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Abstract. In this paper we initiate the study of the AND-OR directed feedback
vertex set problem from the viewpoint of approximation algorithms. This AND-
OR feedback vertex set problem is motivated by a practical deadlock resolution
problem that appears in the development of distributed database systems1. This
problem also turns out be a natural generalization of the directed feedback vertex
set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find
a minimal solution for this problem. Unfortunately, a minimal solution can be
arbitrarily more expensive than the minimum cost solution. We show that finding
the minimum cost solution is as hard as the directed Steiner tree problem (and
thus Ω(log2n) hard to approximate). On the positive side, we give algorithms
which work well when the number of writers (AND nodes) or the number of
readers (OR nodes) are small.

We also consider a variant that we call permanent deadlock resolution where
we cannot specify an execution order for the surviving processes; they should get
completed even if they were scheduled adversarially. When all processes are writ-
ers (AND nodes), we give an O(log n log log n) approximation for this problem.

Finally we give an LP-rounding approach and discuss some other natural
variants.

1 Introduction

One of the best ways to understand deadlocks in databases is the dining philosophers
problem. Say there are five philosophers sitting on a circular table to eat spaghetti, with
a fork between every two of them. Each philosopher needs two forks to eat. But every-
body grabs the fork on the right, hence everybody has one fork and waiting for another
to be freed. This wait will be never ending unless one of the philosophers gave up and
freed up his fork. This never ending is an example of a deadlock. Picking up a philoso-
pher who can give up on eating the spaghetti is an example of deadlock resolution. Now
suppose that these philosophers have different likings for the spaghetti and hence differ-
ent inherent cost of giving up eating it. In this case we want to pick the philosopher who
likes spaghetti the least. This is called the minimum cost deadlock resolution problem.

In databases, philosophers correspond to independent agents e.g., transactions and
processes. Forks correspond to shared resources, e.g., shared memory. Eating spaghetti

1 Thanks to Ondrej Such from Microsoft for asking an algorithm for this problem.
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corresponds to actions which these independent agents want to perform on the shared
resources e.g., reading or writing a memory location. So in general besides asking for
two forks these philosophers may ask for two spoons too, while they have grabbed only
one each. These spoons and forks can be of different kinds (e.g., plastic or metallic). In
general demands for resources can be very complicated and it can be represented by a
monotonic binary function, called demand function. A demand function takes a vector
of resources as an input and outputs whether it can satisfy the demand or not.

When a process does not get all the resources to satisfy its demand then it has to
wait. Like any other protocol involving waiting, there is a risk of deadlock. There are
ways to avoid deadlock, like putting a total order on all the resources and telling to
the users to ask them in the same order. In big or distributed databases, such solutions
are difficult to implement. Moreover such a solution works when the demand functions
consist of only ANDs. In essence deadlocks do happen and they need to be resolved at
a small cost. In practice one of the convenient solution is to time out on wait, i.e., if it
takes too long for a transaction to acquire further resources then it aborts and frees up
the resources held so far. This solution does not have any guarantee on the cost incurred.
For notational convenience, aborting a transaction will also be referred as killing it. We
assume that there is an associated cost of killing a process (this cost can also be the cost
of restarting it). The cost of a solution is the total cost of all the processes killed. For
the minimum cost deadlock resolution problem we want to kill the least expensive set
of processes to resolve the deadlock.

An instance of a generalized deadlock detection problem is captured by a waits-for-
graph (WFG) on transactions. An old survey by Knapp [17] mentions many relevant
models of WFG graphs. In the AND model, formally defined by Chandy and Misra [5],
transactions are permitted to request a set of resources. A transaction is blocked until
it gets all the resources it has requested. In the OR model, formally defined by Chandy
et al. [6], a request for numerous resources are satisfied by granting any requested re-
source, such as satisfying a read request for a replicated data item by reading any copy
of it. In a more generalized AND-OR model, defined by Gray et al. [12] and Herman et
al. [15], requests of both kinds are permitted. A node making an AND request is called
an AND node and a node making an OR request is called an OR node. An advantage
of using both these kinds of nodes is that one can express2 arbitrary demand functions
e.g., if a philosopher wants any one fork and any one spoon then we can create two sub-
agents for this philosopher, one responsible for getting a fork and the other for getting
a spoon. This philosopher then becomes an AND node and the two sub-agents become
two OR nodes. From the perspective of algorithm design, detecting deadlocks in all
these models is not a difficult task (see e.g. [11, 21, 23]). The difficult task is to resolve
it once detected and that too at a minimum cost (for some heuristics and surveys on the
generalized AND-OR model see e.g. [1,3,4,14]). In the next section we formally model
the problem as an AND-OR directed feedback vertex set problem.

