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Abstract—Cellular data networks are proliferating to address the need for ubiquitous connectivity. To cope with the increasing number
of subscribers and with the spatio-temporal variations of the wireless signals, current cellular networks use opportunistic schedulers,
such as the Proportional Fairness scheduler (PF), to maximize network throughput while maintaining fairness among users. Such
scheduling decisions are based on channel quality metrics and Automatic Repeat reQuest (ARQ) feedback reports provided by the
User’s Equipment (UE). Implicit in current networks is the a priori trust on every UE’s feedback. Malicious UEs can thus exploit this
trust to disrupt service by intelligently faking their reports. This work proposes a trustworthy version of the PF scheduler (called TPF)
to mitigate the effects of such Denial-of-Service (DoS) attacks. In brief, based on the channel quality reported by the UE, we assign a
probability to possible ARQ feedbacks. We then use the probability associated with the actual ARQ report to assess the UE’s reporting
trustworthiness. We adapt the scheduling mechanism to give higher priority to more trusted users. Our evaluations show that TPF
(i) does not induce any performance degradation under benign settings, and (ii) it completely mitigates the effects of the activity of
malicious UEs. In particular, while colluding attackers can obtain up to 77% of the time slots with the most sophisticated attack, TPF is
able to contain this percentage to as low as 6%.

Index Terms—Cellular networks, PF scheduler, Trust, Misreporting attack
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1 INTRODUCTION

The dominant traffic in cellular networks has recently
transformed from voice to data with the emergence of
smartphones and improved network capabilities (e.g.,
transmission rates of up to 14 Mbps). The increasing
importance of cellular data networks makes them an
attractive target for Denial of Service – DoS – attacks
(for a description of attacks reported in real networks,
please see [1]). The vulnerabilities of cellular networks
to a number of novel DoS attacks differ from the threats
in other technologies and may be facilitated by the
proportional fair (PF) scheduling mechanism employed
over the downlink in cellular networks. The operations
of the PF scheduler are based on the presumably honest
feedback reports received from mobile stations, also
called User Equipments (UEs). The two feedback reports
of interest are (i) the channel quality indicator (CQI)
and (ii) the transmission outcome (ACK/NACK). A ma-
licious UE can cleverly manipulate his reports to disrupt
regular network operations and gain unfair medium
access, thereby causing starvation to legitimate users. We
refer to these types of threats as misreporting attacks.

Cellular network protocols have mainly focused on
performance, ignoring security implications. For in-
stance, in the case of the scheduling algorithm, the
base station completely trusts the reports from the UEs
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in order to achieve its objective (i.e., maximize net-
work throughput, while maintaining fairness among the
users). Misreporting attackers take advantage of this a
priori trust in order to disrupt normal network opera-
tions. Previous studies have mainly focused on a single
type of feedback; either erroneous channel quality feed-
back (e.g., [2]), or misreports of the packet transmission
success (e.g., [3]). In our study, we consider the impact
of both feedback reports. We propose a variation of PF
scheduler that makes use of quantification of normal
behavior to estimate and incorporate the reporting trust
of each user. We will refer to our scheme as Trustworthy
Proportional Fairness (TPF) scheduling. We show that
TPF can efficiently mitigate the impact of misreporting
attacks.

In brief, TPF works as follows. It assesses the reporting
trust on a UE (say Jack’s) by using (i) the expected
outcome of a packet transmission (based on the reported
channel quality indicator), and (ii) the reported feedback
on the transmission outcome (e.g., ACK/NACK). When
Jack reports the downlink quality he observes to the base
station (BS), the BS decides upon a transmission rate to
send data to him. This decision is taken on the basis
of a predefined success probability ps (typically 90%)
of a frame at this rate. In other words, every packet
transmission should be typically followed by an ACK
with probability ps, provided Jack’s reports are credible.
If a NACK is reported, this could have happened with
a probability of 1 − ps, under the same assumption,
and thus TPF keeps this as a measure of the trust
on Jack’s report. The BS accumulates observations and
processes them to enable TPF to first update its esti-
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mate on Jack’s (reporting) trust and then his scheduling
priority accordingly. Given the unpredictable nature of
wireless medium, it is clear that a transmission can fail
for legitimate users (say Bob) as well. This can have an
impact on the perceived trust of Bob from the network’s
point of view, and consequently a negative effect on
his share of the medium. Nevertheless, our evaluations
indicate that under benign settings TPF performs as well
as PF.

This work makes three contributions:
• We quantify the loss of network performance due

to feedback misreporting.
• We present a method for assessing the trustworthi-

ness of UEs.
• We show how this trustworthiness can be used

to improve the PF scheduler’s robustness against
misreporting attacks.

In a nutshell, the misreporting attackers can gain up
to 2.5 times more time slots compared to their fair share.
However, TPF is able to restore fair network operations,
and even almost nullify the time share of malicious
entities.

Scope of our work: Research in wireless network-
ing and security has followed seemingly disjoint paths.
Wireless network protocol design has focused on perfor-
mance, ignoring to some extent security implications. To
secure today’s wireless networks, some of the vulner-
abilities that exist will have to be addressed, possibly
with patchwork solutions. Going forward, a holistic
view of security and performance is needed with a
new paradigm of thinking in designing protocols and
architectures. Our study clearly works towards this di-
rection, providing an example of a protocol design that
achieves the desired performance characteristics, while
at the same time being robust against malicious behavior.

