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ABSTRACT

It is important and challenging to make the growing image re-
positories easy to search and browse. Image clustering is a tech-
nique that helps in several ways, including image data preproc-
essing, user interface designing, and search result representation.
Spectra clustering method has been one of the most promising
clustering methods in the last few years, because it can cluster
data with complex structure, and the (near) global optimum is
guaranteed. However, existing spectral clustering agorithms, like
Normalized Cut, are difficult to handle data points out of training
set. In this paper, we propose a clustering algorithm named Local-
ity Preserving Clustering (LPC), which shares many of the data
representation properties of nonlinear spectral method. Yet LPC
provides an explicit mapping function which is defined every-
where, both on training data points and testing points. Experi-
mental results show that LPC is more accurate than both “direct
Kmeans’ and “PCA + Kmeans’. We a so show that LPC produces
in general comparable results with Normalized Cut, yet is more
efficient than Normalized Cut.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval —Clustering; 1.4.m [Image Processing and Com-
puter Vision]: Miscellaneous —I mage Clustering.

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Locality preserving clustering, Locality preserving projections,
Spectral clustering, Image clustering

1. INTRODUCTION

Image repositories are growing rapidly nowadays. It is important
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and challenging to make the repositories easy to search and
browse. Image clustering is atechnique that helpsin severa ways.
For example, image clustering can be used as a preprocessing step
that improves the speed and performance of content-based image
retrieval (CBIR) [7]. For users who want to browse image data-
base, hierarchical clusters of images will be useful for designed a
convenient user interface (Ul) [13]. Even in powerful search en-
gines, image clustering will help to make more meaningful repre-
sentation of query results[3].

Image clustering is a technique that associates each image in da-
tabase with a class labd such that the images associated with the
same label are similar to each other. Traditiona clustering meth-
ods (such as Kmeans, Gaussian Mixture Model (GMM), etc) used
in image clustering often get poor results in complex data, e.g.
data points sampled from a non-linear manifold. Image database
might be one of such examples because images with different
concepts are generally not well-separated using traditiona clus-
tering methods. The reason why traditional methods failed is that
the typical Gaussian distribution (or mixture of Gaussian distribu-
tions) is defined on the Euclidean space, and hence it can not al-
way's describe the data points sampled from a non-linear manifold.
Note that, Parzen window [5] might be an exception, but it re-
mains unclear how to apply it for clustering. In order to deal with
such situations, spectral clustering method was proposed and has
been successfully used in several applications. For example,
Normalized Cut (NCut) [18] was used for image segmentation,
video structuring [13], scene detection [14], video segmentation
[16] and motion segmentation [17]. Ng et.a proposed a spectral
clustering algorithm that extends classicad Normalized Cut and
gets better results [12]. Although Laplacian Eigenmaps [1] is fo-
cused on embedding of manifold data rather than clustering, it is
easy to see that Eigenmaps is essentially equivalent to the embed-
ding step of Normalized Cut in the case of certain kernel (e.g.
Gaussian kerndl).

In spite of the success of Normalized Cut and Eigenmaps on
manifold data embedding and clustering, they can not provide us
with an explicit mapping function. Actually, when dealing with
new data points, similarities between the new points and &l train-
ing data are needed [2]. The computation of the similarities can be
very complicated due to the large size of training set. In order to
solve this problem, Locality preserving projections (LPP) was
proposed recently [8] and has bees used in document representa-
tion [1] and face recognition [10]. As a spectra embedding
method, L PP shares many of the data representation properties of
nonlinear methods such as Laplacian Eigenmaps. Yet LPP pro-
vides an explicit mapping function which is defined everywhere,
either on training data points and testing points.



An interesting modification of spectra clustering is the
out-of-sample extension [2]. Although the out-of-sample formula
seems to be more useful for supervised learning than traditional
clustering algorithm, it does help for spectral clustering. In fact,
the state-of-the-art spectra clustering algorithms involve two
steps, dimensionality reduction and traditiona clustering like
Kmeans. Out-of-sample extension is crucial for dimensionality
reduction due to the saved computation. In detail, only the affini-
ties between each data point and the points in a subset of the data,
rather than the whole data set, are to be computed.