Often it may not be possible for the deadlock resolving algorithm to specify a sched-
ule for the remaining processes, and when the cost of calling the deadlock resolution
algorithm is large (as one would expect in a distributed setting), we would like that

2 This expression may be of exponential size. See [17] for more models of waits-for-graphs.
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no matter in what order the surviving transactions are scheduled, they do not deadlock
again. This motivates the permanent deadlock resolution problem. For the case when
the transactions are all writers (the AND only case), we show a polynomial-time ap-
proximation algorithm for the problem.

1.1 Our Results

When all the nodes are OR nodes then the problem can be solved in polynomial time
via strongly connected components decomposition. But the problem quickly becomes
at least as hard as the set-cover problem even in the presence of a single AND node.
Our reduction has deadlock cycles of length 3 capturing the special case mentioned
by Jim Gray, who says in practice deadlocks happen because of cycles of length 2 or
3. We give an O(na log(no)) factor approximation algorithm, where no is the number
of OR nodes and na is the number of AND nodes. On the other hand if all the nodes
are AND nodes, the problem is the well-studied directed feedback vertex set problem.
There are approximation algorithms with polylog approximation factor for this problem
due to Leighton-Rao [18] and Seymour [22]. We generalize those algorithms to destroy
all the handles at a pivot vertex. We define handles later in the paper and there we also
show that destroying handles is a more general problem than destroying cycles. We
use this generalization as a subroutine to develop an O(no log(na) log log(na)) factor
approximation algorithm.

From the hardness point of view, we show that the problem is as hard as the directed
Steiner tree problem, which was shown to be hard to approximate better than a factor
of O(log2−εn) by Halperin and Krauthgamer [13], and has no known polynomial time
polylogarithmic approximation algorithm. One difficulty in designing an approximation
algorithm for our problem is that we do not know any good LP relaxation. The natural
LP relaxation itself is at least as hard as the directed Steiner tree problem, even for the
case of one OR node. It will be interesting to interpret our algorithms in terms of LP
rounding. We do that in case there is one (or a constant number of) OR nodes . The size
of this LP is exponential in the number of OR nodes.

For the permanent deadlock resolution problem, we show that the case with only
AND nodes is reducible to the feedback vertex set problem in mixed graphs. Acyclic-
ity implies schedulability for both undirected and directed graphs - acyclic undirected
graphs have leaves and acyclic directed graphs have sinks. Corresponding theorem for
mixed graphs is not clear. We develop a corresponding theorem for bipartite mixed
graphs. This leads to an O(log n log log n) approximation algorithm for this problem.
We leave open the approximability of this problem in the general case.

This problem was also studied in theoretical computer science by Awerbuch and
Micali [1]. In their paper, they mentioned that the ideal goal is to kill a set of processes
with minimum cost, but the problem is a generalization of feedback vertex set and
seems very hard. Thus they gave a distributed algorithm for finding a minimal solution.
Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum
cost solution. We study this problem from approximation algorithm point of view. We
are excited with the fact that the problem has such a rich mathematical structure. It
allows use of many results, which were discovered after the paper due to Awerbuch and
Micali. In this paper we try to find a proper place for the problem in the vast area of
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approximation algorithms. We show that this problem blends naturally with feedback
vertex and arc set problems. From hardness point of view it blends naturally with the
directed Steiner tree and set cover problems. In the discussion section we mention an
alternative approach to design approximation algorithms for the directed Steiner tree
problem. This approach is suggested by interpreting our algorithm for the case of one
OR node in terms of linear programming. This approach does not seem to be based
upon the standard LP for the directed Steiner tree problem, which some researchers
suspect to have integrality ratio worse than polylogarithmic.

Due to interest of space, we omit several proofs in this extended abstract and defer
them to the journal version of this paper.

