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The minimum weight Steiner tree (MST) is an important combinatorial optimization problem over
networks that has applications in a wide range of fields. Here we discuss a general technique to translate
the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation
techniques. This approach leads to a new optimization algorithm for MST and allows us to analyze the
statistical mechanics properties of MST on random graphs of various types.
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Given a graph or a lattice, finding a subgraph that
optimizes some global cost function is an important prob-
lem in many fields. One of the most basic versions of this
is known as the minimum weight Steiner tree (MST)
problem.

Given an undirected graph with positive weights on the
edges, the MST problem consists in finding a connected
subgraph of minimum weight that contains a selected set of
‘‘terminal’’ vertices. Such construction may require the
inclusion of some nonterminal nodes which are called
Steiner nodes. Clearly, an optimal subgraph must be a
tree. Solving MST is a key component of many optimiza-
tion problems involving real networks. Concrete examples
are network reconstruction in biology (phylogenetic trees
and regulatory subnetworks), Internet multicasting, cir-
cuit design, and power or water distribution networks
design, just to mention few famous ones. MST is also a
beautiful mathematical problem in itself which lies at the
root of computer science being both NP complete [1] and
difficult to approximate [2]. In physics the Steiner tree
problem has similarities with many basic models such as
polymers, self-avoiding walks, or transport networks (e.g.,
[3]) with a nontrivial interplay between local an global
frustration.

Here we show that the cavity approach of statistical
physics can be used to both analyze and solve this problem
on random graphs (as, e.g., [4–6]) once an appropriate
representation is chosen. We actually study the even more
general (and eventually harder) D-MST problem in which
we consider the depth of the tree from a root terminal node
to be bounded by D. Unfortunately the traditional tech-
niques for studying topologically connected structures, as
for instance the so-called O�n� model, are incompatible
with the cavity method. We provide here instead an arbor-
escent representation of the Steiner problem which allows
us to implement explicitly global connectivity constraints
in terms of local ones.

In recent years many algorithmic results have appeared
showing the efficacy of the cavity approach for optimiza-
tion and inference problems defined over both sparse and
dense random networks of constraints [4–9]. These per-

formances are understood in terms of factorization prop-
erties of the Gibbs measure over ground states, which can
be also seen as the onset of correlation decay along the
iterations of the cavity equations [10]. Here we make a step
further by presenting evidence for the exactness of the
cavity approach for a qualitatively different class of mod-
els, namely, problems which are subject to rigid global
constraints that couple all variables. Quite often this type
of global constraint is of topological origin and is common
to many problems across disciplines [e.g., the traveling
salesman problem (TSP) in computer science or self-
avioding walks in physics].

Our work addresses two questions: by analyzing the
distributional equations we provide the phase diagrams
of the problem in the control parameters � and D, where
�N is the number of terminals in a graph of N vertices
and D is the allowed depth of the tree from a randomly
chosen root. We compute quantities like the behavior of
the minimum cost as a function of D for a given fraction �
of terminals, or the number of Steiner nodes cNs where
both c and the exponent s depend on D and �. Such
quantities are of extreme interest in that they are directly
connected with the topology of the tree. For instance, for
the case of complete graphs with random weights we find
that an extremely small depth DN is sufficient for reach-
ing costs which are close to optimal ones for the un-
bounded trees [e.g., for the complete graph with random
weights we find that DN � loglogN is sufficient to reach
asymptotically a cost close to the optimal one ��3� [11,12]
of the minimum spanning tree which has depth ��N1=3�
[13] ]. For finiteD the results of the cavity approach can be
compared with rigorous upper and lower bounds [14]
making us conjecture that the cavity approach is exact,
as it happens for random matchings [15]. Similar results
hold for other classes of random graphs. Here we give
results for fixed degree and scale-free graphs, for which
some nontrivial patterns of solutions for optimal Steiner
trees appear.

