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Abstract

Very recently crowdsourcing has become the de facto platfor distributing and collecting human
computation for a wide range of tasks and applications ssdhfarmation retrieval, natural language
processing and machine learning. Current crowdsourcifigpins have some limitations in the area of
quality control. Most of the effort to ensure good qualityshta be done by the experimenter who has to
manage the number of workers needed to reach good results.

We propose a simple model for adaptive quality control imatsourced multiple-choice tasks which
we call thebandit survey problemThis model is related to, but technically different frone tivell-
known multi-armed bandit problem. We present several #lgos for this problem, and support them
with analysis and simulations. Our approach is based inxquerence conducting relevance evaluation
for a large commercial search engine.

1 Introduction

In recent years there has been a surge of interest in autdmethods forcrowdsourcing a distributed
model for problem-solving and experimentation that ineshbroadcasting the problem or parts thereof
to multiple independent, relatively inexpensive workensl aggregating their solutions. Automation and
optimization of this process at a large scale allows to §iicanitly reduce the costs associated with setting
up, running, and analyzing the experiments. Crowdsourisirfimding applications across a wide range of
domains in information retrieval, natural language presesand machine learning.

A typical crowdsourcing workload is partitioned inttcrotaskgalso called Human Intelligence Tasks),
where each microtask has a specific, simple structure antvas/only a small amount of work. Each worker
is presented with multiple microtasks of the same type, ¥e simme on training. The rigidity and simplicity
of the microtasks’ structure ensures consistency acro$tfpleumultitasks and across multiple workers.

An important industrial application of crowdsourcing cents web search. One specific goal in this
domain isrelevance assessmeiissessing the relevance of search results. One popWtatdsgn involves
presenting a microtask in the form of a query along with ttseits from the search engine. The worker has
to answer one question about the relevance of the query resit set. Experiments such as these are used
to evaluate the performance of a search engine, constaiciny sets, and discover queries which require
more attention and potential algorithmic tuning.

Stopping / selection issues. The most basic experimental design issue for crowdsouiisitige stopping
issue determining how many workers the platform should use foivargmicrotask before it stops and
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outputs the aggregate answer. The workers in a crowdsgueovironment are not very reliable, so multiple
workers are usually needed to ensure a sufficient confideneé [There is an obvious tradeoff here: using
more workers naturally increases the confidence of the ggtgreesult but it also increases the cost and time
associated with the experiment. One fairly common hearistto use less workers if the microtasks seem
easy, and more workers if the microtasks seem hard. Howkrdimg a sweet-spot may be challenging,
especially if different microtasks have different degregdifficulty.

Whenever one can distinguish between workers, we have amareedelection issuewhich workers
to choose for a given microtask? The workers typically coroenfa large, loosely managed population.
Accordingly, the skill levels vary over the population, eer@ often hard to predict in advance. Further, the
relative skill levels among workers may depend signifigaati a particular microtask or type of microtasks.
Despite this uncertainty, it is essential to choose worlteatare suitable or cost-efficient for the micro-task
at hand, to the degree of granularity allowed by the crowdsing platform. For example, while targeting
individual workers may be infeasible, one may be able toctsleme of the workers’ attributes such as age
range, gender, country, or education level. Also, the cemuecing platform may give access to multiple
third-party providers of workers, and allow to select amtmase.

Our focus. This paper is concerned with a combination of the stoppiredelcsion issues discussed above.
We seek a clean setting so as to understand these issues s fundamental level.

We focus on the scenario where several different populatidmorkers are available and can be targeted
by the algorithm. As explained above, these populations eoagspond to different selections of workers’
attributes, or to multiple available third-party provideMVe will refer to such populations asowds We
assume that the quality of each crowd depends on a particutaotask, and is not known in advance.

Each microtask is processed by an online algorithm whichackaptively decide which crowd to ask
next. Informally, the goal is target the crowds that are nsustable for this microtask. Eventually the
algorithm must stop and output the aggregate answer.

This paper focuses on processing a single microtask. Tlowsls to simplify the setting: we do not
need to model how the latent quantities are correlated siaifferent microtasks, and how the decisions
and feedbacks for different microtasks are interleaved time. Further, we separate the issue of learning
the latent quality of a crowd for a given microtask from theuis of learning the (different but correlated)
quality parameters of this crowd across multiple micrasask

Our model: the bandit survey problem. We consider microtasks that are multiple-choice questions
is given a setD of possible answers, henceforth callgotions We allow more than two options. (In fact,
we find this case to be much more difficult than the case of ambydptions.) Informally, the microtask has
a unique correct answei* € O, and the high-level goal of the algorithm is to find it.

The algorithm has access to several crowds: populationsodéens. Each crowd is represented by a
distributionD; over O, called theresponse distributiofor i. We assume that all crowds agree on the correct
answef] some optionz* € O is the unique most probable option for edgh

In each round, the algorithm picks some crowid= i; and receives an independent sample from the
corresponding response distributi@?. Eventually the algorithm must stop and output its guesscfor
Each crowd has a known per-round cost The algorithm has two objectives to minimize: the totaltcos
> ¢, and theerror rate: the probability that it makes a mistake, i.e. outputs aipopbther than:*. There
are several ways to trade off these two objectives; we disttus issue in more detail later in this section.

The independent sample in the above model abstracts tlosving interaction between the algorithm
and the platform: the platform supplies a worker from thesemocrowd, the algorithm presents the micro-

totherwise the algorithm’s high-level goal is less clear. aNese to avoid this complication in the current version.



task to this worker, and the worker picks some option.

Alternative interpretation.The crowds can correspond not to different populations afkeis but to
different ways of presenting the same microtask. For exapguie could vary the instructions, the order in
which the options are presented, the fonts and the styldsheraccompanying images.

The name of the gameédur model is similar to the extensively studiedulti-armed bandit problem
(henceforth MAB) in that in each round an algorithm selects one alternativen fa fixed and known set
of available alternatives, and the feedback depends onhbgea alternative. However, while an MAB
algorithm collects rewards, an algorithm in our model atiBeasurveyof workers’ opinions. Hence we
name our model thbeandit survey problem.

Discussion of the model. The bandit survey problem belongs to a broad class of onkaestbn problems
with explore-exploit tradeoff: that is, the algorithm faca tradeoff between collecting informatioexplo-
ration) and taking advantage of the information gathered sodspl6itatior). The paradigmatic problem
in this class is MAB: in each round an algorithm picks oneraléve @rm) from a given set of arms, and
receives a randomized, time-dependent reward associatedhis arm; the goal is to maximize the total
reward over time. Most papers on explore-exploit tradeoffoern MAB and its variants.

The bandit survey problem is different from MAB in severay kespects. First, the feedback is different:
the feedback in MAB is the reward for the chosen alternativieereas in our setting the feedback is the
opinion of a worker from the chosen crowd. While the inforimatreceived by a bandit survey algorithm
can be interpreted as a “reward”, the value of such rewardtisavealed to the algorithm and moreover not
explicitly defined. Second, the algorithm’s goal is diffierethe goal in MAB is to maximize the total reward
over time, whereas the goal in our setting is to output theecbanswer. Third, in our setting there are two
types of “alternatives”. crowds and options in the micrkta&part from repeatedly selecting between the
crowds, a bandit survey algorithm needs to output one opti@aggregate answer for the microtask.

An interesting feature of the bandit survey problem is tmealgorithm for this problem consists of two
components: arowd-selection algorithr an online algorithm that decides which crowd to ask next, an
astopping rulewhich decides whether to stop in a given round and which ogtooutput as the aggregate
answer. These two components are, to a large extent, indepefrom one another: as long as they do
not explicitly communicate with one another (or otherwibare a common communication protocol) any
crowd-selection algorithm can be used in conjunction with stopping rulé@ The conceptual separation
of a bandit survey algorithm into the two components is a&iorie in Mechanism Design, where it is very
useful to separate a “mechanism” into an “allocation athani’ and a “payment rule”, even though the two
components are not entirely independent of one another.