2 Problem Definition and Preliminary Results

All the graphs in this paper are directed without loops or multiple edges, unless stated
otherwise. Our graph terminology is as follows. A graph G is represented by G =
(V,E), where V (or V (G)) is the set of vertices (or nodes) and E (or E(G)) is the set
of edges. We denote an edge e from u to v by (u, v), and we call it an outgoing edge
for u and an incoming edge for v. We say node u can reach node v (or equivalently v is
reachable from u) if there is a path from u to v in the graph. We shall use the notation
u � v to denote that v is reachable from u. We define n to be the number of vertices of
a graph when this is clear from context. We denote the maximum out-degree by ∆out

and the maximum in-degree by ∆in. We assume that the node set V is partitioned into
two sets Va and Vo. Nodes in Va and Vo are referred to as AND nodes and OR nodes
respectively. We let na = |Va| and no = |Vo|. With this terminology we now define the
wait-for-graphs (WFG).

Each node of a wait-for-graph, G = (V,E), represents a transaction. An edge (u, v)
denotes that transaction u has made a request for a resource currently held by transac-
tion v. There are two kinds of nodes. An AND node represents a transaction which has
made an AND request on a set of resources, which are held by other transactions. An
OR node represents a transaction which has made an OR request on a set of resources.
Without loss of generality we assume that a transaction is allowed to make only one
request. If a transaction makes multiple requests then we can create a sub-transaction
for each request and put the necessary dependency edges. Each transaction has an as-
sociated weight. We denote the weight of a transaction u by wu.

An AND transaction can be scheduled if it gets all the resources it has requested.
An OR transaction can be scheduled if it gets at least one of the resources it has re-
quested. Once a transaction is scheduled, it gives up all its locks, potentially allowing
other processes to get scheduled. A wait-for-graph is called deadlock free if there exist
an ordering of the transactions in which they can be executed successfully. If no such
ordering exist then we say that the graph has a deadlock. The minimum cost generalized
deadlock resolution problem (GDR) is to kill the minimum weight set of transactions to
free up the resources held by them so that the remaining transactions are deadlock free.
In other words, there exists an order on the remaining transactions so that for each AND
transaction, each of its children is either killed or can be completed before it and for each
OR transaction at least one of its children is either killed or can be completed before it.
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2.1 Some Special Cases

We show some simple propositions which give us some intuition about the problem.

Proposition 1. The GDR problem when there is no OR node has an approximation
algorithm with ratio O(log n log log n).

Proposition 2. The GDR problem with all OR nodes can be solved in polynomial time.

In fact, we can strengthen Proposition 2 as follows:

Proposition 3. The GDR problem, when the reachability graph on the AND nodes is a
directed acyclic graph, can be solved in polynomial time.

Proposition 4. The GDR problem with uniform weights and O(log n) AND nodes can
be solved in polynomial time.

Using ideas of Propositions 3 and 4, we can show the following theorem.

Theorem 1. The GDR problem with uniform weights and na AND nodes has an O(na)-
approximation algorithm.

3 Hardness Results and Natural LP

In this section, we consider the hardness of the GDR problem. First, we show a simple
approximation preserving reduction from the set cover problem to this problem. Re-
call that the set cover problem is to find a minimum collection C of sets from a family
F ⊆ 2U , such that C covers U , i.e. ∪S∈CS = U . From the results of Lund and Yan-
nakakis [20] and Feige [10], it follows that no polynomial time algorithm approximates
the set cover problem better than a factor of lnn unless NP ⊆ DTIME(nlog log n). Our
reduction then implies a similar hardness for the GDR problem. There is no similar
inapproximability result known for the directed feedback vertex set problem.

Theorem 2. There exists an approximation preserving reduction from (unweighted) set
cover to GDR with only one AND node.

It is worth mentioning that in the reduction of Theorem 2, there is only one AND
node whose weight is m + 1 and the rest of the vertices are OR nodes with weight
one. Moreover, the one AND node of high weight can be replaced by m + 1 AND
nodes of unit weight placed “in parallel”. Thus the uniform weight case is also hard to
approximate better than a factor of Ω(log n).

Now the question is that whether it is possible to get a better inapproximability
result. To answer this question, we use a recent result of Halperin and Krauthgamer [13]
on the inapproximability of the directed Steiner tree problem. In the directed Steiner tree
problem, given a directed graph G = (V,E), a root r ∈ V and a set of terminals T ∈ V ,
our goal is to find a minimum subset E′ ⊆ E such that in graph G′ = (V,E′) there
is a path from r to every t ∈ T . Halperin and Krauthgamer [13] show that the directed
Steiner tree problem is hard to approximate better than a factor of Ω(log2 n), unless
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NP ⊆ ZTIME(npolylog n). So far, no polynomial-time polylogarithmic approximation
algorithm is known for this problem. We show a similar non-approximability result in
Theorem 3 for GDR by giving an approximation preserving reduction from directed
Steiner tree.

