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Abstract

Despite recent successes of searching small object in im-

ages, it remains a challenging problem to search and locate

actions in crowded videos because of (1) the large varia-

tions of human actions and (2) the intensive computational

cost of searching the video space. To address these chal-

lenges, we propose a fast action search and localization

method that supports relevance feedback from the user. By

characterizing videos as spatio-temporal interest points and

building a random forest to index and match these points,

our query matching is robust and efficient. To enable effi-

cient action localization, we propose a coarse-to-fine sub-

volume search scheme, which is several orders faster than

the existing video branch and bound search. The challeng-

ing cross-dataset search of several actions validates the ef-

fectiveness and efficiency of our method.

1. Introduction

The development of invariant local features and the re-

cent advances in fast subwindow search algorithms [26]

have allowed us to search and locate small visual objects

within large image databases. It is natural to ask if we

can search and locate complex video patterns, e.g., hu-

man actions, in a large corpus of videos. Despite previous

work in action recognition [2] [5] [9] [12] [25] and detec-

tion [14] [10] [7] [28], efficient search of actions remains a

largely unsolved problem, mainly because of the following

three unique challenges.

First of all, for action search, usually only a single query

example is provided. In such a case, the amount of train-

ing data is extremely limited and only available at the

time of query, whereas in action detection and classifica-

tion [2] [21], a lot of positive and negative training exam-

ples can be leveraged. Therefore it is much more difficult

to identify and locate a specific action example in videos.

Furthermore, possible action variations such as scale and

view point changes, style changes and partial occlusions

only worsen the problem, let alone cluttered and dynamic

backgrounds.
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Figure 1. Overview of our algorithm.

Secondly, a retrieval system must have a fast response

time because otherwise the user experience would suffer.

Unlike video shot or event search, where the goal is to rank

pre-segmented video clips, action search is much more dif-

ficult as we need not only find the target video, but also lo-

cate the action accurately, i.e. identify the spatio-temporal

location of the action in the video. For a dataset consisting

of tens of hours of videos, such a process is expected to be

finished in only a few seconds.

Finally, a retrieval process typically involves user inter-

actions, which allows the user to clarify and update their

preferences. Thus, a practical system must have the flexi-

bility to refine the retrieval results by leveraging the labels

resulting from subsequent user feedback. Although rele-

vance feedback is popular in image search, there is much

less work that supports interactive action search.

We build an action search engine that addresses the

above three challenges. An overview of our system is de-

picted in Fig. 1. Each video is characterized by a collection

of interest points, which will be labeled according to the

exemplar action in the query phase. The spatio-temporal

video subvolumes are cropped out as detections, if most of

the interest points inside them match well with the query
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action. To enable efficient labeling, a random forest is con-

structed to index these interest points. By improving the

branch-and-bound search in [7] and proposing a coarse-to-

fine subvolume search strategy, our proposed search method

significantly improves the efficiency of the state-of-the-art

action detection methods, with comparable search perfor-

mance. With a single desktop computer, our method can

search an hour long video within only 25 seconds. Finally,

our method can be easily extended to support interactive

search by incrementally adding user labeled actions to the

query set. Experiments on cross-dataset search validate the

effectiveness and efficiency of our proposed method.

2. Related Work

Action recognition and detection have been active re-

search topics and a lot of work has been done. In [10], a

3D Haar feature based optical flow is proposed to repre-

sent 3D volumes. [9] presents a maximum average corre-

lation height filter, with which the intra-class variability is

well captured. A visual spacetime oriented energy struc-

ture representation is proposed in [16], which is robust to

scene clutter and rapid dynamics. In addition to these global

template based action representations, local feature descrip-

tion [1] based representations have also been widely used.

[2] employs the bag of words (BOW) models based on lo-

cal feature points [1] and SVM as the classifier. Similar

bag of words representations are also discussed in [3] [21].

Apart from BOW representations, Gaussian Mixture Mod-

els (GMM) [14] and nearest neighbor (NN) search [7] are

alternative solutions to action recognition.

Despite great successes in action recognition and detec-

tion, action retrieval, on the other hand, is less exploited.

We can roughly categorize most of the existing action re-

trieval algorithms into two classes based on the number of

query samples. Algorithms in the first category [6] [16] per-

form the sliding window search on the database with a sin-

gle query sample. One limitation of these techniques is that

with a single query sample, it is impossible to model ac-

tion variations. Besides, an action retrieval system usually

involves user interactions but their approaches do not have

the capability to incrementally refine their models based on

the user feedback. The other category of action retrieval al-

gorithms, for example [19], is based on a set of query sam-

ples, usually including both positive and negative samples.