On the algorithmic side, the arborescent representation
of the problem leads to cavity equations that can be turned
into an algorithm for solving single instances.
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Very few results are known on the Steiner problem on
random graphs in the regime in which � is finite. For the
complete graph with random weights some upper and
lower bounds for the minimum cost have been derived
[16], which are compatible with those predicted by the
cavity method. For finite degree random graphs (e.g.,
Erds-Rnyi, fixed degree or scale-free graphs) much less
is known.

The model.—We model the Steiner tree problem as a
rooted tree (such a construction is often associated with the
term ‘‘arborescence’’). Each node i is endowed with a pair
of variables (pi, di), a pointer pi to some other node in the
neighborhood V�i� of i and a depth di 2 f1; . . . ; Dg defined
as the distance from the root. Terminal nodes must point to
some other node in the final tree and hence pi 2 V�i�. The
root node conventionally points to itself. Nonroot nodes
either point to some other node in V�i� if they are part of
the tree (Steiner and terminal nodes) or just do not point to
any node if they are not part of the tree (allowed only for
nonterminals), a fact that we represent by allowing for an
extra state for the pointer pi 2 V�i� [ ;. The depth of the
root is set to zero, di � 0 while for the other nodes in the
tree the depths measure the distance from the root along the
unique oriented path from the node to the root.

To impose the global connectivity constraint for the tree
we need to impose the condition that if pi � j then pj � ;

and dj � di � 1. This condition forbids loops and guar-
antees that the pointers describe a tree. In building the
cavity equations (or the belief propagation equations),
we need to introduce the characteristic functions fij
which impose such constraints over configurations of
the independent variables (pi, di). For any edge (i, j)
we have the indicator function fij � gijgji where gjk �
�1� �pk;j�1� �dj;dk�1���1� �pk;j�pj;;�.

Cavity equations.—The cavity equations take the form

 Pj!i�dj; pj� / e
��cjpj

Y

k2jni

Qk!j�dj; pj� (1)

 Qk!j�dj; pj� /
X

dkpk

Pk!j�dk; pk�fjk�dk; pk; dj; pj� (2)

where cij is the weight of the link (i, j), with ci; � 1
if i is a terminal. The / symbol accounts for a mul-
tiplicative normalization constant. Allowed configura-
tions are weighted by e��cij where ��1 is a temperature
fixing the energy level. The zero temperature limit is
taken by considering the following change of variables:
 j!i�dj; pj� � ��1 logPj!i�dj; pj� and �k!j�dj; pj� �
��1 logQk!j�dj; pj�. In the �! 1 limit Eqs. (1) and (2)
reduce to

  j!i�dj; pj� � �cjpj �
X

k2jni

�k!j�dj; pj�; (3)

 �k!j�dj; pj� � max
dk;pk: fjk�dk;pk;dj;pj��0

 k!j�dk; pk�: (4)

The previous two equalities must be understood to hold
except for an additive constant. Equations (3) and (4) are in
the so-called ‘‘max sum’’ form.

On a fixed point, one can compute marginals  j:

  j�dj; pj� � �cjpj �
X

k2j

�k!j�dj; pj� (5)

and the optimum tree should be given by arg max j.
If the starting graph is a tree  j!i�dj; pj� can be inter-

preted as the minimum cost change of removing a vertex j
with forced configuration dj, pj from the subgraph with
link (i, j) already removed. We introduce the variables
Adk!j	maxpk�j;; k!j�d;pk�, B

d
k!j	 k!j�d;;�, C

d
k!j 	

 k!j�d; j�, Dk!j � maxd maxfAdk!j; B
d
k!jg, and Edk!j �

maxfCd�1
k!j; Dk!jg. This is enough to compute

�k!j�dj; pj� � A
dj�1
k!j , Dk!j, E

dj
k!j for pj � k, pj � ;,

and pj � k, ; respectively. Equations (3) and (4) can
then be solved by repeated iteration of the following set
of equations:

 Adj!i�t�1��
X

k2jni

Edk!j�t��max
k2jni
fAd�1

k!j�t��E
d
k!j�t��cjkg;

(6)

 Bj!i�t� 1� � �cj; �
X

k2jni

Dk!j�t�; (7)

 Cdj!i�t� 1� � �cij �
X

k2jni

Edk!j�t�; (8)

 Dj!i�t� � max�max
d
Adj!i�t�; Bj!i�t��; (9)

 Edj!i�t� � max�Cd�1
j!i �t�; Dj!i�t��: (10)

For graphs without cycles the above equations are guar-
anteed to converge to the optimal solution. In graphs with
cycles, these equations may instead fail to converge in
some cases. For the classes of random graphs studied in
this work, this appears not to be due to a replica symmetry
breaking instability but rather to the effect of local struc-
tures in the underlying graph (as it is known to happen in
simpler problems such as random matchings [17]). This
observation is corroborated by the analysis of the distribu-
tional cavity equations discussed later. While more work is
needed to understand this point, from the algorithmic view-
point the problem can be overcome by applying a small
perturbation [6]. The term  j�dj; pj� of Eq. (5) multiplied
by a (small) constant � is added to the right-hand side of
Eq. (3). This leads to a set of equations which show good
convergence properties for vanishing �.

An equivalent formulation of the problem can be con-
structed by introducing a link representation of the pointer
variables (one may introduce link variables xij � 0, 
1, 0
if i does not point j, 1 if i points j, and�1 if j points i). In
this representation, the number of states of the independent
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variables is just 3D, which can be kept finite for complete
graphs or at most of order logN for sparse graphs.

Distributional equations and average case analysis.—
Population dynamics (or density evolution) is a powerful
tool to solve distributional equations that deal with a large
number of random variables. In the physics community the
method was introduced in [18] for the study of spin glass
models on diluted random graphs. Population dynamics is
useful especially when the equations involve sums over
many states of the variables. The underlying idea is to
represent probability distributions with a population of
random variables and use the equations to update such
populations. After a suitably large number of updates the
histogram of variables in the population will converge to a
stable distribution.

To obtain results on the N ! 1 limit one would need to
rescale simultaneously all d-dependent quantities in order
to eliminate their direct dependence on N in Eqs. (6)–(10).
We limited, however, ourselves here for all cases analyzed
to large but finite N, in particular, because the obviously
needed dependence of D on N for finite degree graphs
makes this task even more involved.

We will apply the population dynamics method to find
the statistical properties of the cavity fields Mi!j �

�Adi!j; Bi!j; C
d
i!j; Di!j; E

d
i!j� in Eqs. (6)–(10). Given an

ensemble of random graphs we will find the probability
distribution of these fields from which we will derive the
quantities of interest, namely, the average minimum cost
and average number of Steiner nodes as a function of N,
in the so-called Bethe approximation which is implicit
in the cavity approach. The method proceeds by initializ-
ing at random a population of field vectors Ma �
�Ada; Ba; Cda; Da; Eda� with a 2 �0; Np� and d 2 �0; D�. The
first member M0 represents messages sent by root.
Members with label a � 1; . . . ; Nt represent messages
sent by terminal nodes. Here Nt � �Np where � � K=N
is the fraction of terminal nodes. Then the population
dynamics algorithm works by updating the population
using Eqs. (6)–(10) until convergence is reached. For
brevity, we omit the details of this procedure. Once con-
vergence is reached, marginals  a�d; p� can be computed
using Eq. (5). The state (d�, p�) that maximizes the local
marginal gives the energy contribution of the ath member.
If p� � ; and Nt < a, then a is a Steiner member. Finally
the minimum cost reads E � Ket � �N � K�es where et
and es are the average energy of terminal and Steiner
members. The fraction of Steiner members in the popula-
tion will give the fraction of Steiner nodes in the ensemble
of random graphs.