Theorem 3. There exists an approximation preserving reduction from directed Steiner
tree to GDR.

Proof. We consider an instance of directed Steiner tree given by a directed graph G =
(V,E), a set of terminals T ⊆ V and a root node r ∈ V . The goal is to find a minimum
cost subset E′ of edges containing a path from r to every terminal t ∈ T . The reduction
is as follows. For each vertex v ∈ V − {r}, we create an OR node v of weight ∞3 in
our GDR instance. For r, we create an OR node r of weight zero. In addition, we have
an AND node a of weight ∞ which has an edge (a, t) for each t ∈ T and an edge (v, a)
for each v ∈ V . For each edge e ∈ E, we put an AND-OR gadget shown in Figure 1,
with the weight of each node as shown in the figure. Recall that a is the global AND
node introduced before and oe and ae are new OR and AND nodes corresponding to
e respectively. Intuitively, using an edge e in the Steiner tree corresponds to killing the
OR node oe in this gadget.

Next we show that the cost of an optimum Steiner tree is equal to the minimum cost
of nodes to be killed such that the remaining graph is deadlock-free. First consider a
Steiner tree S in G. We kill all OR nodes corresponding to edges in S. For each edge
e = (u, v) ∈ S, killing oe allows v to be complete after u. Thus, first complete node
r, then complete nodes according to the directed Steiner tree. Since the Steiner tree
solution contains a path to each terminal, we can complete all terminals. Now, after
completing all terminals, we can complete the global AND node a and then complete
every other node in the graph.

On the other hand, since the only nodes with finite weight are the OR nodes corre-
sponding to edges and the node corresponding to root r, any feasible solution of finite
weight for GDR kills only such nodes. It is easy to check that the set of edges for which
the OR nodes are killed contain a directed Steiner tree. ��
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Fig. 1. Edge e = (u, v) in graph
G and its AND-OR gadget in the
new instance of GDR

Again, we might replace each node of weight ∞
with several nodes of unit weight, say |E(G)|, in or-
der to reduce the directed Steiner tree problem to the
uniform weighted case.

3.1 Natural LP and Hardness

We end this section by considering a natural LP for
the GDR problem, which is a generalization of the
LP for feedback vertex set (see e.g. [9]). We say a set
of nodes H forms a Minimal Deadlocked Structure
(MDS) if

3 As usual, the ∞ weights can be replaced by a (polynomially) large weight.
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1. For any OR node u ∈ H , all its outneighbors are in H .
2. For any AND node u ∈ H , at least one of its outneighbors is in H .
3. H is minimal4 amongst sets satisfying (1) and (2).

We now write a linear program (called LP 1) is as follows: minimize
∑

v∈V wvxv

such that
∑

v∈H xv ≥ 1 for any MDS H and xv ≥ 0 for all v ∈ V
Clearly an integral solution to this linear program is a feasible solution to the un-

derlying GDR instance and hence this is a relaxation. However, this linear program
can potentially have exponentially many constraints. Note that if the graph G does not
have any OR node, MDSs are exactly the minimal directed cycles and our LP is the
same as the LP considered in [18,22,9] for applying region growing techniques for the
feedback vertex set problem. In this special case of feedback vertex set, this LP has a
simple separation oracle which enables us to solve it using Ellipsoid method. However,
we now show that even the separation oracle for LP 1 is as hard as the directed Steiner
tree problem.

Theorem 4. The separation oracle for LP 1 is as hard as solving directed Steiner tree.

