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As quantum computing technology improves and quantum computers with a small but non-trivial
number of N ≥ 100 qubits appear feasible in the near future the question of possible applications
of small quantum computers gains importance. One frequently mentioned application is Feyn-
man’s original proposal of simulating quantum systems, and in particular the electronic structure of
molecules and materials. In this paper, we analyze the computational requirements for one of the
standard algorithms to perform quantum chemistry on a quantum computer. We focus on the quan-
tum resources required to find the ground state of a molecule twice as large as what current classical
computers can solve exactly. We find that while such a problem requires about a ten-fold increase
in the number of qubits over current technology, the required increase in the number of gates that
can be coherently executed is many orders of magnitude larger. This suggests that for quantum
computation to become useful for quantum chemistry problems, drastic algorithmic improvements
will be needed.

I. INTRODUCTION

The excitement over quantum computation stems from
the promise that quantum computers will be able to
solve problems for which classical computers don’t have
enough resources. The evidence for this comes from the
discovery of quantum algorithms [1–7] which, at least
asymptotically, are exponentially faster than classical al-
gorithms. This assures us that eventually, when suffi-
ciently large quantum computers exist, they will fulfill
this promise. On the flip side, simple quantum algo-
rithms have already been performed: for example, the
number 15 has been factored [8] and the energy of an
extremely simple molecule has been calculated [9]. Al-
though an important first step, these quantum calcula-
tions are still deep in the regime accessible to classical
computers. It is interesting, then, to explore what mini-
mal resources are needed for quantum computers to solve
problems that classical computers are unable to solve.
In particular, this encourages us to explore problem in-
stances which are just big enough to be outside the range
of classical computers (say, for the next decade) and un-
derstand the quantum resources needed to solve these
problems. We call these classically-intractable problems.
In this work, we take up this task for the area of quantum
chemistry.

Feynman’s original proposal for a quantum com-
puter [10] was motivated by the exponential complexity
of simulating many classes of quantum systems on a clas-
sical computer. The wave function of N 2-level systems,
(e.g. N spin-1/2 variables pointing up or down in a quan-
tum magnet or N spin-orbitals in a molecule each being
occupied with either 0 or 1 electrons) lives in the Hilbert

space C2N

and thus needs an exponentially large number
of 2N classical variables to store. In contrast, on a quan-
tum computer storing the same wave function requires
only N qubits. This reduces the memory requirement
from exponential to linear and the runtime cost for many

computations on the quantum system from exponential
to polynomial.

The current state of the art in exact classical algo-
rithms can reach approximatelyN = 50 spin orbitals [11–
14]. Approximate methods for fermionic computation are
starting to reach chemical accuracy for up to N = 70 spin
orbitals [15]. Hence, an interesting application of a quan-
tum computer needs to reach at least N = 50 spin or-
bitals to offer any advantages over classical machines and
realistically needs approximately N = 100 spin orbitals
to be significantly more useful than current classical al-
gorithms. To store a wave-function of this size requires
full coherent control over at least 100 qubits. Experimen-
tally, such systems seem feasible in the near-term future:
Ion trap experiments have already demonstrated coher-
ence and entanglement between fourteen qubits [16] and
many more ions have been trapped, but not yet entan-
gled. Using superconducting qubit technology, around 10
qubits can be controlled and a few hundred gates can be
executed coherently.

While there has been great progress towards non-
trivial quantum computers with a small number of
qubits, the development of quantum algorithms and ex-
ploration of applications for such devices has lagged be-
hind. Factoring large integers using Shor’s algorithm [1]
is the canonical application for quantum computers, but
it requires many thousands of qubits to factor a number
that cannot be factored by classical algorithms [17, 18].
The electronic structure problem for molecules, on the
other hand, seems a more natural place where non-trivial
applications may exist for machines with a limited num-
ber of qubits and a significant amount of literature has
been devoted to this topic [5, 19–26]; for recent reviews,
see Refs. [27, 28]. Like Shor’s algorithm, solving the
electronic structure problem may also admit an expo-
nential speedup but affords interesting possibilities with
fewer necessary qubits. In addition, the technological
benefits of quantum chemistry simulations are rich: For
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example, finding better catalysts to be used in many
industrial-scale chemical processes – even including very
basic processes, such as nitrogen fixation – has challenged
researchers for decades [29]. In these problems, approx-
imate approaches such as density-functional theory do
not yield sufficient accuracy for the correlation energies,
while more accurate methods, such as the density matrix
renormalization group, have so far not been able to simu-
late sufficiently large systems in a reasonable time-frame.

