms of total

computation time in Table V, including the runtime cost for
computing scores and the runtime cost for top-K search. For the
previous method [12], it takes at least 1471 min to search all the
actions for 54 videos in MSRII. In contrast, the total computa-
tion time of our proposed algorithm is 26.62 min.

VI. CONCLUSION

We have developed a new system for the spatio-tem-
poral localization of human actions in video sequences. The
system improves upon the state of the art in two aspects.
First, we proposed a random forest-based voting technique
to compute the scores of the interest points, which achieves
a multiple orders-of-magnitude speed-up compared with the
nearest-neighbor-based scoring scheme. Second, we proposed a

516 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

top-k search technique which detects multiple action instances
simultaneously with a single round of branch-and-bound search.
To reduce the computational complexity of searching higher
resolution videos, we performed a subvolume search on the
down-sampled score volumes. We have presented experiment
results on challenging videos with crowded background. The
results showed that our proposed system is robust to dynamic
and cluttered background and is able to perform faster-than
real-time action detection on high-resolution videos.

APPENDIX

Here, we prove Theorem 1. Let denote the optimal sub-
volume in , that is, . Assume

, where and are the
width and height of , respectively. Let denote the number
of voxels in . It can be shown that there exists an -aligned
subvolume
such that

(18)

Therefore

(19)

If we assume the total score of a subvolume is on average
proportional to its size, then

(20)

Therefore

(21)

After a rearrangement of the items, we have

(22)

REFERENCES
[1] I. Laptev, “On space-time interest points,” Int. J. Comput. Vis., vol. 64,

no. 2–3, pp. 107–123, 2005.
[2] G. Brodal and A. Jørgensen, “A linear time algorithm for the kmaximal

sums problem,” Math. Foundations Comput. Sci., pp. 442–453, 2007.
[3] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A

local SVM approach,” in Proc. IEEE Conf. Pattern Recognit., 2004.
[4] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning re-

alistic human actions from movies,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2008.

[5] J. Gall and V. Lempitsky, “Class-specific Hough forests for object de-
tection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009.

[6] K. K. Reddy, J. Liu, and M. Shah, “Incremental action recognition
using feature-tree,” in Proc. IEEE Int. Conf. Comput. Vis., 2009.

[7] E. Shechtman and M. Irani, “Space-time behavior based correlation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005.

[8] Y. Ke, R. Sukthankar, and M. Hebert, “Event detection in crowded
videos,” in Proc. IEEE Int. Conf. Comput. Vis., 2007.

[9] J. Yuan, Z. Liu, and Y. Wu, “Discriminative subvolume search for ef-
ficient action detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2009.

[10] Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang, “Action de-
tection in complex scenes with spatial and temporal ambiguities,” in
Proc. IEEE Int. Conf. Comput. Vis., 2009.

[11] A. F. Bobick and J. W. Davis, “The recognition of human movement
using temporal templates,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 3, pp. 257–267, Mar. 2001.

[12] J. Yuan, Z. Liu, Y. Wu, and Z. Zhang, “Speeding up spatio-tem-
poral sliding-window search for efficient event detection in crowded
videos,” in Proc. ACM Multimedia Workshop on Events in Multi-
media, 2009.

[13] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action mach a
spatio-temporal maximum average correlation height filter for
action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2008.

[14] E. Boyer, D. Weinland, and R. Ronfard, “Free viewpoint action
recognition using motion history volumes,” Comput. Vis. Image
Understanding, vol. 104, no. 2–3, pp. 207–229, 2006.

[15] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detec-
tion using volumetric features,” in Proc. IEEE Int. Conf. Comput. Vis.,
2005.

[16] M. Yang, F. Lv, W. Xu, K. Yu, and Y. Gong, “Human action detection
by boosting efficient motion features,” in Proc. IEEE Workshop Video-
oriented Object and Event Classification in Conjunction With ICCV,
Kyoto, Japan, Sep. 29–Oct. 2 2009.

[17] Z. Lin, Z. Jiang, and L. S. Davis, “Recognizing actions by shape-mo-
tion prototype trees,” in Proc. IEEE Intl. Conf. Comput. Vis., 2009.

[18] H. Jiang, M. S. Drew, and Z. N. Li, “Action detection in cluttered video
with successive convex matching,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 1, pp. 50–64, Jan. 2010.

[19] L. Cao, Z. Liu, and T. S. Huang, “Cross-dataset action recognition,” in
Proc. IEEE Proc. Comput. Vis. Pattern Recognit. (CVPR), 2010.