Despite the fact that they work well in uncontrolled videos,

the computational cost is high and they would fail if insuffi-

cient number of query samples are provided. Apart from the

above work, there exist some other algorithms in the litera-

ture. For example, [13] [22] [23] rely on auxiliary tools like

storyboard sketches, semantic words and movie transcripts

for action retrieval, while [11] is specifically focused on

quasi-periodic events. [24] is doing action retrieval based

on static images.

3. Video Representation and Matching

In our method, an action is represented by a set of

spatial-temporal interest points (STIP) [1], denoted as V =
{di ∈ R

n}. Each STIP point d is described by two kinds

of features: HOG (Histogram of Gradient) and HOF (His-

togram of Flow) and the feature dimension n is 162. For

action retrieval, we are given a database with N video clips

(each video clip is denoted as Vi),D = {V1∪V2∪· · ·∪VN}.
These video clips may contain various types of actions such

as handwaving, boxing, and walking. Our objective is,

given one or more query videos, referred to as Q, to extract

all the sub-volumes which are similar to the query. For-

mally, that is to find:

V ∗ = max
V⊂D

s(Q, V ), (1)

where s(Q, V ) is a similarity function between a set of

query video clips Q and a subvolume V in the database.

Unlike previous single template action detection and re-

trieval [16], which can only take one positive sample for

query, our approach can integrate multiple query samples

and even negative ones. By introducing negative samples

during the query phase, our algorithm is more discrimina-

tive. In addition, this approach enables interactive search by

leveraging the labels obtained from user feedbacks.

Following our previous work in [7], we use the mutual

information as the similarity function for s(Q, V ) . So we

have:

V ∗ = max
V⊂D

MI(C = cQ, V )

= max
V⊂D

log P (V |C=cQ)
P (V )

= max
V⊂D

log
∏

di∈V
P (di|C=cQ)

∏
di∈V

P (di)

= max
V⊂D

∑
di∈V

log P (di|C=cQ)
P (di)

.

(2)

We refer to scQ(di) = log P (di|C=cQ)
P (di)

as the mutual in-

formation between STIP di and query setQ. In [7], scQ(di)
is computed based on one positive nearest neighbor point

and one negative nearest neighbor point from di. How-

ever, nearest neighbor search in high dimensional space is

very time consuming even with the advanced local sensitive

hashing (LSH) technique [7]. Second, this approach is sen-

sitive to noise, since only two points are used to compute

its score. In order to address these problems, we formulate

scQ(di) as:

scQ(di) = log P (di|C=cQ)
P (di)

= log P (di|C=cQ)P (C=cQ)
P (di)P (C=cQ)

= log P (C=cQ|di)
P (C=cQ) .

(3)

In Eq. 3, P (C = cQ) is the prior probability that can

be computed as the ratio of the number of positive query
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Figure 2. A schematic illustration of random forest based indexing and action search.

STIPs to the total number of query STIPs. In order to esti-

mate P (C = cQ|di) efficiently, we propose a random forest

based space partition strategy.

4. Random Forest based Indexing

Random forest was first proposed to solve the clas-

sification problem [17]. Later, it was extended to han-

dle regression and other applications. In recent years,

there have been a lot of applications in computer vision,

which employ the random forest as the basic data structure,

like [4] [20] [18] [27]. In this paper, random forest behaves

like a mapping function to estimate P (C = cQ|di), which

is an essential component of our algorithm as illustrated in

Fig. 1.

A random forest with NT trees is built offline from the

database. At the query stage, all the STIP points in the

query set Q = QP ∪ QN (where QP and QN refer to

positive query and negative query, respectively) are first ex-

tracted and distributed into the forest. Fig. 2 gives a two-

dimension example where blue and black dot points rep-

resent the positive and negative STIPs, respectively. Each

STIP point di ∈ D (red sqaure in Fig. 2) falls into one of

the leaves of a tree in the forest. Each leaf node contains

several STIP points dq ∈ Q. In order to compute the pos-

terior P (C = cQ|di), we integrate the information from all

the leaves which contain di. Suppose di falls into a leaf with

N+
k positive query STIP points and N−

k negative points for

tree Tk, then P (C = cQ|di) can be computed as:

P (C = cQ|di) =
1

NT

NT∑

k=1

N+
k

N+
k +N−

k

. (4)

As can be seen from Eq. 4, our voting strategy can integrate

negative query samples, which makes our algorithm more

discriminative.