While there are many important quantities that char-
acterize molecular systems, in this paper, we focus par-
ticularly on the measurement of the electronic ground
state energy. Computing these energies (and their re-
spective derivatives) is a basic starting point for comput-
ing other observables. We implement one of the stan-
dard approaches to performing such calculations on a
quantum computer [22], for brevity henceforth referred
to as quantum full configuration interaction (QFCI), at
the level of the individual circuit elements and compare
the results obtained for a water molecule (10 electrons,
14 spin-orbitals in an STO-3G basis) to those obtained
by the equivalent standard full configuration interaction
(FCI) calculation, validating the approach. We are then
able to measure the costs involved in the quantum com-
putation, including the number of qubits, number of cir-
cuit elements, and the circuit depth needed to perform
this computation.

By systematically analyzing the effects of time-step er-
rors and gate count, we show the scaling of the algorithm
with the number N of spin orbitals to be O(N9) if all
gates are executed in a serial fashion, and O(N8) if we
allow for parallel execution of gates. Using the exam-
ple of a water molecule, we also determine the prefactors
involved and thereby set a baseline of requirements for
a quantum computer to perform calculations on larger
molecules.

II. THE COULOMB HAMILTONIAN IN
QUANTUM CHEMISTRY

Using a Born-Oppenheimer approximation to fix the
positions of the nuclei in space, the electronic structure
problem for a molecule reduces to finding the low-lying
spectrum of the electronic degrees of freedom. For a full
configuration interaction approach, a basis of single par-
ticle orbitals, such as the STO-3G basis used here, must
be chosen. The problem can then be expressed in this
basis by rewriting the Hamiltonian in a second-quantized
form in terms of these orbitals. While the number of or-
bitals for an exact description is infinite, a very good ap-
proximation is usually achieved by considering only the
orbitals around the energy separating the highest occu-
pied and lowest unoccuopied molecular orbital, which are
generally obtained with a Hartree-Fock calculation. This
so-called active space approximation is a key component
to reduce the number of degrees of freedom while still
obtaining accurate results, and underlies many compu-

tational chemistry methods and also the QFCI method
described here. It can be systematically improved to the
full basis set limit by considering more orbitals.

In this second-quantized basis, the Hamiltonian takes
the form

H =
∑
pq

tpqc
†
pcq +

1

2

∑
pqrs

Vpqrsc
†
pc
†
qcrcs (1)

where cp and c†p denote the annihilation and creation op-
erators for an electron in a set of p = 1, . . . , N spin or-
bitals. For this paper we want to focus on calculating the
ground state energy E0 and generating the ground state
wave function |ψ0〉 of this Hamiltonian.

The energy scales for the molecular problems are set
by the core energy of the atom, giving energies of ap-
proximately 100-1000 Hartree (Eh) for small molecules.
In order to perform useful quantum chemistry, a chem-
ical accuracy of approximately 1 milli-Hartree (mEh) is
important. This means we have to resolve the energy
scales to one part in a million.

Currently, quantum chemists use the exact full con-
figuration interaction (FCI) method, and a variety of
approximate methods to tackle this problem. Some of
the approximate methods are quasi-exact in the sense
that at least for a fixed problem size, they can achieve
arbitrarily good accuracy with a computational cost
that increases only polynomially in the desired accu-
racy; this includes the density-matrix renormalization
group [30–33] and other approaches based on tensor net-
work states [34], as well as Quantum Monte Carlo meth-
ods such as FCIQMC [35–37]. Nevertheless, these meth-
ods scale exponentially in the size of the molecule. Other,
more widely used approximate methods cannot be sys-
tematically refined, such as density functional theory
(DFT) [38, 39] and coupled clusters (CC) [40], but permit
the study of much larger molecules of up to thousands of
atoms in the case of DFT.

III. QUANTUM FULL CONFIGURATION
INTERACTION ALGORITHM

We now outline the algorithm we use to determine
the ground state energy of a small molecule. This al-
gorithm has been previously described in several pa-
pers [22]. The first step is to prepare the qubits into
a state |ψ〉 which is a good approximation to the ground
state |ψ0〉, i.e. it has overlap 〈ψ|ψ0〉 > 1/2. For a suf-
ficiently small molecule – like the water molecule used
here – this can just be the Hartree-Fock solution |ψHF〉.
By choosing as basis functions the single-particle wave
functions obtained in a Hartree-Fock calculation we can
write |ψHF〉 =

∏Ne

i=1 c
†
i |0〉, where |0〉 is the vacuum, Ne

the total number of electrons, and c†i creates an electron
in the i’th single-particle state.