Proof. A separation oracle for LP 1 solves the following problem: given a vector −→x ,
is there an MDS H for which

∑
v∈H xv < 1. We shall reduce the directed Steiner tree

problem to this problem
We consider an instance of directed Steiner tree: given a root r and a set of termi-

nals T in a directed graph G = (V,E), is there is Steiner tree of weight at most 1 (by
scaling). Without loss of generality we assume G is a directed acyclic graph (DAG),
since the directed Steiner tree problem on DAGs is as hard as the one on general di-
rected graphs (see e.g. [7]). Also without loss of generality assume we have weights on
vertices instead of edges (again the two problems are equivalent). Now we are ready to
demonstrate the reduction. For each vertex v ∈ V , we place an AND node v with xv

equal to its weight in the Steiner instance. For each edge (u, v) in G, we place an edge
(v, u) in our new graph. In addition, we add an OR node with xo = 0 which has an
outgoing edge (o, t) for each terminal t ∈ T and an incoming edge (r, o) (r is the root
node). Call the new graph G′. It is easy to check that H ∪ {o} is an MDS in G′ if and
only if H is a directed Steiner tree in G. Hence the claim follows. ��

As shown by Jain et. al. [16], for these kinds of problems optimizing LP 1 is equiv-
alent to solving the separation oracle problem. Furthermore, these reductions are ap-
proximation preserving. Thus if we can optimize LP 1 within some factor then we can
solve its separation oracle for the same factor. Hence by Theorem 4, we can solve the
directed Steiner tree problem within the same factor.

Corollary 1. Optimizing LP 1 is at least as hard as the directed Steiner tree problem.

Finally, notice that finding the integrality gap of LP 1 is an interesting open problem.

4 With respect to set inclusion.
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4 Approximation Algorithms

In this section, we give an O(min{na log n, no log n log log n}) algorithm for this prob-
lem, where na is the number of AND nodes and no is the number of OR nodes in the
instance. Thus, when either of na or no is small, the problem is well approximable.

In subsection 4.1 we show how to use region growing to solve a slight generaliza-
tion of feedback vertex set. We use this to get an O(no log n log log n) algorithm in
subsection 4.2. In subsection 4.3, we give an O(na log n) approximation algorithm for
the problem. Thus the better of these two algorithms gives the claimed performance
guarantee.

4.1 Handle Removal Algorithm

In this section, we consider the following handle removal problem which plays an im-
portant role in the algorithm for the case of few OR nodes (see Section 4.2): Given
a directed graph G, and a designated vertex r, delete the smallest number (weight) of
vertices such that the remaining graph has no cycles reachable from r. For ease of expo-
sition, we shall replace each vertex by a pair of vertices joined by an edge, and transfer
the weight to this edge. The edges in the original graph are given an infinite weight. The
problem then reduces to finding the smallest cost set of edges whose removal eliminates
all cycles reachable from r.

We shall write this problem as an integer program, and consider its linear program-
ming relaxation. We first formally define a handle.

Definition 1. Let H = (r = u0, u1, . . . , uk) be a simple path in G. We call H a handle
if for some p : 0 ≤ p < k, there is an edge (uk, up). We refer to up as the pivot of the
handle H . The edges on the path along with the edge {uk, up} constitute the edges of
the handle.

Let H be the set of all handles in G. We can write the following linear programming
relaxation for this problem: minimize

∑
e∈E wexe such that

∑
e∈H xe ≥ 1 for all H ∈

H and xe ≥ 0 for all e ∈ E.
Note that the above linear program has an exponential number of constraints. The

separation oracle for this LP requires us to find a violated handle in a given fractional
solution. Note that we can find in polynomial time, for each u ∈ V , the smallest cycle
passing through u, and the shortest path from r to u. The shortest handle in the graph is
then just the minimum, over all u, of the sum of the above two quantities. Thus the LP
has a polynomial time separation oracle, and hence can be solved by Ellipsoid method.

Given a solution to this linear program, we shall now argue that the techniques used
by Seymour [22] and Even et.al. [9] for the feedback arc set problem apply here to
give an O(log n log log n)-approximation algorithm to the problem. Given a graph G,
and a non negative length function xe on the edges, we can define the shortest path
function dx on the vertices of G. A modification of the algorithm of Seymour implies
the following theorem:

Theorem 5. Given a weighted graph G, a special vertex r and non-negative length
function xe, let W =

∑
e wexe. There exists a set of edges C such that:
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–
∑

e∈C we ≤ O(log n log log n) · W
– For any vertex v with dx(r, v) ≥ 1

4 , C is an r-v cut.
– For any pair of vertices u and v such that dx(u, v) ≥ 1

4 , C contains either a u-v
cut or a v-u cut.

We now argue that the rounding described in the theorem applied to a feasible LP
solution, gives a feasible solution to the handle removal problem.