Trading off the total cost and the error rate. In the bandit survey problem, an algorithm needs to trade
off the two objectives: the total cost and the error rate. hymacal application, the customer is willing
to tolerate a certain error rate, and wishes to minimize dked tost as long as the error rate is below this
threshold. However, as the error rate depends on the prablance, there are several ways to make this
formal. Indeed, one could consider the worst-case errer (tae maximum over all problem instances),
a typical error rate (the expectation over a given “typiaditribution over problem instance), or a more
nuanced notion such as the maximum over a given family ofi¢aip distributions. Note that the “worst-
case” guarantees may be overly pessimistic, whereas esimgid‘typical” distributions makes sense only
if one knows what these distributions are.

For our theoretical guarantees, we focus on the worst-gagerate, and use tha-criteria objective a

The no-communication choice is quite reasonable: in facan be complicated to design a reasonable bandit survesithiag
that requires explicit communication between the crowldetmn algorithm and a stopping rule.



standard approach from theoretical computer sciencalites:. we allow some slack on one objective, and
compare on another. In our case, we allow slack on the wasst-error rate, and compare on the expected
total cost. More precisely: we consider a benchmark witheserarst-case error raté > 0 and optimal
total cost given thig, allow our algorithm to have worst-case error rate whiclsligltly) larger thar$, and
compare its expected total cost to that of the benchmark.

Moreover, we obtain provable guarantees in terms of a differproblem-specific objective: use the
same stopping rule, compare on the expected total cost. Wwdoéhat such results are well-motivated by
the structure of the problem, and provide a more informatiag to compare crowd-selection algorithms.

In our experiments, we fix the per-instance error rate, angpewe on the expected total cost.

An alternative objective is to assign a monetary penalty toistake, and optimize the overall cost,
i.e. the cost of labor minus the penalty. However, it may beeedingly difficult for a customer to assign
such monetary penaiﬂ/whereas it is typically feasible to specify tolerable emates. While we think this
alternative is worth studying, we chose not to follow it ifstpaper.

Our approach: independent design. Our approach is to design crowd-selection algorithms aoplp&tg
rules independently from one another. We make this desigitehn order to make the overall algorithm
design task more tractable. While this is not the only pdssilesign choice, we find it productive, as it
leads to a solid theoretical framework and algorithms thatpaactical and theoretically founded.

Given this “independent design” approach, one needs toadfia design goals for each of the two
components. These goals are not immediately obvious. thde® stopping rules may compare differ-
ently depending on the problem instance and the crowdsmtealgorithms they are used with. Likewise,
two crowd-selection algorithms may compare differentlpeleding on the problem instance and the stop-
ping rules they are used with. Therefore the notions of ogitistopping rule and optimal crowd-selection
algorithm are not immediately well-defined.

We resolve this conundrum as follows. We design crowd-sele@lgorithms that work well across
a wide range of stopping rules. For a fair comparison betvaeewd-selection algorithms, we use them
with the samestopping rule (see Sectidn 3 for details), and argue thdt samparison is consistent across
different stopping rules.

Our contributions. We introduce the bandit survey problem and present iniisiliits in several directions:
benchmarks, algorithms, theoretical analysis, and exjaris.

We are mainly concerned with the design of crowd-selectigardihms. Our crowd-selection algorithms
work with arbitrary stopping rules. While we provide a sfiiecfand quite reasonable) family of stopping
rules for concreteness, third-party stopping rules carals#éyeplugged in.

For the theoretical analysis of crowd-selection algorghme use a standard benchmark: the best time-
invariant policy given all the latent information. The fi&ure on online decision problems typically studies
a deterministic version of this benchmark: the best fixeeraittive (in our case, the best fixed crowd). We
call it thedeterministic benchmarkVe also consider a randomized version, whereby an alteen@rowd)
is selected independently from the same distribution irheaand; we call it theandomized benchmark
The technical definition of the benchmarks, as discusse@dtic®(3, roughly corresponds to equalizing the
worst-case error rates and comparing costs.

The specific contributions are as follows.

(1) We largely solve the bandit survey problem as far as the niatestic benchmark is concerned. We
design two crowd-selection algorithms, obtain strong pbde guarantees, and show that they perform well
in experiments.

®In particular, this was the case in the authors’ collaboratiith a commercial crowdsourcing platform.



Our provable guarantees are as follows. If our crowd-seleclgorithm uses the same stopping rule
as the benchmark, we match the expected total cost of thendeistic benchmark up to a small additive
factor, assuming that all crowds have the same per-rourtd.cbisis result holds, essentially, for an arbitrary
stopping rule. We obtain a similar, but slightly weaker ieglcrowds can have different per-round costs.
Moreover, we can restate this as a bi-criteria result, inclviwe incur a small additive increase in the
expected total cost and + k) multiplicative increase in the worst-case error rate, \&lheis the number of
crowds. The contribution in these results is mostly concaptther than technical: it involves “independent
design” as discussed above, and a “virtual rewards” tecienichich allows us to take advantage of the MAB
machinery.

For comparison, we consider a naive crowd-selection dlgarthat tries each crowd in a round-robin
fashion. We prove that this algorithm, and more generally enowd-selection algorithm that does not
adapt to the observed workers’ responses, performs vety bgdinst the deterministic benchmark. While
one expects this on an intuitive level, the correspondinghemaatical statement is not easy to prove. In
experiments, our proposed crowd-selection algorithmBparmuch better than the naive approach.

(2) We observe that the randomized benchmark dramaticallyediatpns the deterministic benchmark
on some problem instances. This is a very unusual propergrfonline decision probIeH1(However, the
two benchmarks coincide when there are only two possibleanss)

We design an algorithm which significantly improves over ¢éxpected total cost of the deterministic
benchmark on some problem instances (while not quite regahie randomized benchmark), when both
our algorithm and the benchmarks are run with the same stgppie. This appears to be the first pub-
lished result in the literature on online decision problemgere an algorithm provably improves over the
deterministic benchmark.

We can aslo restate this result in terms of the bi-criterjaaitve. Then we suffer él + k) multiplicative
increase in the worst-case error rate.

(3 We provide a specific stopping rule for concreteness; thipshg rule is simple, tunable, has
nearly optimal theoretical guarantees (in a certain forsealse), and works well in experiments.

Preliminaries and notation. There arek crowds andn options (possible answers to the microtask).
denotes the set of all options. An important special caseiferm costsall ¢; are equal; then the total cost
is simply the stopping time.

Fix roundt in the execution of a bandit survey algorithm. Lét; be the number of rounds beforén
which crowdi has been chosen by the algorithm. Among these roundy; |€t:) be the number of times a
given optionz € O has been chosen by this crowd. Térapirical distributionﬁm for crowd: is given by
ﬁi,t(w) = N, +(z)/N;, for each optionz. We useﬁi,t to approximate the (latent) response distribution

Define thegap ¢(D) of a finite-support probability distributiof® as the difference between the largest
and the second-largest probability value®inif there are only two optionsy= 2), the gap of a distribution
over( is simply the bias towards the correct answer. d;et ¢(D;) ande; ;, = E(ﬁi,t) be, respectively, the
gapand theempirical gapof crowds.

We will use vector notation over crowds: tlest vector¢ = (¢1, ... ,c), the gap vectore =
(e1, ... ,ex), and theresponse vectoP (z) = (Dy(x), ... , Dy(z)) for each option: € O.

Map of the paper. The rest of the paper is organized as follows. As a warm-upaafalindation, we

“We are aware of only one published example of an online detisioblem with this property, in a very different context of
dynamic pricing [[BDKS1P]. However, the results [n [BDKS12kus on a special case where the two benchmarks essentially
coincide.



consider stopping rules for a single crowd (Secfion 2). Bemarks are formally defined in Sectiéh 3.

Design of crowd-selection algorithms with respect to theedeinistic benchmark is treated in Sect[dn 4.
We discuss the randomized benchmark in Se€fion 5; we desajaralyze an algorithm for this benchmark

in Sectiorl 6. Results with respect to the bi-criteria beratknare in Sectionl7. We present our experimental
results Sectioh]8 and Sectibh 9, respectively for a singledrand for selection over multiple crowds. We

discuss related work in Sectibn]10, and open questions itoBEL.

2 A warm-up: single-crowd stopping rules

Consider a special case with only one crowd to choose fronis dtear that whenever a bandit survey
algorithm decides to stop, it should output the most fregoetion in the sample. Therefore the algorithm
reduces to what we call single-crowd stopping rulean online algorithm which in every round inputs an
optionz € O and decides whether to stop. When multiple crowds are &lajla single-crowd stopping
rule can be applied to each crowd separately. This disqusgithe single-crowd stopping rules, together
with the notation and tools that we introduce along the wawynk a foundation for the rest of the paper.