For larger molecules we expect the overlap 〈ψHF|ψ0〉
to decrease significantly. In that case a better approxi-
mation to |ψ0〉 can be obtained by adiabatic evolution of
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the wave function from |ψHF〉 towards the true ground
state |ψ0〉. This can be achieved by evolving the wave
function under the action of a Hamiltonian which slowly
evolves from the Hartree-Fock Hamiltonian HHF to the
full Coulomb Hamiltionian (1). Here, the initial Hamilto-
nian must meet the requirement that it has the Hartree-
Fock state as its unique ground state.

In the second part of the QFCI algorithm, the energy
of the state |ψ〉 obtained through the above preparation
procedure is measured using the quantum phase estima-
tion (QPE) algorithm [2, 41]. This also collapses the
state |ψ〉 (with probability proportional to |〈ψ|ψ0〉|) to
the ground state wave-function. We will see that even
though phase estimation is often used as a black box of
unit cost in quantum algorithms, in practice for quantum
simulations it is very costly.

At the highest level, quantum phase estimation takes a
state |ψ〉 =

∑
i ci|φi〉|0〉, where |0〉 is the initial state of a

number of auxiliary qubits, and converts it into the state∑
i ci|φi〉|Ei〉, where |Ei〉 denotes that a binary represen-

tation of the energy has been encoded into the auxiliary
qubits. It is very important to note that at the core of
the algorithm lies the time evolution of a quantum state,
i.e. performing |ψ(t)〉 = exp(−iHt)|ψ(0)〉. The time T
required to resolve an absolute error in the energy ε is
π/ε.

On a general-purpose quantum computer, time evolu-
tion must be implemented through a circuit composed
of one and two-qubit gates. In certain algorithms, most
notably Shor’s algorithm, the time evolution exp(−iHt)
can be implemented efficiently by exploiting special prop-
erties of the evolution operator, such that the computa-
tion time necessary for the whole time evolution scales
as O(log t). In general, however, such a representation
of the unitary can only be achieved through a Trotter
decomposition [42, 43], for which the full time t is di-
vided into discrete time intervals ∆t = t/M . This leads
to a scaling that is at least linear in t, and it incurs a
discretization error that is polynomial in ∆t, with the
exponent depending on the type of Trotter decomposi-
tion used.

For a Hamiltonian H which is given as a sum over
individual terms hk, the first order Trotter decomposition
with M Trotter steps reads

exp(−it
∑
k

hk) = U(∆t)
M +O(∆t) (2)

with U(∆t) =
∏
k

exp(−i∆thk). (3)

A representation of the Hamiltonian must be chosen
where each term Uk(∆t) = exp(−i∆thk) can be broken
down into a sequence of standard gates; this is the case
for example if each hk is a product of Pauli matrices.
At the cost of a factor of two in the number of circuit
elements, a second order Trotter decomposition can be
used, which improves the error to O(∆2

t ). In principle,
even higher order Trotter breakups can further attenuate

the error. Notice that the time step error coming from us-
ing phase estimation with an approximate time evolution
operator U is exactly equivalent to an error-free approach
with the effective Hamiltonian Heff = lnU(∆t)/(−i∆t).
The circuit diagrams for all terms that occur in the
quantum chemistry Hamiltonian (1) are shown in Ap-
pendix D.

In the rest of this paper, we focus solely on the sec-
ond part of the QFCI algorithm, i.e. measurement of the
energy through quantum phase estimation. To compute
the computational effort involved in this algorithm, the
three factors that need to be taken into account are the
number of gates per Trotter step Ng, the total time T
that the time evolution must evolve in phase estimation,
and the total number of Trotter steps 1/∆t needed for
evolving for fixed time at fixed error. The total com-
plexity is then NgT/∆t. The total time T is set by the
absolute accuracy required. Using an absolute accuracy
of 1 milli-Hartree, we get that T ≈ 6000 E−1

h is required.
We proceed by computing the ∆t and Ng required for

water and then extrapolate to classically-intractable sys-
tems.

IV. RESULTS – WATER

We implement the quantum phase estimation algo-
rithm for a water molecule in a minimal STO-3G basis of
ten electrons in fourteen spin-orbitals. We first perform
a Hartree-Fock calculation using the PyQuante pack-
age [44] and use the thus obtained orthonormalized single
particle wave functions as the basis used in the quan-
tum algorithm. We validate our implementation of the
quantum algorithm by comparing to full-configuration-
interaction (FCI) calculations for the same problem.