Eq. 3 can hence be rewritten as:

scQ(di) = logP (C = cQ|di)− logP (C = cQ)

= log 1
NT

NT∑
k=1

N
+

k

N
+

k
+N

−

k

− logP (C = cQ).

(5)

However, in the case where there are no negative query

samples available (QN = ∅), we slightly modify Eq. 4 to:

P (C = cQ|di) =
1

NT

NT∑

k=1

N+
k

M
, (6)

where M is a normalization parameter. And Eq. 5 can be

written as

scQ(di) = log 1
NT

NT∑
k=1

N
+

k

M
− logP (C = cQ)

= log 1
NT

NT∑
k=1

N+
k − logM − logP (C = cQ).

(7)

We further introduce a parameter A = − logM −
logP (C = cQ), which will be tuned in the experiments.

To build a random forest, we use a method motivated

by [4], where the random forest is used for voting object

locations. The differences from [4] will be discussed at the

end of this section.

Assume we have ND STIP points in the dataset, de-

noted as {xi = (x1
i , x

2
i ), i = 1, 2, · · · , ND}; x1

i ∈ R
72

and x2
i ∈ R

90 are the HOG feature and HOF feature, re-

spectively. In order to build a tree and split the dataset, a

random number τ ∈ {1, 2} is first generated to indicate

which kind of feature to use for splitting (xτ=1
i refers to

HOG feature and xτ=2
i means HOF feature.) Then two

more random numbers e1 and e2 will be generated which

are the dimension indices of the feature descriptor (either

HOG feature or HOF feature depending on the value of

τ .) After that, a “feature difference” can be evaluated with

Di = xτ
i (e1)− xτ

i (e2), i = 1, 2, · · · , ND. Based on all the

Di, we can estimate the mean and variance of the feature

difference.

To put it briefly, a hypothesis (with variables τ, e1 and

e2) can be generated with the following three steps:

• Generate τ ∈ {1, 2} to indicate the type of feature to

use

• Generate the dimension indexes e1 and e2 and com-

pute the feature difference Di = xτ
i (e1)− xτ

i (e2), i =
1, 2, · · · , ND

• Split the dataset into two parts based on the mean of

feature differences and obtain a variance
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We generate γ hypotheses (γ = 50 in our experiments)

and find the one with the largest variance on feature differ-

ence. Usually, a larger variance means that the data distri-

bution spreads out more and the feature difference is more

significant. Therefore the corresponding mean is used as the

threshold to split the dataset. After this, one node will be

built and the dataset will be partitioned into two parts. For

each part, a new node will be further constructed in the same

way. This process is repeated until the predefined maximum

depth is reached.

Each tree can be thought of as a feature space partition

as shown in Fig. 2. Usually, STIP points in the same leaf

node are similar. The score evaluation (Eq. 5) on the forest

can be explained intuitively by a dyeing process. We can

think of each positive query STIP point as having a blue

color and a negative point as having a black color. For each

query point, we pass it down each tree in the forest. The leaf

that the point falls in is dyed in the same color as the query

point. Each leaf keeps a count of the number of times it is

dyed by blue and a count of the number of times it is dyed by

black after we pass all the positive and negative query points

down the trees. If a leaf’s blue count is larger than the black

count, it is more likely to belong to the positive region, and

vice versa. Given a point di (red square point in Fig. 2) in

the dataset, to compute its score with respect to the positive

queries, we pass it down each tree of the forest. From each

tree, we find the leaf that di falls in. The blue counts and

black counts of all the leafs in all the trees that di falls in

are combined to estimate its posterior P (C = cQ|di). The

function of random forest is like a special kernel, as shown

by the yellow regions in Fig. 2.

The general benefits of random forest are numerous,

most of which have already been discussed in [4]. In this

paper, we point out four properties of the random forest that

are essential for us. First, each tree in the forest is almost

independent to others, which is an important property for us

to evaluate P (C = cQ|di), because the independence can

greatly reduce the variance of estimation. Second, a ran-

dom forest is fast to evaluate during the query stage. The

computation time only depends on the number of trees and

the depth of each tree. Hence, it is usually faster than LSH

based nearest neighbor search [7]. In the experiments, we

will show that our random forest based weighting approach

is over 300 times faster than LSH based approaches. This

is of great importance if we want to perform real-time ac-

tion analysis. Another advantage of random forest com-

pared with LSH is that, during the construction of each tree,

data distribution of the STIPs is integrated, which means

the tree construction is guided by the data density. This is

one reason why random forest has great speed gain but little

performance loss. From that aspect, the structure of random

forest is flexible. Finally, by adding more trees to the for-

est, we can alleviate the affection of lacking query samples.