A single-crowd stopping rule is characterized by two quagithat are to be minimized: the expected
stopping time and therror rate: the probability that once the rule decides to stop, the rinequent option
in the sample is nat*. Note that both quantities depend on the problem instahesefiore we leave the
bi-criteria objective somewhat informal at this point.

A simple single-crowd stopping rule. We suggest the following single-crowd stopping rule:

StOp ifa‘,t Ni,t > thy \/Ni,t- (1)

Here: is the crowd the stopping rule is applied to, afig., is the quality parameterwhich indirectly
controls the tradeoff between the error rate and the expesttgping time. Specifically, increasirig,.,
decreases the error rate and increases the expected gttippen If there are only two options, call them
andy, then the left-hand side of the stopping rule is simp¥y,(z) — N; «(y)|.

The right-hand side of the stopping rule is a confidence teunich should be large enough to guarantee
the desired confidence level. TQéNi,t is there because the standard deviation of the Binomiailalisibn
with N samples is proportional t¢/N.

In our experiments, we use a “smooth” version of this stoppire: we randomly round the confidence
term to one of the two nearest integers. In particular, theatmversion is meaningful even with,:, < 1
(whereas the deterministic version with., < 1 always stops after one round).

Analysis. We argue that the proposed single-crowd stopping rule iteqeiasonable. To this end, we

obtain a provable guarantee on the tradeoff between thectgstopping time and the worst-case error
rate. Further, we prove that this guarantee is nearly optamass all single-crowd stopping rules. Both

results above are in terms of the gap of the crowd that thestgpule interacts with. We conclude that the

gap is a crucial parameter for the bandit survey problem.

Theorem 2.1. Consider the stopping rulél(1) withlye, = 4 /log (s Nﬁt), for somey > 0. The error rate of
this stopping rule is at mos?(d), and the expected stopping time is at W(OE([E;Q log %)

The proof of Theorer 211, and several other proofs in therpegdg on the Azuma-Hoeffding inequality.
More specifically, we use the following corollary: for eaCh> 0, each round, and each optionr € O

Pr | |Di(z) — Diy(x)| < C/v/Nig } >1— e U, 2)



In particular, taking the Union Bound over all optionsE O, we obtain:
Pr| [€ — € §C/\/Ni,t} > 1 —ne 2CH, (3)

Proof of Theorerh 2I1Fix a > 1 and letC; =  /log(a % Ngt). Let &, . be the event in Equatiofl(2) with

C = (. Consider the event that, ; holds for all optionsr € O and all rounds; call it the clean event
Taking the Union Bound, we see that the clean event holdsprdbability at least — O(6/a).
First, assuming the clean event we hése— € ;| < 2C,//N;, for all roundst. Then the stopping

rule (1) stops as soon as> 3C;/+/N; ., which happens as soon 85; = O (ei‘Q log %) Integrating
this over alla > 1, we derive that the expected stopping time is as claimed.
Second, take = 1 and assume the clean event. Suppose the stopping rule ssxpseround. Letx

be the most probable option after this round. Tmera( ) — D +(y) > C/\/N;, for all optionsy # . It
follows thatD;(z) > D;(y) for all optionsy # z, i.e. z is the correct answer. O

The following lower bound easily follows from classical uéts on coin-tossing. Essentially, one needs
at least(e~2) samples from a crowd with gap> 0 to obtain the correct answer.

Theorem 2.2. Let Ry be any single-crowd stopping rule with worst-case errorerégss thany. When
applied to a crowd with gap > 0, the expected stopping time Bf is at least)(¢~2 log %).

While the upper bound in TheordmP.1 is close to the lower HoniTheoreni 2.2, it is possible that one
can obtain a more efficient version of Theorem 2.1 using mophisticated versions of Azuma-Hoeffding
inequality such as, for example, the Empirical Bernsteaqlrality.

Stopping rules for multiple crowds. For multiple crowds, we consider stopping rules that arepmsad

of multiple instances of a given single-crowd stopping ridlg we call themcompositestopping rules.
Specifically, we have one instance Bf for each crowd (which only inputs answers from this croway a
an additional instance @& for thetotal crowd— the entire population of workers. The composite stopping
rule stops as soon as sormfg instances stops, and outputs the majority option for trétaimcé Given a
crowd-selection algorithrd, let cost(.A|Ry) denote its expected total cost (for a given problem insfance
when run together with the composite stopping rule base8pon

3 Omniscient benchmarks for crowd selection

We consider two “omniscient” benchmarks for crowd-setaclgorithms: informally, the best fixed crowd
i* and the best fixed distribution* over crowds, wher¢* andp.* are chosen given the latent information:
the response distributions of the crowds. Both benchmaglks &ll their inputs as a single data source, and
are used in conjunction with a given single-crowd stoppinlg R (and hence depend on ti&).

Deterministic benchmark. Let cost(i|Ry) be the expected total cost of always choosing crowdth R

as the stopping rule. We define tteterministic benchmarks the crowd* that minimizescost(i| Ry ) for a
given problem instance. In view of the analysis in Sedtioow2 intuition is thatcost(i| Ry) is approximated
by ¢;/€? up to a constant factor (where the factor may depen&@but not on the response distribution of
the crowd). The exact identity of the best crowd may depen&gnFor the basic special case of uniform

SIf Ry is randomized, then each instancefdf uses an independent random seed. If multiple instancéy afop at the same
time, the aggregate answer is chosen uniformly at randonmgri@ majority options for the stopped instances.



costs and two options (assuming that the expected stoppirgdf R, iS non-increasing in the gap), the
best crowd is the crowd with the largest gap. In general, vpecgimate the best crowd byrgmin, c; /2.

Randomized benchmark. Given a distributior, over crowds, letost(u|R) be the expected total cost of
a crowd-selection algorithm that in each round chooseswadccmdependently fromu, treats all inputs as

a single data source — essentially, a single crowd — andigg@s a stopping rule on this data source. The
randomized benchmaiik defined as th@ that minimizescost(u|Ryp) for a given problem instance. This
benchmark is further discussed in Secfion 5.

Comparison against the benchmarks. In the analysis, we compare a given crowd-selection alyorit
against these benchmarks as follows: we dsie conjunction with the composite stopping rule based on
Ry, and compare the expected total cesst(.A|Ry) against those of the benchmalks.

Moreover, we derive corollaries with respect to the biesid objective, where the benchmarks choose
both the best crowd (resp., best distribution over crowdd)the stopping rule. These corollaries are further
discussed in Sectidd 7.

4 Crowd selection against the deter ministic benchmark

In this section we design crowd-selection algorithms tieahgete with the deterministic benchmark.

Throughout the section, l&k, be a fixed single-parameter stopping rule. Recall that theriehnistic
benchmark is defined asin cost(i|Ry), where the minimum is over all crowds We consider arbitrary
composite stopping rules based Bp, under a mild assumption that tli& does not favor one option over
another. Formally, we assume that the probability tRgtstops at any given round, conditional on any
fixed history (sequence of observations tRatinputs before this round), does not change if the options are
permuted. TherR, and the corresponding composite stopping rule are calfetmetric For the case of
two options (when the expected stopping timeg¥fdepends only on the gap of the crowd ti&atinteracts
with) we sometimes make another mild assumption: that tipe@rd stopping time decreases in the gap;
we call suchRy gap-decreasing

4.1 Crowd-selection algorithms

Virtual reward heuristic. Our crowd-selection algorithms are based on the followdegj which we call
the virtual reward heuristl. Given an instance of the bandit survey problem, consider AB hstance
where crowds correspond to arms, and selecting each ciweslilts in rewardf; = f(c;/¢?), for some
fixed decreasing functiorf. (Given the discussion in Sectibh 2, we usgée? as an approximation for
cost(i|Rp); we can also plug in a better approximation when and if onevadlable.) Callf; the virtual
reward note that it is not directly observed by a bandit survey algm, since it depends on the gap
However, various off-the-shelf bandit algorithms can b&ated in terms of the estimated rewards, rather
than the actual observed rewards. The idea is to use sucit bigatithms and plug in our own estimates
for the rewards.