Our simulations are performed using the LIQUi|〉
quantum simulation platform [45], which is an advanced
software package developed by Microsoft Research to al-
low efficient simulation of large quantum circuits (more
than 1 million gates) with moderate numbers of qubits
(typically 30 qubits in 32GB of memory for Hamiltonian
simulations). The system is implemented as an exten-
sion to the F# functional programming language [46] and
compiles high-level circuit descriptions into targeted sim-
ulators (Universal, Stabilizer and Hamiltonian) in one of
several environments (Client, Service or Cloud). The ar-
chitecture is modular and includes packages for optimiza-
tion, noise modeling, physical gate replacements [47], ex-
port and automatic circuit drawing [48]. For this work,
a module was added to convert terms into individual cir-
cuits, analyze and optimize rotations and then compile
re-written circuits into unitary matrices for analysis and
simulation.

In Figure 1, we show the energy of a water molecule
as a function of bond length and bond angle as obtained
from our simulated QFCI calculation. Figure 2 shows
the dependence of the accuracy compared to an exact
solution of the same problem on the Trotter time step.
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FIG. 1. This figure shows the energy of the water molecule
as a function of bond angle and bond length for an STO-3G
basis obtained from a restricted HF calculation.
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FIG. 2. Discretization error due to the Trotter decomposition
for a water molecule at bond length a = 0.957213Å and bond
angle θ = 104.5225◦.

We find that a Trotter time step of ∆t = 0.01 E−1
h is

required to achieve chemical accuracy. We find that, for
most orderings of the terms in the Hamiltonian, the error
behaves as O(∆2

t ) even for the first-order Trotter decom-
position of Eqn. (2). We attribute this to a cancellation
in the errors, which seems to be fairly generic. Also, in
this regime it does not seem significantly advantageous
to go to a higher-order Trotter decomposition. Consider-
ing just the scaling of the error, choosing a fourth-order
decomposition would allow us to take ∆t = 0.1 E−1

h and
would thus lead to a ten-fold decrease in the number of
Trotter steps, but at the same time would increase the
number of gates for a single Trotter step by a larger fac-
tor [49]. This trade-off may change in different parame-
ter regimes, for example if a much smaller ∆t is required.
The convergence of our results to the FCI values confirms
the correctness of our implementation of simulated QFCI
and goes a step beyond the simulation of H2 performed
previously [22].

We now turn to estimating the run-time for this simu-

lation on a quantum computer. To this end, we quantify
both the total number of circuit elements and what we
refer to as the parallel depth of a circuit, which is the
minimum required depth of the circuit when exploring
possible parallelism between parts of the circuit that op-
erate on disjoint sets of qubits and can hence be exe-
cuted simultaneously. We also separately count the ro-
tations required as these are the most costly operations
for many physical realizations of a quantum computer.
We can group the terms in the Hamiltonian into differ-
ent categories, each requiring a different number of ele-
mentary gates. For a fermionic problem, Jordan-Wigner
strings [50] are generally used to enforce fermionic signs.
These will increase the number of gates necessary to ap-
ply an off-diagonal term by a factor of N . Recently,
methods have been developed that can improve this; for
example, Ref. [51] describes a method where Jordan-
Wigner strings can be applied in constant time at the
cost of N additional teleportations, which however can
be carried out in parallel. It is at this point unclear
whether the teleportation can be executed at a similar
clock rate as gate operations; nevertheless, we include
this possible improvement in our gate counts for parallel
operations.

Using the actual gate counts for each term, shown in
Table III in Appendix D, we calculate the circuit depth
for one Trotter time step and show it in Table II. We find
that for our water simulation, the gate count is 20494 for
sequential operations and 6438 for parallel operations.
Given the required time step ∆t = 0.01 E−1

h and to-

tal time T = 6 · 103 E−1
h we must evolve for the QPE

to achieve chemical accuracy, which we have established
through our simulations above, we need approximately
6 · 105 Trotter steps and 1010 serial gates. In this case,
working in parallel leads to a speedup of a factor of 3.

V. SCALING TO LARGER MOLECULES

Having set a baseline using our simulations of the wa-
ter molecule, we need to examine the scaling of two key
quantities to be able to extrapolate our results to larger
molecules: (i) the number of gates Ng needed for a single
Trotter step, (ii) the value of the Trotter time step ∆t.