As shown in Fig. 2, for each tree, only a small portion of

nearest neighbors can be found. One main benefit of us-

ing multiple trees is to improve the accuracy of the nearest

neighbor search.

We further compare our technique with other work that

also use random forests. First, our random forest is con-

structed in an unsupervised manner for class-independent

video database indexing, while traditional random forests

are constructed in a supervised manner for object detection

(e.g. [4].) Second, in [4], random forest is used to vote

for the hypothesized center positions through Hough vot-

ing, while our random forest does not rely on Hough vot-

ing. Thus, the non-trivial scale estimation of [4] is par-

tially solved through our branch and bound search, which

avoids an exhaustive search of all possible scales. Third,

our random forest generates both positive and negative vot-

ing scores, thus it is more discriminative compared to [4],

which generates only positive votes based on the frequency.

Finally, we use random forest for density estimation, which

has been less exploited before.

5. Efficient Action Search

5.1. Coarse-to-fine Subvolume Search Scheme

After computing the scores for all the STIP points in the

database, we follow the approach in [7] to search for sub-

volumes in each video in the database. However, as stated

in [15], there are two limitations in the subvolume search

method proposed by [7]. First, we need to run multiple

rounds of branch and bound search if we want to detect

more than one instance. In addition, the computational cost

is extremely high when the video resolution is high. In this

paper, we extend the ideas from [15] to address the above

two problems. Spatial-downsampling is presented in [15]

to handle the high resolution videos and reduce the com-

putational cost. Suppose the downsampling factor is s, for

each s× s patches in the original video space, we add them

together to form one point in the downsampled space. [15]

proposed an error bound for this downsampling strategy:

fs(Ṽ ∗) ≥ (1−
s ∗ h+ s ∗ w + s2

wh
)f(V ∗), (8)

where Ṽ ∗ = argmaxV ∈Dsfs(V ) denotes the optimal sub-

volume in the downsampled search space Ds, f(V ) =
MI(Q, V ), and V ∗ refers to the optimal subvolume in the

original search space with width w and height h.

Suppose we want to retrieve the top K results from the

database, we divide our search into two steps. In the first

step, we employ the top-K search in [15] and with spatial

downsampling s = 16 to obtain the first round results. After

that, we can estimate a threshold, denoted as θ, based on the

Kth largest subvolume score (denoted as fs(Ṽ (K)).) For

example, if we set downsampling factor s = 16 and assume
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w = h = 64, then our approximation has an average error:

s ∗ h+ s ∗ w + s2

wh
= 56.3%. (9)

So we choose θ = 0.437fs(Ṽ (K)) to filter the first round

results. Then, for each remaining subvolume Ṽ (k) from the

first round, we extend the spatial size with 8 pixels in each

direction and perform a λ search [15] with λ = fs(Ṽ (K))
and downsampling factor s = 8. As shown in Table 2,

our efficient two-round branch-and-bound search only costs

24.1 seconds to search a database of one hour long 320 ×
240 videos.

5.2. Refinement with Hough Voting

Although our search algorithm can successfully locate

the retrieved actions, the localization step may not be accu-

rate enough, as can be seen from the first row of Fig. 6. This

motivates us to add a refinement step. Suppose we already

have the initial results from the down-sampled branch and

bound search, for all the STIP points within the detected

subvolume, we match with the query video clip, either by

random forest or Nearest Neighbor search. Then the shift

from the matched STIPs in the query will vote for the cen-

ter of the retrieved action. After considering all the votes,

the center of the retrieved action is the position with the

largest vote. The spatial scale of the action is extended to

include the initial retrieved region and the temporal scale is

fixed to the initial retrieved result. Both quantitative results,

as shown in Fig. 4, and empirical results in Fig. 6 show that

the refinement step can successfully improve our retrieved

results.

5.3. Interactive Search

The performance of our action retrieval system is con-

strained by the limited number of queries. To show that

our retrieval system can achieve better results when more

queries are provided, we add an interaction step to facilitate

human interaction. There are two major advantages of the

interaction step. The first is to allow the user to express what

kind of action he/she wants to retrieve. Another advantage

is that our system can benefit from more query samples after

each round of interaction.