Furthermore, we would like to emphasize on the fact
that even though there are no reports to date of large
scale misreporting attacks, we act proactively. We iden-
tify the threat of a priori trusting the UEs and we provide
a framework for assessing UEs reliability. Moreover, the
attack model we consider does not require hacking of
the cellular network, but at a device level. The open
(software/hardware) nature of mobile handheld devices,
make it even more possible that similar threats can be
actually realized in the near future [2]. Note here that,
our trust framework can be also applicable to cellular
network’s functionalities other than scheduling.

A preliminary version of this work can be found in [4].
Compared to [4] we have included in this manuscript
additional evalution results and a detailed description
of our customized, measurement-driven simulator (parts
of which are provided in the Supplementary Material).
The rest of the paper is organized as follows. Section
2 provides the required background on 3G cellular
networks, discusses related studies, and differentiates
our work from the existing literature. Section 3 details
the threat model of misreporting attackers. Section 4
presents our reporting trust estimation module and its

integration with the PF scheduler. Section 5 starts by
briefly presenting our simulator. It further quantifies the
effect of the different types of reporting misbehaviors
and presents the evaluation of our proposed scheme.
Finally, Section 6 concludes our work.

2 BACKGROUND AND RELATED WORK
This section provides a brief background of 3G cellular
networks and discusses other studies related to our
work. We further differentiate our work from the exist-
ing literature. We provide additional details on cellular
network operations in the Supplementary Material.

2.1 Cellular Networks
The basic topology of a cellular network consists of a
base station (also called Node B) that serves all UEs that
are within its coverage area. In our work, we consider
the downlink with High Speed Packet Access (HSPA),
which currently supports transmission rates of up to
14.4 Mbps1. In the following we describe four important
mechanisms of interest in the downlink transmission
protocol, HSDPA (High Speed Downlink Packet Access)
of HSPA.

PF scheduler: The allocation of downlink capacity
among the clients of a base station (BS) follows a Time
Division Multiplexing (TDM) fashion, using the Pro-
portional Fairness scheduling scheme ([6]) in time slots
(Transmission Time Intervals - TTIs) of 2ms. Each user is
assigned a priority value pi(t) =

CQIi(t)
Ai(t−1) that depends on

the Channel Quality Indicator CQIi(t), a measure of the
instantaneous downlink quality of user i, and Ai(t− 1),
the average throughput that has been obtained by UE i
until time slot t − 1. CQIi(t) is reported by the UE to
the BS and dictates the sustainable downlink rate in the
current time slot. It takes values between 0 and 30, with
0 indicating no connectivity and 30 implying very good
connectivity. Each UE estimates the link quality through
pilot bits sent from the BS on the Common Pilot Channel
(CPICH)2. The throughput value Ai(t) is maintained by
the network. Whenever user i sends an ACK, the BS
increases Ai(t). When a NACK is received, Ai(t) is not
updated, except when the retransmission limit (Lmax)
is reached. In this latter case, the BS increases Ai(t) to
reduce the priority of UE i and free the medium for other
UEs. The UE with the highest priority pi(t) is scheduled
during TTI t. Thus, PF approximately schedules the UE
that has the best link quality to the BS and has been served
the least during the previous time slots.

Hybrid Automatic Repeat reQuest (HARQ): As
mentioned before, the channel quality determines the
downlink transmission rate. The rate is chosen so as to
achieve a target success probability (typically 90%) in a

1. We consider 3GPP Release 6 [5]. Note that later standards that
make use of higher-level modulation schemes and MIMO can achieve
even higher rates.

2. CQI reports happen either periodically through an HSPA Control
Channel or are piggybacked in ACK/NACKs.
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TTI. If the transmission is successful, an honest UE will
send an ACK to the BS, while if the transmission fails,
a NACK will be sent and retransmission is performed
in the next time slot (fast retransmit mode)3. HSPA uses
HARQ for the retransmission, which is a combination
of forward error correction and error detection. In a
nutshell, the erroneous packets are not discarded from
the UE, but they are buffered and are soft combined
with subsequent retransmissions [7]. As a result, there is
an increased probability of success for retransmissions.
Table 1 presents the corresponding packet success prob-
ability after a different number of HARQ transmissions
[8].

# of HARQ transmissions 1 2 3
Success probability 0.791 0.905 0.938

TABLE 1
HARQ performance [8]

Rate selection: Based on the reported CQI, the BS
selects the Modulation Coding Scheme (MCS) and the
amount of data (Transmission Block Size - TBS) to trans-
mit to the UE. In practice, the mapping from CQI to
MCS and TBS depends also on the capabilities of the user
terminal (see [9] for more details). For brevity, we shall
ignore the existence of different categories of UEs, and
focus on the fact that CQI determines the transmission
rate, through the choice of MCS and TBS. We would like
to emphasize on the fact that since the TTI is fixed, it
might be possible that application layer packets will be
fragmented into many smaller transmission blocks. For
the rest of the paper, we will use the terms packet and
TBS interchangeably.