In this paper, we propose a clustering algorithm named L ocality
Preserving Clustering (L PC) which is a clustering method base on
modified LPP. Technically, LPP solves a generalized eigenvalue
problem, but the original L PP agorithm stated in [8] may mix true
solutions (eigenvectors) with pseudo solutions and the trivial so-
lution. We show that the pseudo solutions and the trivial solution
carry no useful information and thus waste the dimensions of
embedded results. In our version of LPP, these two kinds of use-
less solutions are well-handled, and a renormalization step is
added to improve the robustness of the algorithm. Theoretic
analysis is provided to show why modified LPP gives better and
more robust results. In the algorithmic framework, we treat LPP
as a feature selection method, and adopt a traditional clustering
method (Kmeans in this paper) in the resultant space of LPP. We
apply our methods on the problem of image clustering. Experi-
mental results show that LPC is more accurate than both “direct
Kmeans’ and “PCA + Kmeans’. We a so show that LPC produces
in general comparable results with Normalized Cut, yet is much
faster than Normalized Cut.

It would be worthwhile to highlight several aspects of our pro-
posed agorithm here:

® |LPCisdefined everywhere, but traditional spectral cluster-
ing are only defined on training data points. This implies
that clustering on incremental data points using LPC is
much straightforward and faster than using traditional spec-
tral clustering.

®  Asasgpectra method, the eigenvalue problem of LPC scales
with the number of feature dimensions, while the eigenvalue
problem of NCut scales with the number of data points. In
most of image applications, the number of images in data
base is much larger than the number of feature dimensions.
In this sense, LPC is much more efficient than NCut.

® Since LPC is designed for preserving local structure, it is
likely that the neighboring points in the low dimensional
space are also near to each other in the original high dimen-
siona space. So the clustering results of such data are
probably more reasonable than that of data generated by
PCA.

The rest of this paper is organized as follows: Section 2 describes
the proposed Locality Preserving Clustering (LPC) algorithm
which is based on modified LPP. Theoretic analysis of the modi-
fication is discussed in Section 3. The experimental results are
shown in Section 4, followed by the conclusion in Section 5.

2. LOCALITY PRESERVING CLUSTER-

ING (LPC)

Locality preserving clustering (LPC) is fundamentally based on
LPP and Kmeans clustering. The agorithmic procedure is stated
below:

ALcoriTHM 1. (LPC) Suppose we are given a set of M data points
with N-dimensional features  denoted by  matrix

Xuixn =[)(1v)(2-"'v)(M]T :

1. Constructing the adjacency graph (same as LPP): Let G
denote a graph with M nodes. We put an edge between
nodesi and j if i is among N nearest neighbors of j or j is
among N nearest neighbors of i.

2. Choosing the weights (same as LPP): Affinity matrix W is
a sparse symmetric matrix generated from Heat kernd: If
nodesi and j are connected, put

w :exp[—Xi —XjZJ (1)

3. Full-rank (additive): Calculate X , the orthonormal basis
of column space of [1 X ] ('span([1X])) using singular
value decomposition (SVD):

[1X]=XAV" 2)

where 1 denotes a column vector consisted of al one and
only the non-zero singular values are reserved in A . This
step resultsin alinear mapping function:

X, =% =ELo[1x | ELp =A™V ©)
4. Embedding (modified): Solve the following generalized
eigenvalue problem:
XTLXa=AX"DXa 4

Let the column vectors {&, -8y ,ar41, -3¢} be the top

(smallest) solutions of the above equation, ordered accord-
ing to their eigenvalues,

O=/71=~~~=}br<}br+1s~~~s/1t . Cdculate the or-
thogonal basis starting from 1, i.e. {al(z 1),-~-,ar} st.

span(a,,---,a, ) =span(a,,---,a ) . The embedding in
thisstep isasfollows:

X =Y, =EIPCXi'ELPC=[a2'a3"“'a‘t] (5)

The above two steps generate alinear embedding function:

X =Y, = ElocEdp I:l X! :IT (6)

5. Renormalization: Project the embedding into unit sphere.
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6. Clustering: Perform Kmeans on renormalized embedded
results{vj} .