A bandit algorithm thus applied would implicitly minimizéé¢ number of times suboptimal crowds are
chosen. This is a desirable by-product of the design goal ABMvhich is to maximize the total (virtual)
reward. We are not directly interested in this design gaatlwe take advantage of the by-product.

®Using the samek, roughly equalizes the worst-case error rate betwéemd the benchmarks; see Secfidn 7 for details.
"We thank anonymous reviewers for pointing out that our irdased algorithm can be interpreted via virtual rewards.



Algorithm 1: UCB1 with virtual rewards. Our first crowd-selection algorithm is basedwB1 [ACBFQ2],
a standard MAB algorithm. We use virtual rewarfis= ¢;/,/c;.

We observe thaiCB1 has a property that at each timét only requires an estimate ¢f and a confidence
term for this estimate. Motivated by Equatién (3), we 8s¢/c; as the estimate fof;, andC'//¢; N; ; as
the confidence term. The resulting crowd-selection algorjtwhich we calvirtUCB, proceeds as follows.
In each round it chooses the crowélwhich maximizes théndex; ;, defined as

Ty=c; ' (G + €/ ). @

For the analysis, we usel (4) with = /8log t. In our experiments = 1 appears to perform best.

Algorithm 2: Thompson heuristic. Our second crowd-selection algorithm, calledrtThompson, iS an
adaptation orhompson heuristifTho33] for MAB to virtual rewardsf; = ¢;//c;. The algorithm proceeds
as follows. For each roundand each crowd, let P; ; be the Bayesian posterior distribution for gagiven
the observations from crowiclip to rounds (starting from the uniform prior). Samplgindependently from
P; . Pick the crowd with the largeshdex(;//c;. As inUCB1, the index of crowd is chosen from the
confidence interval for the (virtual) reward of this crowdf bere it is a random sample from this interval,
whereas iruCB1 it is the upper bound.

It appears difficult to compute the posteridPs; exactly, so in practice an approximation can be used.
In our simulations we focus on the case of two options, calith,y. For each crowd and round:, we
approximateP; ; by the Beta distribution with shape parameters= 1 + N;(x) and5 = 1 4+ N;(y),
whereN; (z) > N;+(y). (Essentially, we ignore the possibility thais not the right answer.)

It is not clear how the posterid?; ; in our problem corresponds to the one in the original MAB peoh
so we cannot directly invoke the analyses of Thompson heufis MAB [CL11] AG12].

Straw-man approaches. We compare the two algorithms presented above to an obviaive approach:
iterate through each crowd in a round-robin fashion. Moecisely, we consider a slightly more refined
version where in each round the crowd is sampled from a fix&dlolition . over crowds. We will call such
algorithmsnon-adaptive The most reasonable version, calkechdRR (short for “randomized round-robin”)
is to sample each crowidwith probability p; ~ 1/cil§

In the literature on MAB, more sophisticated algorithms @ften compared to the basic approach: first
explore, then exploit. In our context this means to fasgploreuntil we can identify the best crowd, then
pick this crowd anaxploit So for the sake of comparison we also develop a crowd-sahealgorithm that
is directly based on this approach. (This algorithm is ngeldaon the virtual rewards.) In our experiments
we find it vastly inferior tovirtUCB andVirtThompson.

The “explore, then exploit” design does not quite work asealecting the best crowd with high proba-
bility seems to require a high-probability guarantee thi trowd can produce the correct answer with the
current data, in which case there is no need for a furthero@agibn phase (and so we are essentially back
to RandRR). Instead, our algorithm explores until it can identify thest crowd withow confidence, then
it exploits with this crowd until it sufficiently boosts thewrfidence or until it realizes that it has selected
a wrong crowd to exploit. The latter possibility necessi¢at third phase, callellback, in which the
algorithm explores until it finds the right answer with higtnfidence.

The algorithm assumes that the single-crowd stopping®glaas a quality parametér,., which con-
trols the trade-off between the error rate and the expectedimg time (as in Sectidd 2). In the exploration

8For uniform costs it is natural to use a uniform distribution;.. For non-uniform costs our choice is motivated by Thedredn 4.
where it (approximately) minimizes the competitive ratio.



phase, we also uselaw-confidencesersion of Ry that is parameterized with a lower valGg,, < Coy;
we run one low-confidence instance®§ for each crowd.

The algorithm, calledixploreExploitRollback, proceeds in three phases (and stops whenever the
composite stopping rule decides so0). In the exploratiors@h# runsRandRR until the low-confidence
version of Ry stops for some crowd'. In the exploitation phase, it always chooses craiwdThis phase
lastsa times as long as the exploration phase, where the paraméerthosen so that crowid produces a
high-confidence answer w.h.p. if itis indeed the best C@\Eihally, in the roll-back phase it rurkandRR.

4.2 Analysis. upper bounds

We start with a lemma that captures the intuition behind theal reward heuristic, explaining how it helps
to minimize the selection of suboptimal crowds. Then wewteain upper bound farirtUCB.

Lemma4.1. Leti* = argmin, ¢;/¢? be the approximate best crowd. LB§ be a symmetric single-crowd
stopping rule. Then for any crowd-selection algoritbdnletting /V; be #times crowd is chosen, we have

cost(A[Ry) < cost(i*[Ro) + 3, ¢i E[N;].

This is a non-trivial statement becausest(i*|Ry) refers not to the execution of, but to a different
execution in which crowd* is always chosen. The proof uses a “coupling argument”.

Proof. Let.4* be the crowd-selection algorithm which corresponds to yvwdnoosing crowd*.

To comparecost(A|Ry) andcost(A*|Ry), let us assume w.l.o.g. that the two algorithms are run on
correlated sources of randomness. Specifically, assurhbdtiaalgorithms are run on the same realization
of answers for crowd*: the /-th time they ask this crowd, both algorithms get the samevandMoreover,
assume that the instance 8§ that works with crowd* uses the same random seed for both algorithms.

Let V be the realized stopping time fot*. Then.4 must stop after crowd* is chosenN times. It
follows that the difference in the realized total costs teswA and.A* is at most), ¢ N;. The claim
follows by taking expectation over the randomness in thevdsoand in the stopping rule. O

Theorem 4.2 (VirtUCB). Leti* = argmin, ¢;/¢? be the approximate best crowd. LB be a symmetric
single-crowd stopping rule. Assuni& must stop after at most rounds. Define/irtUCB by (4) with
C = /8logt, for each round. LetA; = (¢;(fix — f;)) "2 andA = > iz Niv Then

cost(VirtUCB|Ry) < cost(i*|Rg) + O(AlogT).

Proof Sketch.PluggingC = /8log ¢ into Equation [(B) and dividing by/c;, we obtain the confidence
bound for|f; — € ,//c;| that is needed in the the original analysisioB1 in [ACBFOZ]. Then, as per that
analysis, it follows that for each crowid# i* and each roundwe haveE[N; ;| < A;logt. (This is also not
difficult to derive directly.) To complete the proof, notath < 7" and invoke Lemmpa4l1. O

Note that the approximate best crowdnay be different from the (actual) best arm, so the guarantee
Theoreni 4.2 is only as good as the differencet (i*|Ry) — argmin, cost(i|Ry). Note that* is in fact the
best crowd for the basic special case of uniform costs anapiions (assuming that, is gap-decreasing).

It is not clear whether the constants can be significantly improved. For uniform costs we have
A; = (e — €)~2, which is essentially the best one could hope for. This isbse one needs to try each
crowd: # * at least)(A;) times to tell it apart from crowd*.

°We conjecture that foR, from Sectiof 2 one can take= ©(Caysy/Clsy)-
1%This can be proved using an easy reduction from an instanteedfIAB problem where each arinbrings reward! with
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4.3 Analysis: lower bound for non-adaptive crowd selection

We purpose of this section is argue that non-adaptive crsigktion algorithms performs badly compared
to VirtUCB. We prove that the competitive ratio of any non-adaptivevdkselection algorithm is bounded
from below by (essentially) the number of crowds. We contitsis with an upper bound on the competitive
ratio of VirtUCB, which we derive from Theorem 4.2.