2.2 Related Studies
Racic et al. study the effect of fake CQI reports [2]. They
consider both single and colluding attackers, as well as
intra- and inter-cell attacks. They argue that inter-cell
attacks are more effective. Once the attacker UE has
reached its maximum possible CQI report, it can handoff
to a new BS, report an arbitrarily low throughput Ai

and be scheduled again. The authors also propose and
evaluate a robust handoff scheme. However, they do not
consider the actual architecture of a 3G network, where
handoffs are handled by the Radio Network Controller
(RNC) and thus, the values of Ai can be verified across
BSs. In current networks, the RNC centralizes many
network functionalities and “transforms” a multi-cell
topology to a (large) single cell, for the operations that
we consider in this work. Therefore, we shall ignore
inter-cell attacks, and focus on intra-cell attacks.

In another type of fake report attacks, Ben-Porat et al.
study the retransmission attack [3]. A malicious UE can

3. It is possible to have slow retransmit mode, where the retransmis-
sion is performed the next time the user is chosen to be served from
the PF scheduler.

increase its time share if it persistently reports NACKs
whenever it is scheduled. After showing the effect of
such behavior, the authors propose a way to update
the Ai values after each transmission to UE i, which is
immune to retransmission attacks and retains fairness.
Nevertheless, the applicability of their scheme is limited
to the specific type of attack. Kim and Hu [10] study
the problem of fake CQI reports as well, and propose
a challenge-response scheme to prevent manipulated
feedback. In brief, the BS transmits “challenges” to the
UE containing a random (known to the BS) pattern at
different rates. The UE, when it correctly receives the
challenge, reports back to the BS the obtained pattern
and thus the real sustainable rate is revealed. The chal-
lenges are created in such a way that the attacker cannot
guess them. The system is shown to effectively thwart
CQI misreporting attacks. However, note here that the
scope of the proposed solution is limited (e.g., it cannot
deal with retransmission feedback attacks).

Even though not tightly related with the feedback
misreporting attacks, Bali et al. ([11]) identify a vul-
nerability of the PF scheduler related to the traffic
pattern of the UEs. In particular, they experimentally
show that the PF scheduler is sensitive to downlink
on-off traffic, that is, “periodic”, non-backlogged traffic
for a specific UE. In their experiments, they consider
a downlink burst/stream of 250 packets of 1500 bytes
every 6 seconds for the malicious UE and a long-lived
downlink UDP packet stream for the well-behaved UE
with an average rate of 600Kbps. The network does not
distinguish between UEs that are backlogged and UEs
that do not have pending traffic at the BS and treats them
in the same way. Hence, a user i that currently does not
have any downlink traffic, will have its Ai reduced, since
he does not obtain any data from the BS. Consequently,
i will have an inflated priority value pi next time there is
downlink traffic for it at the BS. This will cause starvation
to the rest of the users, since i will obtain consecutive
time slots until its pi is reduced. However, the authors
experiment in a limited setting with only 2 UEs and they
do not provide results for the network wide effects of the
on-off traffic. As identified by the authors, many (well
behaved) UEs can have similar traffic patterns and the
presence of many such UEs may tone down this effect.

To the best of our knowledge, we are the first to
incorporate a UE trust module in the PF scheduler. Unlike
other solutions proposed, TPF is able to mitigate the impact
of a broad class of attacks related to malicious misreporting
from the UE. We also delve into the detailed effects of
the different types of misreports.

3 MISBEHAVIOR MODEL

Current cellular protocols assume that UEs are honest
and cooperate for the optimal operation of the network.
In particular, they assume that UEs provide accurate
feedback about the channel quality they observe and the
successful reception of the transmitted frames. However,
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malicious users can manipulate this feedback, by faking
CQI and ARQ reports, leading to different levels of
performance degradation for legitimate users. In the
following, we delve into the effects of each misreport. We
also consider selfish users, who employ the same mali-
cious techniques, but with the primary goal of increasing
their throughput (rather than simply causing starvation
to the rest of the users). Our discussion in this section is
qualitative; Section 5 quantifies the impact of misreports.

3.1 Fabricated CQI
The link quality reported from Jack’s UE affects directly
the numerator of pJack(t), CQIi(t). By increasing this
value, Jack increases his priority and his share of the
medium (compared to legitimate users). However, a
higher CQI value corresponds to a larger packet size
(TBS). This translates to an increase in the denominator
of pJack, Ai(t − 1), either when the retransmission limit
is reached (i.e., all packets are received with error, or
Jack misreports ACKs) or when an ACK is being sent
back to the BS (e.g., Jack truthfully reports a successful
packet reception). This potentially reduces Jack’s priority,
moderating the effect of the increased CQI report.