To implement the system, we first perform one round of

action retrieval based on a few query samples. After that,

the user would label D (D=3 in our experiments) detections

with the largest scores. Then the D newly labeled subvol-

umes will be added into the query set for the next round of

retrieval. Detailed results will be discussed in the experi-

ment section.

6. Experimental results

To validate our proposed algorithm, two experiments are

discussed in this section. In order to give a quantitative

comparison with other work, we present a cross-dataset ac-

tion detection experiment first. After that, we show the per-

formance of our action retrieval system. Finally some re-

trieval results are provided.

6.1. Action Detection

We validate our random forest based indexing strategy

with a challenging action detection experiment. Since hand-

waving is one of the actions, that have a lot of practical

uses, we propose to detect handwaving actions in this exper-

iment. We first train the model with KTH dataset (with 16

persons in the training part) and then perform experiments

on a challenging dataset (MSR II) of 54 video sequences,

where each video consists of several actions performed by

different people in a crowded environment. Each video is

approximately one minute long.
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Figure 3. Precision-recall curves for handwaving detection. AP in

the legend means the average precision.

Fig. 3 compares the precision-recall curves for the fol-

lowing methods (the resolution for the original videos is

320× 240):

(i) ASTBB (Accelerated Spatio-Temporal Branch-and-

Bound search) [8] in low resolution score volume

(frame size 40 × 30),

(ii) Multi-round branch-and-bound search [7] in low-

resolution score volume (frame size 40 × 30),

(iii) Top-K search in down-sampled score volume [15]

(size 40× 30),

(iv) ASTBB [8] in 320× 240 videos,

(v) Random forest based voting followed by Top-K search

in down-sampled score volume (size 40× 30).

The first four methods ((i)-(iv)) employ the LSH based vot-

ing strategy [7]. The measurement of precision and recall

is the same as those described in [7]. To compute the pre-

cision we consider a true detection if :
Volume(V ∗∩G)

Volume(G) > 1
8 ,
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Figure 4. Precision-recall curves for action search.

where G is the annotated ground truth subvolume, and V ∗

is the detected subvolume. On the other hand, to compute

the recall we consider a hit if:
Volume(V ∗∩G)

Volume(V ∗) > 1
8 . Accord-

ing to Fig. 3, our random forest based action detection out-

performs the other algorithms. Compared with LSH vot-

ing strategy ((i)-(iv)), it shows that our unsupervised ran-

dom forest based voting score is more discriminative and

robust. The underlying reason is that our random forest is

data-sensitive, i.e. we model the data distribution when con-

structing the trees. Besides, since LSH only uses two near-

est neighbors for voting, the results are easily corrupted by

noise. In [28], random forest is also employed to do action

detection. However, the difference is that trees in [28] are

constructed in a supervised manner, which means that the

label information is utilized when splitting the nodes, while

our random forest is unsupervised built with the purpose of

modeling the underlying data distribution.

6.2. Action Retrieval

To give a quantitative result for our action retrieval sys-

tem, we use videos from MSR II as the database. The query

samples are randomly drawn from KTH dataset. As little

work has been done before on MSR II dataset for action

retrieval, to verify our system, we decide to compare our

retrieval results with several action detection results from

previous researches. The evaluation is the same as that for

action detection. For the implementations of our random

forest, we set the number of trees in a forest NT = 550
and the maximum tree depth to 18. Fig. 4 compare the fol-

lowing three strategies on handwaving, handclapping and

boxing actions (for the boxing action, we flip each frame in

the query video so that we can retrieve the boxing coming

from both directions), respectively.

(i) One positive query example without Hough refine-

ment,

(ii) One positive query example with Hough refinement,

(iii) Cross-Dataset detection [14]1,

1The STIP features in [14] are extracted in video resolution of 160 ×

120 but 320× 240 for other methods

As shown in Fig. 4, with a single query, our results ((i)

and (ii)) are already comparable to (iii) for all three action

types. This is quite encouraging because (iii) used all the

training data while we only use a single query. Besides, our

Hough refinement scheme (ii) improves the results without

Hough refinement (i).

Fig. 5 shows the experimental results of interactive ac-

tion retrieval. The following six strategies (all of them are

performed without Hough refinement) are compared.

(i) One query example with random forest based voting,

(ii) One query example with NN based voting,

(iii) One positive and one negative query examples

(iv) Two positive and two negative query examples,

(v) One iteration of user interaction after (i),

(vi) Two iterations of user interaction after (i).