Here the competitive ratio of algorithrd (with respect to the deterministic benchmark) is defined
as max %’S‘%, where the outemax is over all problem instances in a given family of problem
instances. We focus on a very simple family: problem inganwith two options and uniform costs, in
which one crowd has gap> 0 and all other crowds have gé@pwe call such instancessimple

Our result holds for a version of a composite stopping ruée ttnes not use the total crowd. Note that
considering the total crowd does not, intuitively, makessefor thee-simple problem instances, and we did
not use it in the proof of Theorem 4.2, either.

Theorem 4.3 (RandRR). Let Ry be a symmetric single-crowd stopping rule with worst-casereaate p.
Assume that the composite stopping rule does not use thHectotad. Consider a non-adaptive crowd-
selection algorithmA4 whose distribution over crowds js Then for eaclk > 0, the competitive ratio over

the e-simple problem instances is at lea&ti“ (1 — 2kp), wherek is the number of crowds.

1N ¢; fi

Note thatmin % = k, where thenin is taken over all distributiong. The minimizingu. satisfies
w; ~ 1/c; for each crowd, i.e. if u corresponds t®andRR. The (1 — 2kp) factor could be an artifact of
our somewhat crude method to bound the “contribution” ofgap0 crowds. We conjecture that this factor
is unnecessary (perhaps under some minor assumptioRg)on

To prove Theorem 413, we essentially need to compare th@isgppime of the composite stopping
rule R with the stopping time of the instance & that works with the gaf-crowd. The main technical
difficulty is to show that the other crowds are not likely tode R to stop before thig?, instance does. To

this end, we use a lemma th&yp is not likely to stop in finite time when applied to a gagrowd.

Lemma 4.4. Consider a symmetric single-crowd stopping riidg with worst-case error rate. Suppose
Ry is applied to a crowd with gap. ThenPr[R, stops in finite timp< 2p.

Proof. Intuitively, if Ry stops early if the gap i@ then it is likely to make a mistake if the gap is very small
but positive. However, connecting the probability in qi@stvith the error rate of?, requires some work.
SupposeR, is applied to a crowd with gap Let q(¢, ¢, ) be the probability thaR, stops at round
and “outputs” optionz (in the sense that by the tind&, stops,z is the majority vote).
We claim that for all rounds and each option: we have

lim. g(e,t,) = g(0,,2). 5)
e—0

Indeed, suppose not. Then for some- 0 there exist arbitrarily small gaps> 0 such thatlg(e, ¢, z) —
q(0,t,z)| > 6. Thus it is possible to tell apart a crowd with gafrom a crowd with gap by observing
©(6~2) independent runs aRy, where each run continues fosteps. In other words, it is possible to tell
apart a fair coin from a gap-coin usingO(t §—2) “coin tosses”, for fixedt ands > 0 and an arbitrarily
smalle. Contradiction. Claim proved.

probability (1 + €;)/2, and reward) otherwise. Treat this as an instance of the bandit survelyigmn where arms correspond to
crowds, and options to rewards. An algorithm that finds tlevdrwith a larger gap in less than(A;) steps would also find an
arm with a larger expected reward, which would violate theesponding lower bound for the MAB problem (see [ACBFS02])
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Let  andy be the two options, and let be the correct answer. Lefe, ) be the probability thaR?,
stops atround. Leta(elt) = q(e, t,y)/q(e, t) be the conditional probability thd, outputs a wrong answer
given that it stops at round Note that by Equatiori{5) for each round holds thatg(e, t) — ¢(0,¢) and
a(e|t) — a(0|t) ase — 0. Therefore for each roung € N we have:

P =2 ren alelt) q(e,t) > Ztgto a(elt) qle,t) —esoo Etgtg a(0[t) q(0,1t).

Note thata(0[t) = 1 by symmetry. It follows thad ., q(0,t) < 2p for eachty € N. Therefore the
probability thatR, stops in finite time i$_";°, ¢(0,t) < 2p. O

Proof of Theorerh 413Suppose algorithmt is applied to ar-simple instance of the bandit survey problem.
To simplify the notation, assume that crowds the crowd with gag (and all other crowds have gap.

Let R(;) be the instance aR, that corresponds to a given crowdDenote the composite stopping rule
by R. Let oy be the stopping time ak: the round in whichR stops.

For the following two definitions, let us consider an exemutof algorithm.A that runs forever (i.e., it
keeps running even aftét decides to stop). First, let be the “local” stopping time of?;): the number of
samples from crowdthat ;) inputs before it decides to stop. Secondglgbe the “global” stopping time
of R;: the round wher? ;) decides to stop. Note thafz = min; o;.

Let us use Lemmia 4.4 to show thatstops essentially wheR, tells it to stop. Namely:

Elo] (1 — 2kp) < Elog] (6)

To prove Equation{6), consider the evént= {min;~; 7; = oo}, and letlz be the indicator variable of
this event. Note thatrp > o1 1g and that random variables, and 1z are independent. It follows that
E[ogr] > Pr[E]E[o4]. Finally, Lemma4.4 implies th&r[E] > 1 — 2kp. Claim proved.

Leti; be the option chosen hyt in roundt. Then by Wald’s identity we have

E[r] = [Z Li,=1)

= E[1y,=1;] E[o1] = p1 Elo1]
t=1

E[cost(A|Rp)] [Z Ciy

Therefore, plugging in Equatiohl(6), we obtain

E[cost(A|Rp)] < > Ci i (
c1 Elm] T oam

Elc;, ] Elor] = (32, ¢i i) E[or].

1 — 2kp).
It remains to observe that E[r] is precisely the expected total cost of the deterministichenark. [

Competitive ratio of VirtUCB. Consider the case of two options and uniform costs. Themigasg R
is gap-decreasing) the approximate best crotvieh Theoren{ 4.2 is the best crowd. The competitive ratio
of VirtUCB is, in the notation of Theorem 4.2, at mdst- % This factor is close td whenRy is
tuned so as to decrease the error rate at the expense ofsing¢iae expected running time.
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5 Therandomized benchmark

In this section we further discuss the randomized benchfesadcowd-selection algorithms. Informally, itis
the bestandomizedime-invariant policy given the latent information (resige distributions of the crowds).
Formally this benchmark is defined msn cost(u|Rp), where the minimum is over all distributiopsover
crowds, andRy is a fixed single-parameter stopping rule. Recall that indinition of cost(u|Ry), the
total crowd is treated as a single data source to whigls applied.

The total crowd under a givem behaves as a single crowd whose response distrib@jpis given by
D, (x) = Eip[D;(z)] for all optionsz. The gap ofD,, will henceforth be called thenduced gapof 1., and
denotedf (i) = €(D,). If the costs are uniform thetost(u|Ry) is simply the expected stopping time of
Ry onD,,, which we denote (D,,). Informally, 7(D,,) is driven by the induced gap pf

We show that the induced gap can be much larger than the gayy cfewd.

Lemmab5.1. Lety be the uniform distribution over crowds. For aay> 0 there exists a problem instance
such that the gap of each crowddsand the induced gap ¢f is at Ieastl—lo.

Proof. The problem instance is quite simple: there are two crowdsthree options, and the response
distributions ar€2 + ¢, 2,1 —¢)and(2 +¢, ¢ —¢,2). ThenD, = (3 + ¢, & — 5.5 — 5). O

We conclude that the randomized benchmark does not redube teterministic benchmark: in fact,
it can be much stronger. Formally, this follows from Lemma 6nder a very mild assumption aiy:
that for any response distributidl with gapli0 or more, and any response distributi®® whose gap is
sufficiently small, it holds that (D) > 7(D’). The implication for the design of crowd-selection aldumiis
is that algorithms that zoom in on the best crowd may be d@itisuboptimal. Instead, for some problem
instances the right goal is to optimize over distributiomsracrowds.

However, the randomized benchmark coincides with the oetéstic benchmark for some important
special cases. First, the two benchmarks coincide if thes@e uniform and all crowds agree on the top
two options (andR, is gap-decreasing). Second, the two benchmarks may ceiiicilere are only two
options (O| = 2), see LemmBa5I2 below. To prove this lemma for non-uniforstgamne needs to explicitly
considercost(u|Rp) rather than just argue about the induced gaps. Our proofressthat the expected
stopping time ofRRy is a concave function of the gap; it is not clear whether th&@imnption is necessary.