3. THEORETICAL ANALYSIS

In this section we give the theoretical analysis of our algorithm.

3.1 Relation between L PP and Eigenmaps
LPP can be seen as generaized Laplacian Eigenmaps [1]. Lapla
cian Eigenmaps solves the generalized e genval ue problem of

Ly = ADy (8)

It is clear, according to definition of General Rayleigh Quotient,
the eigenvector corresponding to the least eigenvalue of (8) is
actually

T

Ly Ly
=argmin 9
yo=agmingers )
and thei-th eigenvector is
_y'Ly
y, = argmin (10)
yoy,-0,j<i Y’ DY
Given y=Xa, wefound that the solution of (4) is
_y'Ly
y, =argmin (11)
! ye span(X ) yT Dy
and thei-th eigenvector is
T
. L
y;= agmin y -y (12

yespan(X ),y Dy; =0, <i yT Dy
Thus (4) is actually solving (8) in subspace span( X ) .

3.2 Motivation of modified L PP

The original LPP [8] solves the eigenvalue problem without pre-
processing of data matrix:
XTLXa=AX"DXa (13)

It then constructs the embedding results by

X; =Y, :ATxi,A:(al,a2,~-~,q) (19)
This procedure probably causes two kinds of problems.

1. Pseudo solution: A regular condition of generalized sym-

metric eigenvalue problem of (13) isthat X" DX should
be positive definite. However this condition is not guaran-

teed when the column rank of X isnot full (rank(X)<N ).

Technically, when solving the broken-conditioned problem

using pseudo inverse of X" DX , there are somea#0, st.
Xa=0, which appear to be zero-eigenvectors during calcu-
lation. However, they are pseudo ones and bring no embed-
ding information, due to that the embedded coordinates of
the dimensions corresponding to aare al zero.

2. Near trivial solution: It is shown in literature of spectra
graph theory (e.g. [4]) that 1 isthe trivia eigenvector of
(8) associated with eigenvalue of 0, where 1 denotes the
column vector of al one. However, 1 is meaningless for
embedding, since the coordinates of all embedded data
points are identical in the dimension corresponding to 1.
The origina LPP (13) solve eigenvalue problem in span(X).
If 1 isnot perpendicular to span(X) and is not located in
span(X), the origina LPP probably produces some eigen-
vector a that is near trivial, i.e. Xa=1. Thisimplies that
the embedded coordinates along some dimensions are
dominated by constant components and carry little useful
information.

The modifications which we present in Algorithm 1 are designed
to avoid the problems mentioned above.

3.3 Justification of modified LPC
The two mgjor modifications of the algorithms are: @) 1 is ex-
plicitly introduced to feature space, i.e. [1X] is used instead of

[X]; b) X is enforced to be a column-full-rank col-

umn-orthogonal matrix. The column-full-rank property of X is

necessary because XTDX need to be positive definite. We can
further explain the significance of the modifications using the
following theorem.

ThHeorem 1. o the unique eigenvector a of eigenvalue prob-
lem (4) associated with eigenvalue of 0, st. Xa=1.

Proor. See Appendix.

Theorem 1 implies that the employment of [1X] extends the

space of optimization (see (11)) and brings 1 to the eigenspace
of (4) associated with eigenvalue of 0. In the Embedding step, we
reorganize the O-eigen-space st. 1 is the first egenvector.
Therefore the meaningless eigenvector 1 isexplicitly removed.