We can see that when there is only one query example,

our random forest based voting strategy (i) is superior to

NN based voting strategy (ii). When there are two query

examples (one positive and one negative,) the retrieval re-

sults become worse than the one query case. The reason is

that negative action type is hard to describe and a single ex-

ample is usually not enough. However, the performance of

our system increases as more query samples are given. In

particular, after two interaction steps, our retrieval results

are better than the results obtained by other action detection

systems ((i)-(iv) in Fig. 3), which utilize all the training data

(256 examples).

We also provide some search results in Fig. 6 and Fig. 7

for our action retrieval system on different kinds of ac-

tions. For each query, seven subvolumes with the highest

scores are listed in the figure. The retrieved subvolumes

are marked by colored rectangles. The rectangle with cyan

background indicates a “correct” retrieval. As shown in the

first row of Fig. 6, some of the cyan results are focused on a

subregion of the action region. But this can be relieved with

Hough refinement as indicated in the second row. In short,

our action retrieval system can get very good results among

the top retrieved subvolumes on various actions types.
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Figure 5. Precision-recall curves for the interactive action retrieval.

6.3. Computational Cost

For our action retrieval system, there are two major run-

time costs: voting and searching. With the help of random

forest structure, our voting cost is very low (Table 1). This

is a major improvement over the time cost of LSH. On the

other hand, as shown in Table 2, our coarse-to-fine subvol-

ume search scheme only costs 24.1s for all 54 video clips in

MSR II, while Top-K search in [15] takes 26mins. This is

even 2800 times faster than the 3D branch and bound search

in [7]. To set the parameter θ in Section 5.1, we average the

w and h among the top K results and obtain an error bound

based on the estimated w and h. With this error bound, we

can compute θ similarly as in Eq. 9.

The total computational cost for our system is listed in

Table 2. The testing environment is as follows. We use one

query video, which is approximately 20 seconds long. The

database consists of 54 sequences with 320×240 resolution

from MSR II. We use a PC with 2.6G CPU and 3G memory.

As shown in Table 2, it takes only 24.7s to retrieve the top-7
results in a database and another 2s to refine them. Besides,

the search time is independent of the duration of the query

videos. This means, when there are more queries, the total

computation time only grows linearly with the feature ex-

traction time, which is around 30s for a 20s sequence. For

a very large database, like Youtube, it has little impact to

our voting cost since the voting cost mainly depends on the

number of trees and the depth of each tree. In order to deal

with the increasing search complexity, parallel computing

can be utilized in the first step of branch and bound search

since the search for different video clips are mutually in-

dependent. As the number of candidates for search in the

second step of our branch and bound search only depends

on the number of retrieved results required by the user, the

database size has little impact on the runtime cost for the

second step.

Method Voting Time (ms) One sequence (s)

LSH [7] 173.48±423.71 1734.8

Random Forest 0.537±0.14 5.37

Table 1. CPU time consumed by STIP voting in a database that

consists of 870,000 STIPs. The second column is the CPU time

for computing the votes of all STIPs in the database with respect

to a single STIP in the query. The third column is the CPU time for

computing the votes with respect to a 1 minute long query video

(approximately 10,000 STIPs).

Voting time (s) 0.6

Search time (s) 24.1

Refinement time (s) 2

Total Computation Time (s) 26.7

Table 2. Total computation time of our retrieval system. Suppose

the query video is around 20s and the database consists of 54 high

resolution videos with total length of one hour. Our algorithm re-

trieves the top 7 subvolumes from the database as shown in Fig. 6.

7. Conclusion

We have developed a random forest based voting tech-

nique for action detection and search. This method has

the unique property that it is very easy to leverage feed-

back from the user. In addition, the interest point match-

ing is much faster than the existing nearest-neighbor-based

method. To handle the computational cost in searching the

large video space, we propose a coarse-to-fine subvolume

search scheme, which results in a dramatic speedup over the

existing video branch-and-bound method. Cross-dataset ex-

periments demonstrate that our proposed method is not only

fast to search higher-resolution videos, but also robust to

action variations, partial occlusions, and cluttered and dy-

namic backgrounds. The handwaving detection results on

the MSR II action dataset show that our proposed approach

outperforms the state-of-the-art methods. Finally, our inter-

active action search results show that the detection perfor-

mance can be improved significantly after only a few rounds

of relevance feedback.
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