Note here that, for a selfish user whose goal is to
increase his throughput and hence receive the trans-
mitted data correctly, increasing CQI reports drastically
reduces the chances of decoding the packet successfully.
Recall Table 1 that presents the decoding probabilities
under the assumption of correct CQI reports. When
the difference ΔCQI = CQIreported − CQIactual is not
zero, we obtain the results presented in Table 2 [8].
As we can see from these data, when ΔCQI is 1, the
probability that the first transmission succeeds is only
3% (as compared to the 80% probability with the correct
CQI report). This probability increases in the subsequent
retransmissions due to the HARQ, however it is still
very small (5% and 7%). Note here that when the CQI
reported is 2 or more units higher than its actual value,
the probability of successful reception is practically 0
(even after 2 retransmissions). The intuition behind this,
is as follows. Higher CQI reports from the UE will lead
the BS to transmit at a higher rate, since it assumes
that the UE supports that rate. However, since this is
not true, the packet will not be decoded correctly with
high probability. We will come back to this issue in our
simulation results in Section 5.2.

# of HARQ transmissions ΔCQI = 1 ΔCQI > 1

1 0.03 0
2 0.05 0
3 0.07 0

TABLE 2
Success probability for fabricated CQI reports [8]

Operations: Our fabricated CQI attack model as-
sumes the best case scenario for the attacker(s), that is,

Jack has complete knowledge of the priority values of the
legitimate users. Let us first consider the case where
Jack is the only misbehaving user. (a) When Jack wants
to cause DoS he can estimate the minimum possible
CQI value that will render his priority the maximum.
Depending on the link qualities of the legitimate users,
it is possible that the optimal CQI value is lower than
the actual one4. Jack will report the smaller value in
order to deter the BS from using higher transmission
rates and largest packet sizes. In doing so, he delays
the increase in AJack(t − 1), and, hence, he can extend
the duration of his attack. Eventually, he will need to
inflate the reported value of CQI. (b) When Jack acts
selfishly, he reports the minimum value that will render
his priority the maximum with the constraint that this
value is at least as high as his actual CQI. The reason for
imposing this lower bound on his reported CQI is the
fact that the ultimate goal of Jack is to actually increase
his throughput, not cause DoS. Reporting a CQI value
which is lower than his actual one will eventually lead
to a lower throughput.

We also consider multiple misbehaving nodes. In such
cases, we will assume that they collude. There are many
different ways for them to cooperate, but Racic et al. ([2])
have shown that the most effective colluding strategy
is the Delta CQI attack. In a Delta CQI attack, every
attacker (say Bob) calculates the increase, δBob, of his
CQI value needed in order to get a higher priority as
compared to the legitimate users. The user who has the
smallest value of δ is the one who reports the fabricated
CQI. Again, note that for selfish behavior the value of δ
cannot be negative.

We acknowledge that in reality, it is not easy (if
possible at all) for a malicious UE to know all of the
network parameters (e.g., other UEs’ priority values
etc.). Nevertheless, by making this assumption, we show
that our approach is able to deal even with the most
advanced attack models. On the contrary, an attacker
without this knowledge can potentially have a lot less
effect on the network operations. Racic et al. [2] have
shown that if it constantly reports the maximum possible
CQI, this will reduce its priority value very fast, reducing
at the same time the number of time slots obtained from
the malicious UE. Therefore, the attacker will need to
follow an exploratory approach with regards to the CQI
value that it reports. For instance, reporting random
CQI values, possibly chosen from a distribution biased
towards high CQI values, can only have an effect in
the case where legitimate users have really poor link
qualities to the BS and for a limited amount of time.
Racic et al. [2] have also provided an approach for
the attacker to estimate/approximate the “optimal” CQI
value to be reported for its attack. Collusion can further
increase the attack effectiveness, but again it will depend
on the number of attackers as well as the attack strategy

4. Of course as the number of UEs covered by a BS increases,
the chances of obtaining the medium with a lower CQI drastically
decrease.
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followed. Nevertheless, even in this case, TPF will still
be able to restore a significant portion of the “malicious”
time slots to the honest users (as we will see in Section
5.2) by reducing the trust value of an attacker very fast.

3.2 Fabricated ARQ feedback
In addition to CQI manipulation, Jack can fabricate his
ARQ feedback report. This can happen independently
of CQI misreports. By constantly reporting a failed
reception (i.e., NACK), Jack forces the BS to perform
retransmissions, starving the rest of the users. Note here
that, it can be the case that a NACK is the correct
feedback (e.g., when Jack’s UE reports a higher CQI
than what he actually has, i.e., ΔCQI > 1). However,
the thesis here is that Jack’s UE does not consider at
all the result of the decoding but constantly reports a
NACK.5 It should be apparent that the ARQ feedback
is the major factor that dictates the severity of the
misbehavior. An increased number of NACKs leads to
higher levels of starvation for legitimate users. As one
might expect from the above discussion, reporting a fake
ARQ feedback without fabricated increased CQI reports
leads to a larger degree of starvation as compared to the
case where both reports are fabricated (more details are
provided in Section 5).

Operations: A malicious UE mainly reports negative
acknowledgements in order to starve legitimate users.
Each UE is associated with an a priori trust value which
controls the portion of NACKs being sent back to the
BS. In other words, if the a priori trust of Jack’s UE is
k ∈ [0, 1], he will transmit a NACK with probability 1−k
for every downlink (re-)transmission.