We anticipate the number of gates to be proportional
to the number of terms in the Hamiltonian, O(N4), mul-
tiplied by the number of gates for each term, which due to
the Jordan-Wigner transformation is roughly N , thereby
giving a scaling of O(N5). Note that this assumes that
all gates have roughly the same cost; in reality, this may
be drastically different. In particular, the number of ro-
tations, which are likely the most expensive gate, does
not depend on the Jordan-Wigner strings and will there-
fore be at most O(N4). Also, as mentioned before, there
have been proposal to reduce the cost of Jordan-Wigner
strings from O(N) to O(1). In Fig. 3 and Table II, we
show the scaling of the number of rotations as well as the
number of gates in parallel and sequential operation. We
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FIG. 3. (i) Number of rotations, and number of gates in (ii)
parallel and (iii) sequential mode. Dashed and dotted lines
indicate the expected scaling, which is (NSO)4 (dotted lines)
for the number of rotations and the parallel gate count, and
(NSO)5 (dashed line) for the sequantial gate count. This data
is also listed in Table II.
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FIG. 4. Scaling of the number of necessary Trotter steps,
1/∆t, with the number of terms in the Hamiltonian m. This is
extracted from a series of artificial, but statistically appropri-
ate Hamiltonians with 12, 16, 18, 20 and 24 spin-orbitals. The
two curves correspond to different values of the inverse filling
r = NSO/Ne− . The dashed lines indicate fits to Nstep ∼ mα,
with exponents α(r = 3) = 1.27 and α(r = 2) = 1.08.

find that the empirical scaling matches our expectations
quite accurately.

Secondly, we need to establish how the Trotter step
necessary to attain a given accuracy scales with the sys-
tem size. Theoretical calculations bound the number of
Trotter steps required for a fixed time T by m1+1/2k [49],
where m is the number of separate terms the Hamiltonian
H =

∑m
i=1Hi is split into, and 2k is the order of the Trot-

ter decomposition. This theorem of Ref. 49 is stated in
terms of the operator norm of H (written as ‖H‖) which

Nt
Gates
term

1/∆t Total (Parallel)

Upper bound N4 N (Nt)
3/2 = N6 N11 (N10)

Empirical scaling N3.8 N N4 N9 (N8)

TABLE I. Summary of the different contributions to the over-
all scaling. Here, Nt is the number of terms; gates/term de-
notes the number of gates required to execute a term using a
basic Jordan-Wigner transformation, and assuming all gates
take an equal amount of time; ∆t is the Trotter time step.

would depend upon N ; however it seems from the deriva-
tion that the bound in fact depends upon ‖Hi‖ which for
these synthetic molecules is chosen independent of N . In
our case, we effectively use a second-order decomposition
and have O(N4) terms, such that the number of Trotter
steps required is bounded by O(N6). Since this is only a
bound and since we are not necessarily in the asymptotic
regime, it is important to test the scaling empirically. We
do this by producing a series of artificial molecules whose
Hamiltonian terms have the same statistical properties as
real molecules and measuring the scaling as a function of
the number of terms in these molecules. Our result is
shown in Fig. 4; details are discussed in Appendix A.
By performing a fit to the data (shown as dashed line in
the figure), we obtained exponents of 1.27 or 1.08, de-
pending on the ratio of the number of electrons to the
number of spin orbitals. Hence, we find that the scaling
is closer to Nstep = 1/∆t ∼ m instead of m3/2, and we
have 1/∆t ∼ N4.

One possible reason for this improvement is that each
term in the Hamiltonian has a nonvanishing commutator
with at most O(N3) terms, which allows us to give an
improved bound on the number of Trotter steps required.
See Appendix B.

We have summarized all these contributions in Ta-
ble I. We find that the total scaling goes approximately
as O(N9) for sequential operation. Note that this is bet-
ter then expected from the most general bounds, which
would give a scaling of O(N11). As an example, we take
Fe2S2 in the STO-3G basis; this molecule has been con-
sidered a benchmark example and has enormous impor-
tance to biochemistry. Given that the basis of 112 spin
orbitals is about 8 times larger than the basis for H2O,
we see that we pay a factor of 85 from the number of
gates per Trotter step, and a factor of 84 from the smaller
Trotter step required, leading to a total increase of the
runtime by a factor of approximately 108; we thus have
to execute a total number of 1018 gates. For Fe2S2, work-
ing in parallel (including the execution of Jordan-Wigner
strings in constant time) gains us a factor of 20 leaving us
with a parallel gate depth of 1017. An additional factor
may be gained by choosing a higher-order Trotter decom-
position, which may be optimal for larger molecules [49].
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A. Quantum hardware requirements for
classically-intractable molecules