Note that L PP can be modified in different ways. For instance, He
et.a [10] applied Principle Component Analysis (PCA) on X be-
fore conducting LPP. In their strategy, by subtracting the mean
from X, 1 isorthogona to span(X). That avoids the “near trivia
solution” problem. Further more, by preserving only a mgjority of
information, say 98%, the remains is full-ranked. That avoids the
“pseudo solution” problem. Nevertheless, it should be mentioned
that such strategy does not guarantee optimal embedding. Thisis
explained as follows.

THEOREM 2. Given data matrix X, suppose X is the results of
PCA on X that subtracts the mean and keeps 100% information.

X is set as (2). Denote span()?“):llmspan()?). The

solution of LPP on )2 is



T

y, = argmin yT Ly (15)
yespan(X) Y Dy
and
.
n . L
= agmin Y2 (16)

-
yespan(X)y'0y,=0,j<i Y DY

ProorF. It is easy to prove from the definition of General Rayleigh
Quotient.

Comparing Y,;,, and 9i from Equation (11-12) and (15-16), it
is clear that they are optimizing different criterion. They become
the sameif and only if D=cl with | theidentity matrix.

The justification of orthogonalization (2) is to improve numerical
precision. If X is far from column-orthogonal, the generalized
eigenvalue problem will be ill-posed. That will increase the time
of convergence or/and reduce the precision [5].

The last but not least modification is to perform renormalization
before further clustering. It is shown by Andrew Y. Ng, et.al that
renormalization of embedded results helps when the intra-cluster
connection degree varies across clusters [ 12]. Experimental results
show that it also works on LPC.

4. EXPERIMENTS

We have designed three kinds of experiments and the results show
the effectiveness of our proposed a gorithm. Some other methods
are implemented for comparison, i.e. Normalized Cut, PCA +
Kmeans and direct Kmeans.

4.1 Data Corpora

We test the agorithms on a general-purpose image database, in
which 79 categories of COREL are included. The image number
included in each category is between 100 and 300, and the total
number of image is 10,000. Each COREL category was treated as
a human-labeled cluster and is used as groundtruth for our clus-
tering task, while the multiple labels assigned with each images in
the original CDs are ignored. Some sample images are shown in
Figure 1.

Image feature used in our experiments is the union of color histo-
gram and Color Texture Moment (CTM) proposed by Yu et.d
[19]. CTM is a 48-dimensional feature that integrates the color
and texture characteristics of an image in a compact form. The
color histogram is calculated using 4*4*4 binsin HSI space. Thus
an 112-dimensional feature vector is used for each image. The
feature vector is normalized s.t. each image has a feature vector of
norm 1.

4.2 Evaluation metric

We test the algorithms on severa different subsets of the database.

Each subset is a mixture of k randomly selected categories. For
each experiment, mixed images together with the cluster number k
are provided to the clustering algorithms, and the performance is
evaluated by comparing the cluster labd of each image given by
algorithm with the groundtruth. Two metric, the accuracy (AC)

Figure 1. Sample images of some categories from
data corpora. One row for each category. Category
names ar e (from top to bottom): “ Antelope’, “Bus”’,
“Couples’, “Firework”, “Horse”, “Men”, “Pyra-
mid”.

and the normalized mutual information (M1 ), are used for evalu-
ation. They are defined as follows. Suppose that r; is the clustering
result of agivenimagel; and g; is groundtruth, AC is defined by:

35(g,mep(r))
AC — i=1 (15)
n

where n denotes the total number of images in this experiment,
d(x,y) is the delta function that equals 1 if and only if x=y.
map(r;) is the best mapping function that permute clustering labels
to match the labels given by groundtruth. The Kuhn-Munkres
algorithm can be used to obtain best mapping [11].

On the other hand, given clustering result R = r; with the ground-
truth G = g;, and denote Cy = Range(R) , C_, = Range(G) , the
mutua information between them is defined by:

p(s.t)
p(s)p(t)

where p(s), p(t) denote the probabilities that an arbitrary image in
the subset belongs to the clusters s (in cluster result) or t (in
groundtruth), respectively. p(s,t) denotes the joint probability that
this image belongs to the clusters s and t at the same time. Sup-
pose H(R) and H(G) denote the entropies of p(s) and p(t). MI(R;G)
varies between 0 and max(H(R);H(G)). We use normalized mu-
tual information MI asthe second metric.