Table 3 summarizes the possible combinations of fake
or correct reports. We also preview a qualitative descrip-
tion of the severity of each one of the combinations, leav-
ing their quantitative evaluation for Section 5. Note here
that, even though a selfish user cannot really increase his
throughput significantly, his behavior has a big effect on
the rest of the users.

# CQI report ARQ report Behavior Effect level
� � Benign No effect
� ✗ DoS Severe
✗ � Selfish Big
✗ ✗ DoS Severe

TABLE 3
Different Combinations of Misreports and Their Effect

Summary of attack models: To sum up, we consider
a colluding attack model, where malicious UEs have full
knowledge of the priority values of the legitimate users.
For the fabricated CQI attack, misbehaving users collude
using the Delta CQI strategy (as described above). For
the fabricated ARQ feedback no collusion is required.

5. In the following we will also consider cases where Jack proba-
bilistically decides to report an ACK in order to confuse the BS.

Attackers can deploy their misreporting strategy either
constantly or probabilistically. In the latter case, the
probability of attack is constant across every downlink
transmission (i.e., it is not time varying).

4 TRUTHFUL SCHEDULING
In this section we begin by presenting our scheme for
assessing the reporting trust of a UE. Later we show the
integration of the estimation module with the scheduling
mechanism, towards the trustworthy proportional fair
scheduler.

4.1 Reporting Trust Assessment
The terms “trust” and “trustworthiness” can be defined
in many ways [12] and are typically context dependent.
In our work, the trust level of a user’s equipment, say
Jack’s, is associated with its reliability and correct imple-
mentation of the network functionalities.6 Formally, the
trustworthiness of a UE is the probability that it correctly
performs the operations mandated by the network. In
this paper, we focus on the correct reporting of the CQI
and ARQ values, which directly affect the scheduling
decisions of the network. In other words, we seek to
answer the following question: “What is the probability
that Jack’s UE is reporting the correct CQI and ARQ?”

Our approach in a nutshell: To assess the trust on
Jack’s UE, the BS monitors all feedback received from
Jack’s UE. Every ARQ feedback (ACK/NACK) following
a downlink transmission to Jack’s UE, is considered as
an observation. Based on a set of k observations, the BS
statistically estimates the probability that Jack’s UE has
correctly reported both CQI and ARQ feedbacks, using
a Maximum Likelihood Estimation (MLE) framework.
During this process we take into consideration wireless
induced effects, thus capturing the probability that an
observation might be negative due to link failures and
not due to manipulated reports from Jack’s UE.

Trust representation: A strict notion of trust could be
represented by a binary variable Y , which would be 0
if the node is (always) untrustworthy and 1 otherwise.
Nevertheless, in reality not only may a UE act in be-
tween the two extremes, but there is also uncertainty in
establishing trust based on observations. Therefore, we
consider Y to be the likelihood that the UE is trustworthy
and as such it is a real number in the interval [0, 1].
We assume that the network initially completely trusts
every UE. These (initial) trust values dynamically evolve
as UEs interact with the BS. For an untrustworthy UE its
trust will eventually converge to a low value.

As alluded to above, we use the ARQ feedbacks as
observations to establish the trustworthiness of Jack’s
UE. Let us denote by oi, the reported feedback, with
oi = 0 when a NACK is received (i.e., Jack’s UE reports

6. For our purposes it is not important to distinguish whether the UE
has been compromised or whether its owner is malicious. We ignore
the reasons for malicious behavior, and simple refer to the UE’s and
user’s trust interchangeably.
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a packet transmission failure), and oi = 1 otherwise. The
outcome of the interactions depends on (i) the wireless
link quality and (ii) reporting trust on Jack’s UE.

The BS monitors the outcome of k consecutive packet
transmissions to Jack. These observations form a sample
set, indexed by j. For each packet transmission, i, BS
records oi and the probability that the packet must have
been successfully transmitted on the downlink ps,i (s
is the number of retransmission counts for the packet).
The latter is estimated from the reported CQI values;
recall that the success probability increases with each
retransmission, i.e., success is higher for higher values
of s (see Table 1).

Let us now assume that the BS associates a trust
value ti,Jack (with Jack’s UE) during the ith packet
transmission. Then it is easy to see that the ith packet
transmission is a Bernoulli trial Z , with probability of
success ps,i ·ti,Jack. Thus, the probability density function
(pdf) of Z is:

fi(X = oi) = (ps,i · ti,Jack)
oi · (1 − ps,i · ti,Jack)

1−oi (1)

The base station assumes correct values for the re-
ported CQI when computing the probabilities ps,i (cor-
rect both in terms of accurate channel conditions esti-
mation by the hardware as well as truthful reporting
of the CQI by Jack’s UE). We shall also assume that
during the k transactions forming the jth sample set, the
reporting trust of Jack’s UE as perceived from the BS is
constant7, i.e., ti,Jack = tJack, ∀i ∈ {1, 2, ..., k}. We will
next propose a maximum likelihood estimation (MLE)
method to update our estimate of tJack utilizing the k
observations.