In Figs. 1–3 we display numerical results for three
classes of random graphs, namely, complete graphs, finite
connectivity random graphs, and scale-free graphs. We first
verify a quite remarkable agreement between the output of
the algorithm which finds Steiner trees on given random
instances with the outcomes of the population dynamics
averaged over the randomness. In Figs. 1 and 2, we esti-

mate the dependence on the depth D of the minimum cost
and of the size of the Steiner set nodes. For complete graph
with random weights we are able to provide an accurate
estimate of the scaling exponents which for � � 1 are
compatible with rational exponents predicted by rigorous
analysis [14]. Moreover, we observe a very rapid decrease
of the minimum cost with D, compatible with N1=�2D�1�.
This suggests that very few ‘‘hops’’ (� log logN) are in-
deed sufficient to reach optimal costs. From a qualitative
point of view we observe a nontrivial dependence onN and
� of the size of the Steiner set. The size itself turns out to
be sublinear, with a rational exponent that depends on D.
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FIG. 1 (color online). D-MST on complete graphs. Left:
Minimum cost (at � � 0:5) and fraction of Steiner nodes (for
N � 8000) as a function of D. Right: Comparison of population
dynamics with the algorithm on single samples for various
values of N at � � 0:5. Fits are in very good agreement with
known bounds.
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FIG. 2 (color online). Fixed degree (FD) and scale-free (SF)
graphs. Left: Minimum cost as function of � for different values
of D. Right: Fraction of Steiner nodes as a function of �. The
FD graphs have degree C � 3 and size N � 106. The SF graphs
have exponent � � 3 and size N � 104.

PRL 101, 037208 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JULY 2008

037208-3



For fixed N there appears a maximum for relatively small
values of �. For the scale-free graphs there appears an
additional cuspidlike minimum. Finally, in Fig. 3 we pro-
vide the probability distribution of optimal weights for all
classes.

We conclude this Letter by mentioning the connection
with rigorous results. For the case of bounded depth trees
on complete graphs our numerical results show that the
cavity equations are indeed consistent with known bounds.
As discussed in [14], the analysis of a simple greedy
algorithm and a Chernoff-type bound lead to upper and
lower bounds for the minimum cost that are able to identify
the exact scaling exponent and to give bounds for the
prefactors. More precisely, it can be shown that the average
minimum ED grows with the size as N1=�2D�1�. The case
D � 2 and � � 1 is particularly easy to understand: the
greedy algorithm amounts to choosing a first set of N1

nodes at depth 1 by selecting the N1 links with smallest
weights. Successively the remaining N � N1 nodes at
depth 2 are connected to the first layer by choosing the
smallest weight for each node. By optimizing over the size
of N1 one finds for the average minimum cost E2 �

3
2N

1=3

(a naive guess may give an exponent 1=2 instead of 1=3).
Comparisons with the cavity approach for small D show
that indeed the exponent is 1=�2D � 1� as it should and that
there exist a constant additional (negative) term to the
minimum cost which improves over the greedy algorithm.
Table I shows the results of a power law fit to our data for
the average minimum cost and number of Steiner nodes as
a function of N. ForD � N � 1 and � � 1 it is possible to
prove using techniques based on the computation tree that
if the BP equations converge, then the result is optimal.
Details about these results and hopefully about their ex-
tensions to the �< 1 case will be given elsewhere. Work is

in progress to apply the algorithmic scheme we have
presented to clustering, network reconstruction, and pro-
tein pathways identification problems.
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TABLE I. Comparing the exponents and prefactors for com-
plete graphs. The parameters have been obtained by fitting data
to a� bxc. In all the data N � 8000. Values in the parenthesis
are known analytical results.
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FIG. 3 (color online). Weight distribution of the MST for
complete graphs of size N � 8000 at � � 0:5. Inset: For FD
graphs of degree C � 3 (N � 106) and SF graphs of exponent
� � 3 (N � 104) with parameters D � 25, � � 0:5.
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