MI(RG)= > p(st)log,

s=Cr teCq

(16)
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Figure 2. Clustering results comparison
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Y-axis — Accuracy(a) or Normalized mutual
information(b).
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It is obvious that the normalized mutual information MI takes
values in [0; 1]. It reaches 1 if the clustering result is identical
with the groundtruth, and becomes 0 if the clustering result is
independent with the groundtruth. Unlike AC, MI is invariant
with the permutation of labels. That isto say, MI does not need
matching the clustering result and the groundtruth in advance.

4.3 Image Clustering
The first experiment is designed to compare the performance of
four algorithms:

1. Direct Kmeans. Kmeans is performed directly on the
112-dimensional feature vectors.

2. PCA + Kmeans: PCA is firstly performed on the festure
vectors. The reduced dimension of PCA is set to the minimal
number that preserves at least 95% of the information. This
number is about 40 for the 112- dimensiona features. Then
Kmeansis performed on the embedded data.

3. LPC: Asdescribed in Algorithm 1. The affinity matrix Wis
constructed using N nearest neighbors with N=10. We

-5 NCut
£ LPC
0.851 —¥- PCA + Kmeans

Eg\ Direct Kmeans.

Accuracy

Number of clusters

(a) Accuracy

=k PCA + Kmeans
Direct Kmeans

Mutual Info
°
S
&

0.4

Number of clusters

(b) Normalized Mutual Information

Figure 3. Generalization capability comparison
among NCut, LPC, PCA + Kmeans, and direct
Kmeans. 70% data are used for training; all 100%
data points are used for clustering; the precision of
test data (the rest 30%) are shown in the figures.
X-axis — number of clusters; Y-axis — Accuracy(a)
or Normalized mutual information(b).

empirically choose the reduced dimension equal to (cluster
number - 1).

4, Normalized Cut: Ng's version of Normalized Cut is used
[12]. The affinity matrix W is defined exactly in the same
way as LPC. The reduced dimension is equal to cluster num-
ber.

The cluster number k varies between 2 and 10, and is provided
along with the data to all four agorithms, . For each cluster num-
ber k, 100 subsets are randomly selected from the corpora. All
four algorithms are performed on each subset and their average of

AC and MI are caculated over the 100 subsets. The compari-
son of performance is shown in Figure 2, and one example of
clustering result of k=7 is shown in Figure 5.

It can be seen from Figure 2 that LPC outperforms “PCA +
Kmeans’ and “direct Kmeans’. At the same time, we note that the

reduced dimension of LPC (= 2; ---; 10) is greatly less than that

of PCA (= 40) and direct Kmeans (= 112). Kmeans for LPC is
thus much faster than Kmeans for PCA or direct Kmeans. The
performance of LPC approaches that of Kmeans when the number
of clustersincreases. Thisis because it is more and more unlikely
to be linearly separable with the increases of cluster number,
which indicates the limitation of linear projection.
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Figure 4. Clustering Results improvement
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Y-axis — accuracy(a) or normalized mutual
information(b).

As can be seen from Figure 2 that LPC has lower performance
than Normalized Cut. Since LPC is LPP + Kmeans and Normal-
ized Cut is Eigenmaps + Kmeans, this result is reasonable because
LPP optimizes the same object function with Eigenmaps, yet
within a smaller space (linear space of feature). However, as men-
tioned above, LPP offers explicit linear embedding operator on
feature space. This property enables LPP to perform a fast em-
bedding for out-of-sample data points, thus, enable LPC to cluster
out-of-sample data. This is discussed in the next experiment in
Section 4.4.

We currently do not conduct significance test of the difference of
the performance between the four algorithms and other variations
of LPP (eg. that of He et.a [10]), and this should be part of a
more thorough evaluation.