MLE is a statistical method that estimates the param-
eters of a distribution based on a set of observations. Let
us assume that we have a set of observations −→o , that are
drawn from a parametric distribution with density f−→p (·),
with −→p being the parameter vector of the distribution. If
−→p is unknown, f−→p (

−→o ), is called likelihood function. In the
following we will use the more convenient, log-likelihood
function, log(f−→p (

−→o )).
MLE computes the vector −→p , based on the k obser-

vations forming vector −→o . In brief, MLE estimates the
parameter vector, such that the log-likelihood function
is maximized for the observed vector −→o . Formally, −→p is
estimated as the solution of the following optimization
problem:

maximize
1

k
· log(

k∏
i=1

f(oi|
−→p )) (2)

subject to −→p ∈ C (3)

where C is the domain set of the parameter vector.
Intuitively, MLE computes a value of −→p that maximizes
the likelihood that the set of k observations were indeed

7. Even if this assumption does not hold, MLE can still provide us
with the average trust on Jack’s UE during the k transactions of the
sample set.

the outcomes of k independent experiments. The event
that all the outcomes are jointly obtained translates to an
“AND” operation. This likelihood of the joint event is a
product of the conditional probability density functions;
maximizing this is equivalent to maximizing the sum of
the logs of the conditional density functions. Note here
that MLE can also deal with heterogeneous data; obser-
vations are drawn from the same distribution family but
some, known, parameter of this family can be different
across the different samples. The interested reader can
find more information on MLE techniques in [13].

Thus, returning back to the trust assessment problem,
the BS’s trust on Jack’s UE is obtained as the solution to
the optimization problem:

max
t
j

Jack

1

k
·

k∑
i=1

log(fi(oi|t
j
Jack)) (4)

tjJack ∈ [t̂Jack, 1] (5)

where tjJack is the estimate of Jack’s trust, based on
sample set j. Given −→oj , the trust in Jack cannot be
smaller than the percentage of successful transactions in
−→oj . When −→oj = �, t̂Jack captures the non-zero probability
that all packets sent to Jack in the sample window are
dropped because of wireless induced failures. This prob-
ability is tied to the event of having no knowledge about
Jack’s trust (details are provided in the Supplementary
Material). Thus, t̂Jack is given by:

t̂Jack =

{
(
∑k

i=1 oi)/k if −→oj �= �
(
∏k

i=1(1 − ps,i))/2 if −→oj = �
(6)

Considering one sample set j and solving the cor-
responding MLE problem, the BS obtains an estimate
˜tjJack. We do not use this value directly. Instead we
use an exponential weighted average over recent sample
sets to compute a trust value for Jack. We use a sliding
window approach to assign observations to sets. That is,
the first sample set consists of the observations (packet
transmissions) indexed by {1, 2, ..., k}, the second sample
set consists of the observations {2, 3, ..., k+1} and so on.
By using sliding windows (rather than non-overlapping
ones), TPF is rendered robust, in the sense that it does
not need to wait for a large period of time before
obtaining additional sample sets for the estimation of
Jack’s trust. Waiting for k more additional observations,
could required plenty time (depending on the value of k,
the density of the users as well as the traffic patterns in
the network) and could render older sample sets stale.
After obtaining the estimation from the jth sample set
the assessed value for Jack’s reporting trust is updated
using the following equation:

tjJack = β · tj−1
Jack + (1− β) · ˜tjJack (7)

Note here that our model (Equation (1)) incorporates
only one parameter. This is enough to cover all cases
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of misreports (Table 3). For instance, when Jack is acting
selfishly, even if the NACK reported is correct, the packet
reception would not have failed if he had reported the
actual CQI. Thus, our framework will impose a reduc-
tion in ti,Jack. Similarly, when Jack aims to cause DoS,
reporting many NACKs, (regardless of the correctness of
the CQI report) will cause a degradation in ti,Jack due
to the “failed” observations.

4.2 Trustworthy Proportional Fair scheduler
We now examine how to use the trust estimation to
improve the PF scheduler. In particular, we scale the
scheduling priority value for Jack’s UE using tjJack:

p∗Jack(t) = t
j(t)
Jack ·

CQIJack(t)

AJack(t− 1)
(8)

where the superscript j(t) denotes that the estimation
of the trust on Jack’s UE as per Equation (7) is done
using all complete sample sets until time t. Observe
that in effect the scheduler reduces all priority values
(since for all users u, t

j(t)
u ≤ 1), but the reduction

is greater for untrustworthy users (with small t
j(t)
u ).

Only completely trustworthy users experiencing perfect
channel conditions, i.e., those with t

j(t)
u = 1, will not

observe a reduction in priority.
As it might be clear from the above discussion the

trust value of a well behaved user who experiences
packet losses due to wireless induced effects can de-
grade. Nevertheless, our evaluations indicate that this
reduction is not critical, since every user is susceptible
to similar losses. Thus, under benign conditions the trust
values of all users are very similar, retaining the relative
priorities of users unchanged. Consequently, there is no
performance degradation in benign settings.

5 EVALUATIONS
In order to quantify the effects of misbehaviors and
evaluate our proposed scheme, we implement a discrete
event simulator in MATLAB. The design of the simulator
and the choice of the various physical layer parameters
are based on the studies presented in [8], [14] and [15],
as well as on the 3GPP standard (e.g., [16] and [9]).