Lemma5.2. Consider the bandit survey problem with two optiofg3|(= 2). Consider a symmetric single-
crowd stopping ruleR,. Assume that the expected stopping timdzgfon response distributio® is a
concave function of(D). Then the randomized benchmark coincides with the detesticilnenchmark.
That is,cost(u|Ry) > min; cost(i|Ry) for any distributiony over crowds.

Proof. Let i be an arbitrary distribution over crowds. Recall tligt) denotes the induced gap of Note
that f () = i - € To see this, le© = {z,y}, wherez is the correct answer, and write

€(Dy) = Du(@) = Dyly) = pi- Dw) — - Dly) = - (D(@) = Dly)) = - &
Let A be the non-adaptive crowd-selection algorithm that cpoeds tou. For each round, let i; be

the crowd chosen byl in this round, i.e. an independent sample fromLet /V be the realized stopping
time of A. Let 7(e) be the expected stopping time &f, on response distribution with gap Note that
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E[N] = 7(f(w)). Therefore:

cost(y|Ry) = E [thz . c] = Ele;,] E[N] by Wald’s identity
— (@) TE ) = (@) T pir(e) by concavity ofr ()
> min ¢; 7(¢;) by Claim[A.1

= min cost(i|Rp).
7

We have used a general fact tl(lﬁto?)(f-ﬁ) > min; o, §; for any vectorst, 5 € R* and anyk-dimensional
distributionz. A self-contained proof of this fact can be found in the Apligr{Claim[A.T). O

6 Crowd selection against the randomized benchmark

We design a crowd-selection algorithm with guaranteesnagaine randomized benchmark. We focus on
uniform costs, and (a version of) the single-crowd stoppirig from Sectiol 2.

Our single-crowd stopping rul®, is as follows. Let, ; be the empirical gap of the total crowd. Then
Ry stops upon reaching rourndf and only if

€t > Cquy/Vt o t=T. (7)

HereCyty is the “quality parameter” and is a given time horizon.

Throughout this section, le¥1 be the set of all distributions over crowds, and fét= max,,c (¢ f (1)
be the maximal induced gap. The benchmark cost is then at(kag*)—2).

We design an algorithrod such thatcost(A|Ry) is upper-bounded by (essentially) a function fof
namelyO ((f*)‘(’““)). We interpret this guarantee as follows: we match the beackirost for a distri-
bution over crowds whose induced gag( j&)% (*+2). By Lemma5.1L, the gap of the best crowd may be
much smaller, so this is can be a significant improvement ihgedeterministic benchmark.

Theorem 6.1. Consider the bandit survey problem with uniform costs. Rgbe the single-crowd stopping
rule given by[(¥7). There exists a crowd-selection algoritArauch that

cost(A|Ry) < O ((f*)_(k+2) Vlog T) :

The proof of Theorem 611 relies on some properties of thededugap: concavity and Lipschitz-
continuity. Concavity is needed for the reduction lemmanfb@a[6.8), and Lipschitz-continuity is used
to solve the MAB problem that we reduce to.

Claim 6.2. Consider the induced gap(x) as a function onM C R%. First, f(u) is a concave function.
Second|f(u) — f(i')| < nljp — (|| for any two distributionguy, s € M.

Proof. Let 1 be a distribution over crowds. Then

F) =Dule") = max Dulx)= min p- (D)~ B()) ®)

Thus, f (1) is concave as a minimum of concave functions. The seconah étdiows because

—

(1 — i) - <D(x*) - ﬁ(x)) <n|u—pll, foreach option:. O
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6.1 Proof of Theorem[6.1]

Virtual rewards. Consider the MAB problem with virtual rewards, where armgespond to distributions
w over crowds, and the virtual reward is equal to the inducqd fda); call it theinduced MAB problem
The standard definition of regret is with respect to the bastlfarm, i.e. with respect t6*. We interpret
an algorithmA for the induced MAB problem as a crowd-selection algoritfimeach round, the crowd is
sampled independently at random from the distribufipre M chosen byA.

Lemma 6.3. Consider the bandit survey problem with uniform costs. Rgbe the single-crowd stopping
rule given by [(I7). Letd be an MAB algorithm for the induced MAB instance. Suppdskas regret
O(t'~7log T') with probability at leastl — 1, wherey € (0, 3]. Then

cost(A|Ry) < O ((f*)_l/'y VlogT) .

Proof. Let u; € M be the distribution chosen by is roundt. Then the total crowd returns each optien
with probability i, - D (), and this event is conditionally independent of the previmunds given;.
Fix roundt. Let N;(z) be the number times optionis returned up to time by the total crowd, and let

ﬁt(x) = %Nt(m) be the corresponding empirical frequency. Note that

t
B [Di(e)] = - Do), wherem £ 23" u,
s=0

The time-averaged distribution over crowgsis a crucial object that we will focus on from here on-
wards. By Azuma-Hoeffding inequality, for ea¢h> 0 and each option € O we have

Pr Uﬁt(m) — it ﬁ(m)‘ < %] >1— e Y, 9)

Lete = e(ﬁt) be the empirical gap of the total crowd. Taking the Union BbimEquation[(®) over all
optionsz € O, we conclude thad; is close to the induced gap pf:

Pr [|€t — fl)| < E} >1-—ne % foreachC > 0.

Vit

In particular, Ry stops at round with probability at leasi — % as long as

F(ie) > 7Y% (Cqey + O(/10g T)). (10)

By concavity off, we havef(fi;) > fi, wheref; = %Zi:o f(us) is the time-averaged virtual reward.

Now, t f; is simply the total virtual reward by timig which is close tof* with high probability. Specifically,

the regret ofd by timet is R(t) = t(f* — f;), and we are given a high-probability upper boundri{n).
Putting this all togetherf (fi;) > f; > f* — R(t)/t. An easy computation shows thAti;) becomes

sufficiently large to trigger the stopping conditidn(10) fo= O ((f*)~'/7 IogT). O

Solving the induced MAB problem. We derive a (possibly inefficient) algorithm for the indudéid\B
instance. We treat as a subset dk*, endowed with a metrid(y, ¢//) = n || — ¢/||;. By Lemmd6.2, the
induced gapf (u) is Lipschitz-continuous with respect to this metric. Thimsthe induced MAB problem
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arms form a metric spadeM, d) such that the (expected) rewards are Lipschitz-contind@uthis metric
space. MAB problems with this property are calladschitz MABIKSUQS].

We need an algorithm for Lipschitz MAB that works with virtuawards. We use the following simple
algorithm from [Kle04, KSUOB]. We treat as a subset dR”, and apply this algorithm t®*. The
algorithm runs in phases= 1,2, 3, ... of duration2’. Each phasg is as follows. For some fixed parameter
9; >0, discretizeR* uniformly with granularitys;. Let.S; be the resulting set of arms. Run bandit algorithm
UCB1 [ACBFO02] on the arms irf;. (For each arm irf; \ M, assume that the reward is alway$ This
completes the specification of the algorithm.

Crucially, we can implementCB1 (and therefore the entire uniform algorithm) with virtualwards, by
usinge; as an estimate fof (1). Call the resulting crowd-selection algoritimirtUniform.

Optimizing thed; using a simple argument frorn [KIe04], we obtain regit!—'/(*+2) log T') with
probability at leas{1 — +). Therefore, by Lemm&8.30st(VirtUniform|Ry) suffices to prove Theo-
rem[6.].

We can also use a more sophisticatedming algorithnfrom [KSUOQE&], which obtains the same in the
worst case, but achieves better regret for “nice” problestainces. This algorithm also can be implemented
for virtual rewards (in a similar way). However, it is not alehow to translate the improved regret bound
for the zooming algorithm into a better cost bound for theditesurvey problem.

7 Thebi-criteria objective

In this section we state our results with respect to the ité@a objective, for both deterministic and ran-
domized benchmarks. Recall that our bi-criteria objedibmises on the worst-case error rates.
We only consider the case of uniform costs. ket 2 be the number of crowds.

Worst-case error rates. Let Ry be a single-crowd stopping rule. Letror(Ry) be the worst-case error
rate of Ry, taken over all single-crowd instances (i.e., all valuethefgap).

Let R be the composite stopping rule basedi®y Let (A, Ry) denote the bandit survey algorithm in
which a crowd-selection algorithid is used together with the stopping rute Let error(A|Ry) be the
worst-case error rate ¢4, Ry), over all problem instances. Then

error(A|Ry) < (k+ 1) error(Rp). (12)

Note that the worst-case error rate of benchmark is simpbor(Ry). (It is achieved on a problem
instance in which all crowds have gap which maximizes thereate of Ry.) Thus, using the samg
roughly equalizes the worst-case error rate betwéemd the benchmarks.