Claim. Let x be a feasible solution to the linear program above and d be the shortest
path function defined accordingly. Then for any handle H with pivot u, either d(r, u) ≥
1
4 , Or there exists v ∈ H such that d(u, v) ≥ 1

4 .

From the above claim, and theorem 5, it follows that the handle removal problem is
approximable within a factor of O(log n log log n).

4.2 Few OR Nodes Algorithm

Using the algorithm for the handle removal problem in section 4.1, we are now ready
to prove the following theorem.

Theorem 6. There is an O(no log(na) log log(na))-approximation algorithm for the
Generalized Deadlock Resolution Problem.

Proof. We first assume that the OR nodes in the graph have infinite cost, and thus are
all scheduled. We shall give an O(αno) solution where α is the approximability of the
handle removal problem.

Let u be the first OR node to be scheduled. Since this node is scheduled, one of its
outneighbors, say v, is killed/scheduled before any other OR node. Since no cycle of
AND nodes can be scheduled, no such cycle reachable from v survives in the optimum
solution. OPT thus includes a solution to the handle removal problem with root v. Let
Ov be the optimum of the handle removal problem with root v, when all OR nodes are
removed. Hence OPT ≥ minu∈VO

minv:(u,v)∈E Ov .
Our algorithm is as follows. Using an α-approximation algorithm for the handle

removal problem, we compute solutions to handle removal problems rooted at {v :
(u, v) ∈ E, u ∈ VO}. We pick the cheapest of these and kill the nodes in this solution.
The cost of killing these nodes is at most αOPT . Now the OR node u can be scheduled,
and consequently some more nodes can be scheduled. We remove all such nodes along
with their incoming edges, and recur. In the base case, when there are no OR nodes, we
have the feedback vertex set problem, which is also approximable within α (by a simple
reduction to the handle removal problem). Thus we get obtain (no+1)α approximation.

We now show how to remove the assumption about OR node removal. To each OR
node u in the graph, we add a new outneighbor ua which is an AND node with cost
equal to the original OR node. We add another AND node v of infinite cost to the
graph, with edges to all the original vertices of the graph. Finally, we add an edge from
ua to the vertex v, and increase the costs of all OR nodes to infinity.

For any solution to the original instance that kills an OR node u, we can get a
solution to the new instance by killing ua. This lets us schedule u instead of killing u.
Moreover, after scheduling/killing all original nodes, the node v can be scheduled, after
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which any unkilled ua can be scheduled. Finally, the cost of the new solution is the
same as the original one.

A solution to the new instance immediately gives a solution to the original instance:
kill OR node u whenever the new solution killed ua. It is easy to see that this transfor-
mation preserves feasibility and cost. ��

4.3 Few AND Nodes Algorithm

In this section, we present an O(na log n)-approximation algorithm for this problem.
We note that in the reduction of set cover to generalized deadlock resolution (mentioned
in Theorem 2), we have only one AND node and thus our result is tight in this case.
However, in the reduction of directed Steiner tree to this problem, the number of AND
nodes is linear and the best non-approximability result is in Ω(log2 n).

The algorithm is as follows. We start with the original graph G and in each itera-
tion we update it. More precisely, if in an iteration graph G does not have any AND
node, we can obtain the optimal solution for G by the procedure mentioned in Proposi-
tion 2 (and thus we stop). Otherwise, for each AND node a whose outgoing edges are
(a, c1), (a, c2), · · · , (a, c∆out

) in graph G and all ci’s, 1 ≤ i ≤ ∆out, are OR nodes, we
construct the following hitting set instance (note that the hitting set problem is the dual
of the set cover problem). For each ci, 1 ≤ i ≤ ∆out, we form a set Si which contains
all OR nodes reachable via OR nodes from ci (i.e. paths from ci to Si do not use any
AND nodes). Now, the collection C contains all sets Si ⊆ S, where S is the set of all
OR nodes. Using the (1+ln ∆out) = O(log n) approximation for hitting set, we obtain
a set S∗

a of weight w∗
a of OR nodes which hit every set. Let Wa = min{wa, w∗

a} (wa is
the weight of node a). Choose the AND node a with minimum Wa over all AND nodes.
Kill AND node a or all the OR nodes in the corresponding hitting set solution (the one
with minimum weight). Clear graph G, i.e., remove every AND/OR node which can be
completed after killing the aforementioned nodes, and repeat the above iteration for G.
The final solution contain all AND/OR nodes killed during the iterations.