5.1 Simulation Environment
Since we are interested in examining the robustness
of the scheduling mechanism, the simulator does not
implement higher layer functionalities (e.g., transport
layer). We consider a single cell and for each UE we sam-
ple its distance from the BS from a uniform distribution
U (see Supplementary Material). Using the lognormal
shadow fading propagation model [17] [18] — briefly
described in the following — we estimate the received
power at the UE from the BS. Assuming a constant intra-
and inter- cell interference, we can estimate the SINR and
consequently, we compute the CQI. We further develop a
measurement-driven model, to capture and incorporate

in our simulator the temporal variations of the CQI
values. We use the CQI-TBS mapping of Category 7/8
of UE to decide on the transmission block size [9]. Note
here that, for the purpose of our study the actual block
sizes used (i.e., the actual category and consequently the
transmission rates) are not of great importance since we
are mainly interested in the medium access opportunities
of each user.

Propagation Model: In order to calculate the received
power Pr at distance r with transmission power P we
use the lognormal shadow fading model. In particular,
the model computes Pr as follows:

Pr =
P

rα
· Y, (9)

where α is the path loss exponent and Y is a random
variable that is log-normally distributed. The random
variable Y models the shadow fading effects and it has
a mean value of one and a standard deviation equal to
the shadow fading variation. The above model has been
shown to be reasonably accurate [17], [18]. The details of
our measurement-driven temporal model are provided
in the Supplementary Material.

5.2 Simulation Results
In Section 3 we have quantitatively described the mis-
reporting behaviors and their effects. In the following
we quantify the extent to which the normal network
operations are disrupted from such behaviors, and the
network gains possible from our solution. Furthermore,
it is crucial to make sure that there are no “side effects”
accompanying TPF, that is, unwanted degradation under
benign settings. Finally, we are interested into examin-
ing the accuracy of our trust assessment scheme as a
stand-alone module, since this inference engine can be
possibly integrated with other network functionalities in
the future that require a trust estimation.

The effect of misbehaviors on PF scheduler: Our
first set of evaluations aims at quantifying the effect
of the different types of misreporting behaviors on the
PF scheduler which incorporates no trust features. We
perform simulations with 100 users in total, varying
the number of misbehaving nodes. We simulate 20000
timeslots. We examine the performance of PF sched-
uler under different types of behaviors. In particular,
we examine the various combinations of correct/fake
CQI/ARQ reports. For the ARQ reports, a misbehaving
UE (say Jack’s) with pre-defined trust x has the following
choices: (i) always transmit a NACK, (ii) always transmit
the correct feedback (e.g., selfish behavior), or (iii) trans-
mit a NACK with probability x (without considering the
actual outcome of the downlink transmission). For the
CQI reports, Jack either reports the real link quality or
decides on a fake CQI based on the operations presented
in Section 3.1.

Figure 1 presents the percentage of timeslots occupied
by the set of misbehaving nodes. As one can observe
under benign settings, the set of “misbehaving” nodes
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Fig. 1. Misreporting UEs can
obtain a large - unfair - number
of timeslots.
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Fig. 2. TPF contains the effects
of misbehaving UEs.
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Fig. 3. Under benign settings
the packet losses due to wireless
effects affect the mean trust of all
UEs to the same degree.
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Fig. 4. Misbehaving users exhibit significantly lower trust as compared to well behaved ones.

obtain their fair share of the medium as expected.
However, when these nodes deviate from the expected
behavior they can obtain a significant portion of the
time slots, causing starvation to the rest of the users.
Surprisingly, the most devastating attacks include re-
porting the correct CQI information. When reporting
the actual link quality, the update in the throughput
Ai is lower as compared to the case when the reported
CQI is high. Thus, the priority values of the malicious
nodes do not significantly decrease. In other words, the
increase in the current priority value of a malicious
user is smaller as compared to its consequent reduction
due to the throughput update. Reporting fake CQI and
always NACK leads to high degradation as well, since
every time a malicious user is scheduled, he occupies
Lmax timeslots (Lmax=3 in our case. For details see the
Supplementary Materials). The extent of the effects is
larger as the number of misbehaving nodes increase, as
one might have expected.

In this work, we have mainly focused on malicious
UEs that perform DoS attacks. It is also interesting to
consider selfish users, whose goal is to increase their
throughput as mentioned before. A selfish UE reports
fake CQI (to increase his priority) but correctly reports
the ARQ feedback, since it is not interested in retransmis-
sion of correctly received packets. As we observe from
Figure 1 such UEs are able to obtain an unfair share of
the time slots as well. However, a key question is: “Are
these slots successful in delivering data?” Table 4 shows

the fraction of the obtained timeslots from the selfish
user(s) that were used for retransmissions. Essentially,
this number is representative of the packet loss rate
over the time slots obtained from the selfish users. Even
though the selfish users are able to be scheduled in more
timeslots than what is dictated from their fair share,
these timeslots are wasted since no new or actual data
are received.