4.4 Generalization Capability

We also test generalization capability of LPC using the out-of-
sample clustering procedure. The procedure is stated as follows:
Given atraining set A and atest set B both drawn from the same

Figure 5. Results of LPC on COREL database.
7 categories. One row for each category. The
rightmost position of each row shows oneerror
example. Category names are (from top to bot-

tom): “Antelope’, “Bus’, “Couples’, “Fire-
work”, “Horse”, “Men”, “Pyramid”.

distribution, learn an embedding function from A using PCA, LPP,
and Eigenmaps, respectively. Then perform the embedding func-
tion to the test set B and re-cluster (using Kmeans) the union of
embedded A and embedded B. Findly the precision of cluster
label of B are calculated and compared among different algo-
rithms.

We build PCA-based, LPP-based (LPC) and Eigenmaps-based
(NCut) out-of-sample clustering agorithms, where PCA, Eigen-
maps, LPP are regarded as three different choices of embedding
methods.

All three agorithms are performed on each subset described in
Section 4.3. The different thing is, for each of the subset, 70%
data points are used as training data A and the rest 30% are used
as newcomer data B. For comparison, direct Kmeans is also per-
formed on A /B0, without learning of course, and the precision of
cluster label of B is aso calculated. The experiment results are
shown in Figure 3.

It can be seen that Eigenmaps-based and L PP-based methods out-
performs PCA-based method. Although Eigenmaps generates
dlightly better results than LPP, it is much slower than LPP . The



reason is that before Eigenmaps can perform embedding function
on B the similarities between al test pointsin B and al training
pointsin A should be calculated in advance [2]. Suppose there are
Na pointsin A and Ng points in B. Note N the dimension number
of feature space and k the cluster number. For Eigenmaps,
similarity computation needs NA*NB*N times multiplications and
the embedding needs N*Ng*k times multiplications. So the total
complexity of out-of-sample embedding in Eigenmaps is

O(N,xNgx(N+k)). While what LPP does is doing matrix
multiplication between embedding function (matrix) and data
matrix of B. So the complexity is O(kxNgxN). Typicaly,
NA > N and NA
efficient than Eigenmaps-based method.

> k. This explains why LPC is much more

4.5 Improvement with the Number of Train-
ing Samples

Since the training data set A and the newcomer data set B share
the same distribution. It is a reasonable demand that the perform-
ance is improved with the number of training samples. We de-
signed a third experiment to exam if the performance of LPP im-
proves with the number of training samples, and empirically an-
swer the question of how many percentage is enough to model the
distribution for the data sets. At this time, 1; 000 subsets are se-
lected for each category number k. The sample rate of training

data (i.e. |AJ/(JAl+]B])) vaies from 10%, 20% to 90%.

After embedding operators are learnt from A, the whole data set
are embedded and then clustered. The average accuracy and nor-
malized mutual information are shown in Figure 4. It is clear that
the performance improves with the number of training samples.
And for this data corpora, 40% is enough for satisfying data
model and embedding operator.

5. CONCLUSION

In this paper we proposed a Locality Preserving Clustering (L PC)
algorithm. LPC shares many of the data representation properties
of nonlinear spectral method yet LPC provides an explicit map-
ping function which is defined everywhere, both on training data
points and testing points. So LPC shows powerful capability for
data representation and computational efficiency at the sametime.
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Appendix A PROOF OF THEOREM 1
In this appendix, we prove Theorem 1 in Section 3.3.

Proor. span(X) = span([1X]). Since X is the union of in-

dependent column vectors, 3 the unique vector & st. Xa=1.

Itisclear that 1 isan eigenvector of (8) associated with eigen-
vaue of 0 because

1 L1=;Dij —;vvij =0 (18)

and



1 Dlzizj:Dii >0 (19) éTXTLXé_O

T

= (20)
a' X"'Dxa

According to definition of generalized Rayleigh quotient, aisan
eigenvector of (4) associated with eigenvalue of 0.