We finish by showing that

Theorem 7. The above algorithm kills a set of AND/OR nodes such that the remaining
graph is deadlock free and the weight of the solution is at most (1 + ln∆out)na + 1 =
O(na log n) times optimum.

Proof. The correctness of the solution can be easily seen from the description of the
algorithm. Thus, we only show the approximation factor here. To this end, we prove
that in each iteration, except the case in which there is no AND node, we kill nodes of
total weight at most (1 + ln ∆out) times optimum weight for the updated graph G in
that iteration. In the last iteration, we kill nodes of total weight at most OPT according
to the description of the algorithm. Using these facts and that OPT in each iteration is
at most the original optimum, we obtain the desired approximation factor.

Consider an optimum solution and let a be the first AND node which is completed
or killed in the optimum resolution. Thus either we have killed a or we have completed
a by killing at least one OR node from the OR nodes reachable from each of its children.
Hence for at least one AND node, the weight of the solution to the corresponding hitting
set instance is at most the weight of optimum. Since the approximation factor of hitting
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set is 1+ln ∆out and we try all AND nodes and then take the minimum, the total weight
of the killed nodes is at most (1 + ln∆out) times optimum, as desired. ��

5 Permanent Deadlock Resolution

Here we consider another version of the deadlock resolution problem where it is not
possible for the algorithm to specify a feasible schedule on the remaining processes.
In particular, we want to kill enough processes, such that if the remaining processes
try to acquire locks in any order, they cannot deadlock. We then say that the remaining
processes are adversarially schedulable.

We consider the special case of this problem when all processes are writers (AND
nodes). In this case, we show that this problem can be reduced to the feedback vertex set
problem on mixed graphs (i.e. graphs with both directed and undirected edges). Since
this problem yields to the same techniques as those used for feedback vertex set of
directed graphs, we get an O(log n log log n)-approximation.

We are given a set of resources R and a set of processes P , each holding a lock
on some subset of resources, and waiting to get locks on another subset of resources.
We construct a bipartite mixed graph as follows: create a vertex vr for every resource
r with infinite cost, and a vertex vp for every process p. Whenever process p holds
the lock on resource r, we add a directed edge from vp to vr. Moreover, we add an
undirected edge between vp and vr′ whenever process p is waiting to get a lock on
resource r′.

Theorem 8. An instance is adversarially schedulable if and only if the corresponding
graph is acyclic.

Proof. We first argue that greedily schedulability implies acyclicity. Assume the con-
trary, and let the graph have a cycle p1, r1, p2, r2, . . . , pk, rk, p1. Now consider the
schedule in which pi grabs a lock on ri (or already holds it, in case the edge is di-
rected). Note that pi waits for a lock on ri−1 and p1 waits on rk. this entails a cyclic
dependency amongst processes p1, . . . , pk: pi cannot finish unless pi−1 finishes and
releases ri−1. This configuration is therefore deadlocked. Since we have shown how
to reach a deadlocked state from the initial state, the initial state was not adversarially
schedulable, which contradicts the assumption. Hence the claim follows.

Now suppose that the graph is acyclic. We claim that the initial configuration is
adversarially schedulable. Suppose not. Then there is a sequence of lock acquisition that
lead to a deadlocked configuration. Clearly, a deadlocked configuration corresponds to
processes p1, p2, . . . , pk such that pi+1 is waiting for pi to release some resource ri.
Since pi holds ri in this configuration, (pi, ri) must be directed/undirected edge in the
graph. Moreover, since pi+1 is waiting for ri, (ri, pi+1) is an undirected edge in the
graph. However, we have just shown that p1, r1, p2, r2, . . . , pk, rk, p1 is a cycle in G,
which contradicts the acyclicity of G. Thus the claim follows. ��

Theorem 9. The permanent deadlock resolution problem for AND nodes has an
O(log n log log n) approximation algorithm.



864 K. Jain, M. Hajiaghayi, and K. Talwar

Acknowledgement

We would like to thank, Ondrej Such, a developer at Microsoft for asking his question
on the Algorithm’s email list. The first author would also like to thanks Joseph Cheriyan
and Laci Lovasz for many initial and fruitful discussions. He would also like to thank
David Shmoys for a very short but helpful discussion. The last author would like to
thank Christos Papadimitriou and Joe Hellerstein for very useful discussions.