Absolute benchmarks. We consider benchmarks in which both the best crowd (rdsp bhést distribution
over crowds) and the stopping rule are chosen by the ben&hrlus, the benchmark cost is not relative
to any particular single-crowd stopping rule. We call suendhmarksabsolute

Let T'(p) be the smallest time horizof for which the single-crowd stopping rule in EquatioPf)
achieveserror(Ry) < p. Fix error ratep > 0 and time horizonl" > T'(p). We focus on symmetric,
gap-decreasing single-crowd stopping rulgssuch thakerror(Ry) < p and Ry must stop aftef” rounds;
let R(p, T') be the family of all such stopping rules.

Fix a problem instance. L&t be the crowd with the largest bias, and jétbe the distribution over
crowds with the largest induced bias. Tabsolute deterministic benchmafWith error ratep and time
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horizonT > T'(p)) is defined as

bench(i*,p,T) = min cost(i*|Rp).
(0. T) = | min  cost(i’| )

Likewise, theabsolute randomized benchmaskdefined as

bench(u*,p,T) = min cost(u*|Rp).
(W, p,T) Romn (1| Ro)
Theorem 7.1 (bi-criteria results) Consider the bandit survey problem witltrowds and uniform costs. Fix
error rate p > 0 and time horizorl” > T'(p). Then:

(a) Deterministic benchmarklhere exists a bandit survey algorithid, Ry) such that
cost(A|Rp) < bench(i*, p,T) + O(Alog T'), whereA =3, .. (€ — ) 2,
error(A|Ry) < (k+1)p.

(b) Randomized benchmarKhere exists a bandit survey algorithid, Ry) such that
cost(A|Ry) < O(logT'log %) (bench(u*, p,T)) T#/2
error(A|Ry) < (k+1)p.

Sketch.For part (a), we use the version\afrtUCB as in Theorerh 412, with the single-crowd stopping rule
R, from the absolute deterministic benchmark. The upper bour@st(.A|Ry) follows from Theorerh 4]2.
The upper bound oarror(A|Ry) follows from Equation[(1l1).

For part (b), we use the algorithm from Theoreml 6.1, togettigr the stopping rule given by Equa-
tion (@). The stopping rule has time horiz@h the quality parametefy., is tuned so that the worst-case
error rate matches that in the absolute randomized ben&hritae upper bound onost(A|Ry) follows
from Theoreni 6.1, and the upper and lower bounds in SelctiBh@ upper bound oerror(A|Ry) follows
from Equation[(11L). O

A lower bound on the error rate. Fix a single-crowd stopping rul&, with p = error(Ry), and a
crowd-selection algorithmd. To complement Equatiomn (IL1), we conjecture teator(A|Ry) > p. We
prove a slightly weaker result: essentially, if the comfmstopping rule does not use the total crowd, then
error(A|Ry) > p (1 — 2kp).

We will need a mild assumption qA: essentially, that it never commits to stop using any givenvd.
Formally, A is callednon-committingf for every problem instance, each timeand every crowd, it will
choose crowd at some time aftet with probability one. (Here we consider a run dfthat continues
indefinitely, without being stopped by the stopping rule.)

Lemma 7.2. Let Ry be a symmetric single-crowd stopping rule with worst-casereate p. Let. A be a
non-committing crowd-selection algorithm, and letbe the composite stopping rule based i&nwhich
does not use the total crowd. M is used in conjunction witlR, the worst-case error rate is at least
p (1 — 2kp), wherek is the number of crowds.

Proof. SupposeR, attains the worst-case error rate for a crowd with gagonsider the problem instance
in which one crowd (say, crowt)) has gapr and all other crowds have gap Let R;) be the instance of
Ry that takes inputs from crowd for eachi. Let £’ be the event that eacR(;), « > 1 does not ever stop.
Let £’ be the event thak?(;) stops and makes a mistake. These two events are indepesdehg error
rate of R is at leastPr[E] Pr[E’]. By the choice of the problem instand&;[E’] = p. And by Lemma 44,
Pr[E] > 1 — 2kp. It follows that the error rate oR is at leastp (1 — 2kp). O
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8 Experimental results: single crowd

We conduct two experiments. First, we analyze real-lifeklomds to find which gaps are typical for re-
sponse distributions that arise in practice. Second, wydiue performance of the single-crowd stopping
rule suggested in Sectibh 2, using a large-scale simulatithra realistic distribution of gaps. We are mainly
interested in the tradeoff between the error rate and theatep stopping time. We find that this tradeoff is
acceptable in practice.

Typical gapsin real-life workloads. We analyze several batches of microtasks extracted frormanewcial
crowdsourcing platform (approx. 3000 microtasks totafctibatch consists of microtasks of the same type,
with the same instructions for the workers. Most microtamlesrelated to relevance assessments for a web
search engine. Each microtask was given to at least 50 juatgeg from the same “crowd”.

In every batch, the empirical gaps of the microtasks are gkrge to beinguniformly distributedover
the range. A practical take-away is that assuming a Baygsian on the gap would not be very helpful,
which justifies and motivates our modeling choice not to amsB8ayesian priors. In Figuté 1, we provide
CDF plots for two of the batches; the plots for the other besclre similar.
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(a) Batch 1: 128 microtasks, 2 options each (b) Batch 2: 604 microtasks, variable #options

Figure 1: CDF for the empirical gap in real-life workloads.

Our single-crowd stopping rule on simulated wor kloads. We study the performance of the single-crowd
stopping rule suggested in Sectioh 2. Our simulated wodkloansists of 10,000 microtasks with two
options each. For each microtask, the gap is is chosen indeptly and uniformly at random in the range
[0.05,1]. This distribution of gaps is realistic according to thevimes experiment. (Since there are only
two options the gap fully describes the response distobuiti

We vary the parametér,., and for eactCy., we measure the average total cost (i.e., the stopping time
averaged over all microtasks) and the error rate. The eeatdtreported in Figui€ 2. In particular, for this
workload, an error rate of 5% can be obtained with an average<o workers per microtask.

Our stopping rule adapts to the gap of the microtask: it usdg @ few workers for easy microtasks
(ones with a large gap), and more workers for harder mickstébose with a small gap). In particular, we
find that our stopping rule requires significantly smalleminer of workers than a non-adaptive stopping
rule: one that always uses the same number of workers wislarieig a desired error rate.
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Figure 2: Our single-crowd stopping rule on the synthetickiaad.

9 Experimental results: crowd-selection algorithms

We study the experimental performance of the various crseldetion algorithms discussed in Secfion 4.
Specifically, we consider algorithm&irtUCB and VirtThompson, and compare them to our straw-man
solutions:ExploreExploitRollback andRandRr 1 Our goal is both to compare the different algorithms
and to show that the associated costs are practical. We ft@tbloreExploitRollback consistently
outperformskandRR for very small error rates}irtUCB significantly outperforms both across all error rates,
andVirtThompson significantly outperforms all three.

We use all crowd-selection algorithms in conjunction witle tomposite stopping rule based on the
single-crowd stopping rule proposed Secfibn 2. Recallttistopping rule has a “quality parametérl,,
which implicitly controls the tradeoff between the erroterand the expected stopping time.

We use three simulated workloads. All three workloads &trefi microtasks with two options, three
crowds, and unit costs. In the first workload, which we ca# dasy workload the crowds have gaps
(0.3,0,0). That is, one crowd has gdp3 (so it returns the correct answer with probabiliiy8), and
the remaining two crowds have g@p(so they provide no useful information). This is a relayvebsy
workload for our crowd-selection algorithms because trst beowd has a much larger gap than the other
crowds, which makes the best crowd easier to identify. Isdwond workload, called theedium workload
crowds have gap&).3,0.1,0.1), and in the third workload, called ttreard workload the crowds have gaps
(0.3,0.2,0.2). The third workload is hard(er) for the crowd-selectioncaithms in the sense that the best
crowd is hard(er) to identify, because its gap is not muapeathan the gap of the other crowds. The order
that the crowds are presented to the algorithms is randahfiizeeach instance, but is kept the same across
the different algorithms.