[20] A. Norbert, Z. Liu, and J. Yuan, “Efficient search of top-K video sub-
volumes for multi-instance action detection,” in Proc. IEEE Conf. Mul-
timedia Expo (ICME), 2010.

[21] K. G. Derpanis, M. Sizintsev, K. Cannons, and R. P. Wildes, “Efficient
action spotting based on a spacetime oriented structure representation,”
in Proc. Comput. Vis. Pattern Recognit. (CVPR), 2010.

[22] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Efficient sub-
window search: A branch and bound framework for object localiza-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp.
2129–2142, Dec. 2009.

[23] C. H. Lampert, “Detecting objects in large image collections and videos
by efficient subimage retrieval,” in Proc. IEEE Int. Conf. Comput. Vis.,
2009.

[24] L. Breiman, “Random forests,” Mach. Learning, vol. 45, pp. 5–32,
2001.

[25] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” in Proc. IEEE Int. Conf. Comput. Vis.,
2007.

[26] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time key-
point recognition,” in Proc. Comput. Vis. Pattern Recognit. (CVPR),
2005.

[27] F. Schroff, A. Criminisi, and A. Zisserman, “Object class segmentation
using random forests,” in Proc. Brit. Mach. Vis. Conf., 2008.

[28] P. Wang, G. D. Abowd, and J. M. Rehg, “Quasi-periodic event anal-
ysis for social game retrieval,” in Proc. IEEE Int. Conf. Comput. Vis.,
2009.

[29] K. Prabhakar, S. Oh, P. Wang, G. D. Abowd, and J. M. Rehg, “Tem-
poral causality for the analysis of visual events,” in Proc. Comput. Vis.
Pattern Recognit. (CVPR), 2010.

[30] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from
videos “in the wild”,” in Proc. Comput. Vis. Pattern Recognit.
(CVPR), 2009.

[31] R. Messing, C. Pal, and H. Kautz, “Activity recognition using the ve-
locity histories of tracked keypoints,” in Proc. IEEE Int. Conf. Comput.
Vis., 2009.

YU et al.: FAST ACTION DETECTION VIA DISCRIMINATIVE RANDOM FOREST VOTING AND TOP-K SUBVOLUME SEARCH 517

[32] L. Duan, D. Xu, I. W. Tsang, and J. Luo, “Visual event recognition
in videos by learning from web data,” in Proc. Comput. Vis. Pattern
Recognit. (CVPR), 2010.

[33] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative
space-time neighborhood features for human action recognition,” in
Proc. Comput. Vis. Pattern Recognit. (CVPR), 2010.

[34] J. Niebles, C. W. Chen, and F.-F. Li, “Modeling temporal structure
of decomposable motion segments for activity classification,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2010.

[35] H. J. Seo and P. Milanfar, “Detection of human actions from a single
example,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2009.

[36] K. Mikolajczyk and H. Uemura, “Action recognition with motion-ap-
pearance vocabulary forest,” in Proc. Comput. Vis. Pattern Recognit.
(CVPR), 2008.

[37] Y. Yacoob and M. J. Black, “Parameterized modeling and recognition
of activities,” Proc. Comput. Vis. Image Understanding Conf., vol. 73,
pp. 232–247, 1999.

[38] D. Ramanan and D. A. Forsyth, “Automatic annotation of everyday
movements,” in Proc. Neural Inf. Process. Syst. Conf., 2003.

[39] T. K. Kim and R. Cipolla, “Canonical correlation analysis of video
volume tensors for action categorization and detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 8, pp. 1415–1428, Aug.
2008.

[40] L. Cao, Y. L. Tian, Z. Liu, B. Yao, Z. Zhang, and T. S. Huang, “Ac-
tion detection using multiple spatio-temporal interest point features,”
in Proc. IEEE Conf. Multimedia Expo, 2010.

[41] H. J. Seo and P. Milanfar, “Action recognition from one example,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 867–882,
May 2010.

[42] Z. Li, Y. Fu, S. Yan, and T. S. Huang, “Real-time human action recog-
nition by luminance field trajectory analysis,” in Proc. ACM Int. Conf.
Multimedia, 2008.

[43] G. Zhu, M. Yang, K. Yu, W. Xu, and Y. Gong, “Detecting video events
based on action recognition in complex scenes using spatio-temporal
descriptor,” in Proc. ACM Int. Conf. Multimedia, Oct. 19–24 2009, pp.
165–174.