From the perspective of the number of qubits, the
hardware required to simulate a classically-intractable
molecule is within reach: current technology can operate
on about a dozen qubits, which is about an order of mag-
nitude less than the 100 qubits that are required for the
Fe2S2 molecule that we have used as an example above.
However, achieving the necessary gate count seems much
more challenging: current technology allows control for
a few hundred gate operations, while the simulation of
Fe2S2 requires up to 1018 gates. An improvement of more
than 15 orders of magnitude is therefore necessary! In-
deed, even the calculation for the ground state of water,
which takes mere seconds on a classical computer and
requires only few more than a dozen qubits, is many or-
ders of magnitude too large in terms of the gate-count.
Even if we assume that Moore’s law applies to quantum
computers, i.e. the number of gates that can be executed
doubles every 18 months, it will take 75 years to be able
to simulate Fe2S2 using the QFCI algorithm. Even then,
assuming a clock speed of 1 GHz (i.e. 1 ns per gate) for
gate operations, the calculation for for Fe2S2 will require
1.5 years to complete! We note that these estimates re-
quire the quantum state to be coherent for the entire cal-
culation as the no-cloning theorem forbids checkpointing
intermediate results.

Moreover, the numbers we have cited so far are given
in terms of logical qubits and gate operation, i.e. ideal
qubits and gates that are perfectly coherent and operate
with perfect fidelity. In reality, qubits have a finite coher-
ence time and gates can only be executed with less than
perfect fidelity. Therefore, in most physical implementa-
tions, a logical qubit will have to be represented through
a number of physical, i.e. hardware qubits, and a logical
gate operation is obtained via a series of physical gate
operations. This allows the use of error correction. In
conventional error correction schemes, depending on the
fidelity with which the physical gate operations can be
executed, between 100 and 105 physical gate operations
are required for a single logical gate operation; however,
it is possible to trade off the number of gates with the
number of extra qubits required [52–54]. The alternative
route of topological quantum computing [55], where the
physical realization of the qubit itself is robust against
errors, would require braiding, i.e. adiabatically mov-
ing excitations of the underlying topological phase, to
operate at least an order of magnitude faster than the
required logical gate clock rate. We have also ignored
the computation time involved in preparing a state with
overlap better then the Hartree-Fock state and the possi-
bility that the whole algorithm might need to be repeated
many times to accumulate statistics.

In current technology, typical gate times are 10µs for
ion traps and 100 ns (10 megahertz) for superconducting
qubits. We note also that the speed at which a quantum
computer can run is bounded by the speed at which we

can do classical control and it is hard to see going beyond
tens of gigahertz in the foreseeable future.

We thus conclude that the simulation of a molecule like
Fe2S2 on a quantum computer using the QFCI algorithm
described in this paper will not be possible by hardware
improvements alone; instead, algorithmic improvements
of several orders of magnitude will be necessary.

VI. CONCLUSIONS

In this work, we have answered the question of whether
a small quantum computer with on the order of 100
qubits will be able to address challenging problems in
quantum chemistry that are beyond the reach of clas-
sical algorithms. From a purely conceptual point of
view, it seems very likely that quantum computers can
achieve this: such a quantum computer could trivially
represent the wave function of a molecule with up to
100 spin orbitals, and an algorithm (referred to here as
QFCI algorithm) is known that in principle should allow
the calculation of the ground state energy in polynomial
time. Exploring the details of this algorithm, however,
we have been able to demonstrate that its polynomial
scaling is very large, and that the prefactors work out
such that, under reasonable assumptions about improve-
ments in quantum computing, the classically-intractable
regime remains intractable also for a quantum computer.

We feel that these estimates draw a line in the sand
setting an important barrier that must be overcome for
the dream of useful quantum computation to become a
reality. Given even very optimistic assumptions, it seems
unlikely that the challenges presented in this paper can
be overcome by hardware improvements. Instead, we feel
that this emphasizes the importance of quantum software
engineering, i.e. the necessity of algorithmic advances
with a strong focus on practically applicable algorithms.
In the realm of classical algorithms, challenging problems
are becoming tractable not only due to the fast increase
of computational power, but even more so due to ad-
vances in algorithms. A prominent example of such an
advance are Monte Carlo algorithms with non-local up-
dates, which have lead to performance advances over the
original Metropolis algorithm of many orders of magni-
tude. We believe that similar advances in quantum al-
gorithms will ultimately bring to fruition Feynman’s in-
tuition [10] that quantum computers should be better
than classical computers at simulating the properties of
quantum systems.