The quality of an algorithm is measured by the tradeoff betwits average total cost and its error rate.
To study this tradeoff, we vary the quality paramefgg, to obtain (essentially) any desired error rate. We
compare the different algorithms by reporting the averagal tost of each algorithm (over 20,000 runs
with the same quality parameter) for a range of error ratgmciically, for each error rate we report the
average cost of each algorithm normalized to the averageottise naive algorithnRandRR (for the same
error rate). See Figufe 3 for the main plot: the average castevror rate plots for all three workloads.
Additional results, reported in Figuré 4 (see page 21) st@wvaw average total costs and error rates for the
range of values of the quality parametgy:, .

For virtUCB we tested different parameter values for the param@teshich balances between explo-

in the plots, we use shorter names for the algorithms: réispég VR UCB, VR Thompson, EER, andRR.
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Figure 3: Crowd-selection algorithms: error rate vs. agerimtal cost (relative tRandRR).

ration and exploitation. We obtained the best results fange of workloads fo€' = 1 and this is the value
we use in all the experiments. FotrtThompson we start with a uniform prior on each crowd.

Results and discussion. For the easy workload the cost BirtUCB is about60% to 70% of the cost
of RandRR. VirtThompson is significantly better, with a cost of abod0% the cost ofRandRR. For
the medium workload the cost 8firtUCB is about80% to 90% of the cost ofRandRR. VirtThompson iS
significantly better, with a cost of abot®% the cost oRandRR. For the hard workload the cost vfrtUCB

is aboutd0% to 100% of the cost oRandRR. VirtThompson is better, with a cost of abo80% to 90% the
cost ofRandRR. While our analysis predicts thBkploreExploitRollback should be (somewhat) better
thanRandRR, our experiments do not confirm this for every error rate.

As the gap of the other crowds approaches that of the bestd¢rchoosing the best crowd becomes
less important, and so the advantage of the adaptive dlgmwibverRandRR diminishes. In the extreme
case where all crowds have the same gap all the algorithm&dvpauform the same with an error rate
that depends on the stopping rule. We conclude thatUCB provides an advantage, aMdrtThompson
provides a significant advantage, over the naive scherRerafRR.

10 Redated work

For general background on crowdsourcing and human coniguitaefer to [LvA11]. Most of the work
on crowdsourcing is usually done using platforms k@azon Mechanical Turer CrowdFlower Results
using those platforms have shown that majority voting is adgapproach to achieve quality [SOJNOS].
Get Another Label [SPI08] explores adaptive schemes fositigde-crowd case under Baysian assumptions
(while our focus is on multiple-crowds and regret under Bayesian uncertainty). A study on machine
translation quality uses preference voting for combiniagked judgments [CB09]. Vox Populi [DS09]
suggests to prune low quality workers, however their apgros not adaptive and their analysis does not
provide regret bounds (while our focus is on adaptively almogp which crowds to exploit and obtaining
regret bounds against an optimal algorithm that knows tladitgjuof each crowd). Budget-Optimal Task Al-
location [KOS11] focuses on a non-adaptive solution to&is& allocation problem given a prior distribution
on both tasks and judges (while we focus adaptive solutiodsda not assume priors on judges or tasks).
From a methodology perspective, CrowdSynth focuses oreaditly consensus tasks by leveraging super-
vised learning[[KHH1R]. Adding a crowdsourcing layer astfdiia computation engine is a very recent line
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of research. An example is CrowdDB, a system for crowdsagrarhich includes human computation for
processing queries [FKK11]. CrowdDB offers basic quality control features, but weext adoption of
more advanced techniques as those systems become moablkevaiithin the community.

Multi-armed bandits (MAB) have a rich literature in Statist Operations Research, Computer Science
and Economics. A proper discussion of this literature isonelyour scope; seé [CBLD6] for background.
Most relevant to our setting is the work on prior-free MAB listochastic rewards] [LR385, ACBFE02]
and the follow-up work, and Thompson heurisfic [Tho33]. &aovork on Thompson heuristic includes
[GCBH10,L.S10, CL11, AG12].

Our setting is superficially similar tbudgeted MABa version of MAB where the goal is to find the
best arm after a fixed period of exploration (e.g., [MTI04, BMB. Likewise, there is some similarity with
the work onbudgeted active learnine.g. [LMGO03,[MLG04] KKMO05]), where an algorithm repeatgd|
chooses instances and receives correct labels for théaades, with a goal to eventually output the correct
hypothesis. The difference is that in the bandit survey lerab an algorithm repeatedly chooses among
crowds whereas in the end the goal is to pick the corggaiion, moreover, the true “reward” or “label” for
each chosen crowd is not revealed to the algorithm and isveot well-defined.

Settings similar to stopping rules for a single crowd (butwvdomewhat different technical objectives)
were considered in prior work, e.¢. [BEM59, JA79, BG85, DKIGRMSAO08].

In a very recent concurrent and independent wark, [HV12, EBINCLZ13] TTVRJ1B] studied related,
but technically incomparable settings. The first three mapensider adaptive task assignment with multiple
tasks and a budget constraint on the total number or totalofdke workers. In[[HV12, HIV13] workers
arrive over time, and the algorithm selects which tasks sigas In [CLZ13], in each round the algorithm
chooses a worker and a task, and Bayesian priors are aeaftaithe difficulty of each task and the skill
level of each worker (whereas our setting is prior-indejead Finally, [TTVRJ13] studies mon-adaptive
task assignment problem where the algorithm needs toldittria given budget across multiple tasks with
known per-worker costs.

11 Open questions

Thebandit survey problem. The main open questions concern crowd-selection algositiemthe random-
ized benchmark. First, we do not know how to handle non-umfoosts. Second, we conjecture that our
algorithm for uniform costs can be significantly improvedondover, it is desirable to combine guarantees
against the randomized benchmark with (better) guarariggisst the deterministic benchmark.

Our results prompt several other open questions. Firstlewié obtain strong provable guarantees
for VirtUCB, it is desirable to extend these or similar guaranteegiit: Thompson, since this algorithm
performs best in the experiments. Second, is it possibligtifieantly improve over the composite stopping
rules? Third, is it advantageous to forego our "independesign” approach and design the crowd-selection
algorithms jointly with the stopping rules?

Extended models. It is tempting to extend our model in several directionselisbelow. First, while in
our model the gap of each crowd does not change over timendtigal to study settings with bounded
or “adversarial” change; one could hope to take advantagbenfools developed for the corresponding
versions of MAB. Second, as discussed in the introductiorgleernative model worth studying is to assign
a monetary penalty to a mistake, and optimize the overatl(ces, cost of labor minus penalty). Third, one
can combine the bandit survey problem with learning acradsipte related microtasks.
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A A missing proof from Sectiond

In the proof of Lemma5]2, we have used the following genegatar inequality:
Claim Al (Z-@&)(Z- ) > min; ;3 for any vectorsy, § € Rk and anyk-dimensional distributiorr.

This inequality appears standard, although we have not ablento find a reference. We supply is a
self-contained proof below.

Proof. W.l.o.g. assume1 51 < a8y < ... < af. Let us use induction oh, as follows. Let

f(@) 2 (Z- @)@ B) = (v101 + A)(z1581 + B)
where
B =% wibi .

Denotingp = x1, we can write the above expression as

{A = 2is1 Tidki

f(&) = p*a1 1 + pla1B + B1A) + AB. (12)

First, let us invoke the inductive hypothesis to handle Ali¢ term in Equation[(12). Ley; = 1%]3 and

note that{y; };~1 is a distribution. It follows thatlép% > asfy. In particular,AB > (1 — p)2a1 ;.
Next, let us handle the second summand in Equaltioh (12). 4 e¢-write it to make things clearer:

B+ A=(1-p) Y a1y Bi+Bivia
i>1

:(l—p)alﬁlz Yi <z—i—|—ﬁi>. (13)

i>1 b1

We handle the term in big brackets using the assumptionathat < «; ;. By this assumption it follows
that & > L and therefore + 5: > L 4 5: > 2. Plugging this into Equatiofi {13), we obtain

a1B+ 1A >2(1—p)afr.
Finally, going back to Equation (1.2) we obtain

F(@) = p*a1Br+2p(p— 1) enr + (1 — p)* o By
= a13. O
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