[44] M. Breitenbach, R. Nielsen, and G. Z. Grudic, “Probabilistic random
forests: Predicting data point specific misclassification probabilities,”
Univ. of Colorado at Boulder, Tech. Rep. CU-CS-954-03, 2003.

[45] [Online]. Available: http://en.wikipedia.org/wiki/Pointwise_mu-
tual_information

[46] A. Yao, J. Gall, and L. Van Gool, “A hough transform-based voting
framework for action recognition,” in Proc. Comput. Vis. Pattern
Recognit. (CVPR), 2010.

[47] T. H. Yu, T. K. Kim, and R. Cipolla, “Real-time action recognition by
spatiotemporal semantic and structural forest,” in Proc. BMVC, 2010.

[48] J. Yuan, Z. Liu, and Y. Wu, “Discriminative video pattern search for
efficient action detection,” IEEE Trans. Pattern Anal. Mach. Intell..

[49] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evalua-
tion of local spatio-temporal features for action recognition,” in Proc.
Brit. Mach. Vis. Conf., 2009.

Gang Yu (S’11) received the M.S. degree in com-
puter science from Shanghai Jiao Tong University,
Shanghai, China. He is currently working toward the
Ph.D. degree at the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore.
His research interests include computer vision and

machine learning.

Norberto A. Goussies received the B.S. and M.S.
degrees in computer science from Universidad de
Buenos Aires, Buenos Aires, Argentina, and the M.S.
degree in mathematics, vision, and learning from
l’Ecole Normale Superieure de Cachan, Cachan,
France. He is currently working toward the Ph.D.
degree at the Image Processing Group, Universidad
de Buenos Aires.
His research interests include computer vision,

machine learning, and optimization.
Mr. Goussies was the recipient of several scholar-

ships, including the CONICET Scholarship and the ENS Cachan International
Scholarship.

Junsong Yuan (M’08) received the B.Eng. degree in
communication engineering from Huazhong Univer-
sity of Science and Technology, Wuhan, China, the
M.Eng. degree in electrical engineering from the Na-
tional University of Singapore, and the Ph.D. degree
in electrical engineering from Northwestern Univer-
sity, Evanston, IL, in 2009.
He joined Nanyang Technological University,

Singapore, as a Nanyang Assistant Professor in
September 2009. He has been a Research Intern
with the Communication and Collaboration Systems

Group, Microsoft Research, Redmond, WA, Kodak Research Laboratories,
Rochester, NY, and Motorola Applied Research Center, Schaumburg, IL. From
2003 to 2004, he was a Research Scholar with the Institute for Infocomm
Research, Singapore. He has filed three U.S. patents. He currently serves
as an editor for the KSII Transactions on Internet and Information Systems.
His current research interests include computer vision, image and video data
mining and content analysis, machine learning, and multimedia search.
Dr. Yuan is a member of the Association for Computing Machinery. He was

the recipient of the Outstanding Ph.D. Thesis award from the Electrical Engi-
neering and Computer Science Department of Northwestern University and the
Doctoral Spotlight Award from the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’09). He was also a recipient of the Nanyang As-
sistant Professorship from Nanyang Technological University. In 2001, he was
the recipient of the National Outstanding Student and Hu Chunan Scholarship
by the Ministry of Education in China.

Zicheng Liu (SM’05) received the B.S. degree in
mathematics from Huazhong Normal University,
Wuhan, China, the M.S. degree in operational
research from the Institute of Applied Mathematics,
Chinese Academy of Sciences, Beijing, China, and
the Ph.D. degree in computer science from Princeton
University, Princeton, NJ.
He is a Senior Researcher with Microsoft Re-

search, Redmond, WA. He has worked on a variety
of topics, including combinatorial optimization,
linked figure animation, and microphone array

signal processing. His current research interests include activity recognition,
face modeling and animation, and multimedia collaboration. Before joining
Microsoft Research, he was with Silicon Graphics as a Member of Technical
Staff for two years, where he developed a trimmed NURBS tessellator which
was shipped in both OpenGL and OpenGL-Optimizer products. He has
authored or coauthored over 70 papers in peer-reviewed international journals
and conferences and holds over 40 granted patents. He has served in the
technical committees for many international conferences. He was the co-chair
of the 2003 ICCV Workshop on Multimedia Technologies in E-Learning and
Collaboration, the technical co-chair of 2006 IEEE International Workshop on
Multimedia Signal Processing, and the technical co-chair of 2010 International
Conference on Multimedia and Expo. He is an associate editor of Machine
Vision and Applications.