A. The Path Forward

Having focused on the standard QFCI algorithm for
solving the QC problem in a given basis of molecular
orbitals (active space), we can ask whether there ex-
ists alternate algorithms which might perform better in
this regime. For some alternative approaches, see also
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Refs. 56 and 57. There has been significant work in the
literature discussing the more general sparse Hamiltonian
problem where algorithms are designed to time-evolve
(otherwise structure-less) sparse Hamiltonians. The two
current algorithms which scale best (in an incompara-
ble way) are those of Refs. 58 and 59. In the for-
mer work, an algorithm is given that scales with the
number of non-zero elements per column d and the to-
tal time t as O(d2t log3(dt)), with a complexity poly-
nomial in the logarithm of the inverse error. In our
quantum chemistry Hamiltonian, d = N2n2

e where ne
is the number of electrons. Assuming ne scale as N , we
get O(N8 log3N). This is asymptotically better than
the naive Trotter decomposition used in our QFCI al-
gorithm, with a crossover due to the log3N contribu-
tion which is naively at N ≈ 100. However, the con-
stants may be very different and the bound may not be
tight, such that this algorithm may or may not be better
than our algorithm discussed in this paper. In the latter
work of Ref. [59], the authors use a quantum walk ap-
proach to simulate the Hamiltonian and obtain a scaling
of O(d2/3((log log d)t‖H‖)4/3) with bounded error, where
d is the number of non-vanishing elements per row of the
matrix. In our problem, d = N4 and therefore we obtain
the scaling O(N8/3((log logN4)‖H‖)4/3). Here, ‖H‖ is
the operator norm of the Hamiltonian, which scales at
least linearly with the number of electrons (giving at least
an N4 total scaling), but may scale faster if correlation
energies dominate. Alternately, Ref. [59] gives a quantum
walk algorithm requiring time O(dΛmaxt), where Λmax

is the largest matrix element of the Hamiltonian. This
gives at least N4 scaling also if Λmax is independent of
N . Both of these algorithms require oracle access to ma-
trix elements, which may incur an additional factor of
up to N4 in gate count to encode the coefficients of the
Hamiltonians; some of these gates can be executed in
parallel, at the cost of additional qubits. It remains to
be explored whether this algorithm can be used favorably
in some parameter regime for electronic structure calcu-
lations. Ongoing work is exploring how these tradeoffs
work out in the relevant regime of classically-intractable
molecules.

Beyond these, or other new algorithms, we can exam-
ine whether potential incremental improvements might
chip away at the factors described in this work gaining
enough factors of N to make a variant of QFCI tractable.

One problem with the current approach is the need to
take many time-steps. To decrease this number, a higher-
order Trotter decomposition is often suggested. Naively,
this is problematic as it comes with significant overhead,
but recent work [60, 61] has explored approaches to mit-
igate this. From a theoretical perspective, even an ‘ar-
bitrarily high-order’ Trotter decomposition changes the
scaling with the number of terms m in the decompo-
sition of the Hamiltonian from m1+1/2k to m. As we
are already empirically seeing (and accounting in our es-
timate) a scaling of m, it is unclear if a higher order
Trotter decompositions will garner significant gains; this

said, it is possible that these two effects would combine
potentially saving a factor of order N2. This assumes
improvements make these ‘higher order’ decompositions
as cheap as a second order decomposition. In a similar
vein, it may be possible to extrapolate the time step er-
ror or have it cancel out in observables of interest giving
us the ability to work at much larger time steps. Finally,
we propose an adaptive trotter scheme in Appendix C
which might require significantly less gates per time step
in certain regimes.

Another possibility is to decrease the number of terms
m in the decomposition of the Hamiltonian. For an ex-
ample of where this has been done, see Ref. [62]. Another
approach to this is shown in Appendix E, where we show
that in an enlarged basis of size O(N3), the Trotter de-
composition can be done in only two steps assuming a
efficient projection back into the original space. There
may be some way to take advantage of the structure of
the Hamiltonian to combine the N4 terms. Alternately,
a different basis may be used. In a local basis the to-
tal number of terms often scale as N2 instead of N4.
This would change the scaling of the complete algorithm
from O(N9) to O(N5). Local basis, though, often require
more spin-orbitals for similar levels of accuracy. Consid-
ering our system of 100 orbitals, this would allow us to
use only approximately 40 times the number of orbitals
before the local basis becomes less effecient. In the ex-
treme limit of a real-space basis, there may be significant
additional gains coming from the fact that the Hamilto-
nian can be decomposed into only two pieces [63]. Work-
ing in real space brings its own independent set of prob-
lems, though, and we are currently looking into whether
this is a superior approach in the classically-intractable
regime.
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Appendix A: Scaling of Trotter time step with
molecule size

A key component of the overall scaling of the QFCI
algorithm comes from the Trotter time step. To keep a
fixed accuracy, the Trotter time step will generally have
to decrease as the molecule, and hence the number of
terms, grows. In this appendix, we will describe our
method used to estimate this scaling.