Fraction of selfish users Fraction of obtained slots
used for retransmissions

0.01 0.8246
0.05 0.9485
0.1 0.9446
0.2 0.8867
0.3 0.8996
0.4 0.8676
0.5 0.8783

TABLE 4
Selfish users waste many time slots for retransmissions

The above results should have been expected from our
discussion in Section 3.1. In particular, the reported link
quality is much higher as compared to the actual one.
Hence, to reiterate, the BS transmits a larger TBS than
the one that can be sustained at the downlink, resulting
in packets in error. Therefore, reporting higher CQI
values is not beneficial for the selfish users; while it
increases their service time, it significantly degrades their
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throughput due to high rate transmissions.
Before examining the performance of TPF, we would

like to connect the above results with our qualitative
description in Table 3. In particular, we see that when
the malicious UE adopts a “Correct CQI - Fake ARQ”
policy, its effect is the severest, regardless of whether the
fake ARQ is probabilistic or not. Furthermore, the case
of both fake CQI and fake ARQ attack has also severe
effects on the network, while the most mild threat, is
the selfish behavior (“Fake CQI - Correct ARQ” report).
Nevertheless, note here that even with the latter, the
selfish UE can still obtain a very large fraction of time
slots, leading legitimate users to starvation.

TPF’s performance: Regardless the objectives of the
misbehaving nodes (i.e., DoS or higher throughput) pro-
viding fake reports leads to the starvation of the well
behaved UEs as seen from the above results. In the
following we want to examine the performance of TPF
both under benign settings as well as under the presence
of misbehaving users. Using the same simulation setup
as above we obtain Figure 2.

Let us first examine how TPF fares under benign
operations. As alluded to above, packet losses due to
wireless induced effects can reduce our trust on the
UE. In spite of that, we observe that this does not
affect the performance of the scheduler under benign
settings. In particular, the nodes obtain their fair share
in terms of timeslots. Since every UE observes packet
losses with similar probabilities (recall that the BS’s select
transmission rates and packet sizes with the goal of
achieving a successful packet reception with probability
0.9), all of them observe similar degradation of trust.
Figure 3 presents the average trust of each user under
benign settings. As we can observe the packet losses due
to wireless effects reduce the trust of the UEs below
1, however they all exhibit similar values. Hence, the
priority values p are still dictated by the link quality and
the average throughput.

With regards to misbehaviors, TPF significantly con-
tains their impact in all cases. Malicious UEs cannot
obtain their fair share due to the significantly lower trust
values as compared with that of the legitimate users.
This translates to much lower priority values even with
fake CQI reports. Figure 4 depicts representative trust
time traces for a well behaved and a misbehaving node
for the different type of malicious strategies.

As we can see the trust values of the malicious UE are
significantly lower over the simulation period. While the
initial state of the system is to “trust everyone”, the trust
value of the misbehaving users drops fast. Especially for
the case of an aggressive node with respect to the ARQ
feedback (i.e., always reporting a NACK), its trust values
are close to 0 for the whole period. A less aggressive
attack (i.e., probabilistically reporting a NACK) results
into oscillations of the assessed trust, since users obtain
credit for the ACKs reported. However, their overall
behavior leads to low priority values, resulting in the
mitigation of the attack.
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Fig. 5. Our trust assessment engine exhibits high accu-
racy.

Accuracy of our trust inference scheme: Next we
want to examine the accuracy of our trust assessment
mechanism. Every misbehaving node has an a priori
trust value associated with him (actual trust). Figure 5
presents the Cumulative Distribution Function (CDF) of
the difference between the mean value of the assessed
trust t̄ of a user and his actual trust t∗, d = t̄− t∗.

For the majority of the cases (> 95%), the absolute
value of d is less than 0.1. Especially for the cases of
aggressive misbehaving nodes — reporting always a
NACK — the inference engine can estimate the trust
value with extremely high accuracy (e.g., d ≈ 0 with
high probability). The observations serving the input to
the MLE framework are consistent in this case (always 0)
and this drives the inferred trust to low values. For the
cases of more mild misbehaviors — probabilistic ARQ
feedback — the occasional positive observations (i.e.,
ACK reports) confuse the estimation mechanism and thus
the accuracy is slightly reduced. Nevertheless, note here
that the accuracy is still high as it can be deduced from
our results; indeed, the difference is less than 0.2 with
probability more than 90%, and rarely more than 0.25.

6 CONCLUSIONS
In this work we study a broad class of reporting misbe-
haviors in cellular networks. The PF scheduler utilized
by the network expects correct feedback from each user
with respect to (i) the downlink quality and (ii) the suc-
cess or failure of the downlink transmissions. Currently,
the scheduler blindly trusts these reports from the UEs.
We have shown that this opens a security backdoor for
malicious users who can manipulate these reports. We
analyze the impacts of various types of misbehaviors,
both qualitatively and quantitatively and we propose a
variation of the scheduler called TPF that integrates a
trust module to mitigate the impacts. The trust mod-
ule utilizes well established statistical frameworks for
inferring the reporting trust of each user and scaling his
priority values for scheduling downlink transmissions
accordingly. Our evaluations indicate that the accuracy
of our assessment scheme is high; the absolute differ-
ence between the estimated and the real trust value is
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smaller than 0.1 for 95% of the cases examined. TPF is
further shown to be capable of completely mitigating the
adversarial effects, while not degrading the performance
under benign settings.
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