References

1. B. AWERBUCH AND S. MICALI, Dynamic deadlock resolution protocols, in The 27th An-
nual Symposium on Foundations of Computer Science, 1986, 196–207.

2. R. BAR-YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM J. Comput., 27 (1998), 942–959.

3. G. BRACHA AND S. TOUEG, A distributed algorithm for generalized deadlock detection,
in Proceedings of the 3rd annual ACM symposium on Principles of distributed computing,
ACM Press, 1984, 285–301.

4. K. M. CHANDY AND L. LAMPORT, Distributed snapshots: determining global states of
distributed systems, ACM Transactions on Computer Systems (TOCS), 3 (1985), 63–75.

5. K. M. CHANDY AND J. MISRA, A distributed algorithm for detecting resource deadlocks
in distributed systems, in Proceedings of the 1st ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, ACM Press, 1982, 157–164.

6. K. M. CHANDY, J. MISRA, AND L. M. HAAS, Distributed deadlock detection, ACM Trans-
actions on Computer Systems (TOCS), 1 (1983), 144–156.

7. M. CHARIKAR, C. CHEKURI, T.-Y. CHEUNG, Z. DAI, A. GOEL, S. GUHA, AND M. LI,
Approximation algorithms for directed Steiner problems, J. Algorithms, 33 (1999), 73–91.

8. J. CHERIYAN, H. J. KARLOFF, AND Y. RABANI, Approximating directed multicuts, in The
42th Annual Symposium on Foundations of Computer Science, 2001, 348–356.

9. G. EVEN, J. NAOR, B. SCHIEBER, AND M. SUDAN, Approximating minimum feedback sets
and multicuts in directed graphs, Algorithmica, 20 (1998), 151–174.

10. U. FEIGE, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), 634–652.
11. M. FLATEBO AND A. K. DATTA, Self-stabilizing deadlock detection algorithms, in Pro-

ceedings of the ’92 ACM annual conference on Communications, ACM Press, 1992,
117–122.

12. J. GRAY, P. HOMAN, R. OBERMARCK, AND H. KORTH, A straw man analysis of proba-
bility of waiting and deadlock, in Proceedings of the 5th Internafional Conference on Dis-
tributed Data Management and Computer Networks, 1981.

13. E. HALPERIN AND R. KRAUTHGAMER, Polylogarithmic inapproximability, in The 35th
Annual ACM Symposium on Theory of Computing (STOC’03), 2003, 585–594.

14. J.-M. HELARY, C. JARD, N. PLOUZEAU, AND M. RAYNAL, Detection of stable properties
in distributed applications, in Proceedings of the 6th PODC, ACM Press, 1987, 125–136.

15. T. HERMAN AND K. M. CHANDY, A distributed procedure to detect and/or deadlock, Tech.
Rep. TR LCS-8301, Dept. of Computer Sciences, Univ. of Texas, 1983.

16. K. JAIN, M. MAHDIAN, AND M. R. SALAVATIPOUR, Packing Steiner trees, in The 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03), 2003, 266–274.

17. E. KNAPP, Deadlock detection in distributed databases, ACM Computing Surveys (CSUR),
19 (1987), 303–328.



The Generalized Deadlock Resolution Problem 865

18. T. LEIGHTON AND S. RAO, Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms, J. ACM, 46 (1999), 787–832.

19. R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, SIAM J.
Comput., 9 (1980), 615–627.

20. C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems,
J. Assoc. Comput. Mach., 41 (1994), 960–981.

21. K. MAKKI AND N. PISSINOU, Detection and resolution of deadlocks in distributed database
systems, in Proceedings of the 4th international conference on Information and knowledge
management, ACM Press, 1995, 411–416.

22. P. D. SEYMOUR, Packing directed circuits fractionally, Combinatorica, 15 (1995), 281–288.
23. H. WU, W.-N. CHIN, AND J. JAFFAR, An efficient distributed deadlock avoidance algo-

rithm for the and model, IEEE Transactions on Software Engineering, 28 (2002), 18–29.


	Introduction
	Our Results

	Problem Definition and Preliminary Results
	Some Special Cases

	Hardness Results and Natural LP
	Natural LP and Hardness

	Approximation Algorithms
	Handle Removal Algorithm
	Few OR Nodes Algorithm
	Few AND Nodes Algorithm

	Permanent Deadlock Resolution