For a given molecule, we estimate the Trotter error
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Sequential Parallel
Molecule Basis Spin orbitals Basis size Rotations Total Rotations Total

H2O

STO-3G 14 441 1.62× 103 2.05× 104 1.62× 103 6.44× 103

3-21G 26 1.66× 106 1.63× 104 3.81× 105 1.63× 104 7.25× 104

DZVP 38 1.35× 108 6.39× 104 2.12× 106 6.39× 104 2.95× 105

6-31G** 50 2.8× 109 1.77× 105 7.69× 106 1.77× 105 8.37× 105

6-31++G** 54 6.5× 109 2.44× 105 1.14× 107 2.44× 105 1.16× 106

6-311G** 62 2.9× 1010 4.19× 105 2.23× 107 4.19× 105 2.00× 106

CO2

STO-3G 30 1.86× 106 1.96× 104 5.32× 105 1.96× 104 8.91× 104

3-21G 54 1.70× 1014 1.34× 105 6.19× 106 1.34× 105 6.30× 105

DZVP 90 1.03× 1020 1.39× 106 1.06× 108 1.39× 106 6.79× 106

6-311G** 90 1.03× 1020 1.02× 106 7.62× 107 1.02× 106 4.95× 106

Fe2S2
STO-3G 112 3.4× 1025 7.44× 106 6.31× 108 7.44× 106 3.59× 107

3-21G 168 2.8× 1048 4.51× 107 5.84× 1010 4.51× 107 2.21× 108

TABLE II. Gate count for one Trotter step using a sequential or a parallel circuit. The basis sizes are extracted from the
PyQuante package [44]; for details on the basis sets, see also Refs. [64–66].

by finding the eigenvalues λi of the unitary matrix U
generated by the time evolution with a given Trotter de-
composition for a Trotter timestep ∆t. We can obtain
an estimate for the energies from log(λi)/(−i∆t); these
are exactly the energy eigenvalues that will be measured
with quantum phase estimation. To perform this diag-
onalization for large enough molecules, we need to re-
sort to iterative diagonalization techniques such as the
Arnoldi method. These methods generally only extract
a few eigenvalues; to target the eigenvalues of U corre-
sponding to the ground state, we shift the Hamiltonian
by an appropriate amount ε such that E0 + ε > 0; for
small enough ∆t, the eigenvalue we are interested in is
then the eigenvalue closest to 1 on the unit circle, and
hence the eigenvalue with the largest real component.

In order to extract the scaling, we need to perform
estimates for a number of different molecules; however,
the exponential scaling of the classical algorithm with
the number of spin orbitals as well as the large over-
head of estimating the energy levels from U instead of
a direct calculation of the ground state, as would usu-
ally be done in FCI, severely restrict the number of spin
orbitals we can study to roughly N = 24. In order to
have a sufficient number of generic molecules in the range
N = 8 to N = 24, we generate random Hamiltonians
that imitate the statistics of interaction terms found in
real molecules. Specifically, we generate terms hppc

†
pcp,

hpqc
†
pcq, hpqqpc

†
pc
†
qcqcp, hpqqrc

†
pc
†
qcqcr and hpqrsc

†
pc
†
qcrcs

with the distribution functions for the parameters cho-
sen as (here u[a,b](x) is a uniform distrubtion of values
between a and b evaluated at x):

p(hpp) = u[−10,0](hpp) (A1)

p(hpq) = u[−1,1](hpq) (A2)

p(hpqqp) = u[−0.5,0.5](hpqqp) (A3)

p(hpqqr) =
1

2 · 0.2
e−|hpqqr|/0.2 (A4)

p(hpqrs) =
1

2 · 0.1
e−|hpqrs|/0.1 (A5)

We only keep terms compatible with particle-number
conservation symmetry; additionally, we remove a frac-
tion of the terms to mirror the fact that in a real molecule,
terms may be forbidden by spatial symmetries. We gen-
erate molecules up to N = 24, obtain their ground state
energy for Ne = N/2 and Ne = N/3, as well as the re-
spective energy estimates for a number of different values
of ∆t, to obtain the error estimate ε(∆t). The number of
Trotter time steps required to reach accuracy εt is then
given as

NTrotter =

(
ε(∆t)

∆2
t εt

)1/2

(A6)

assuming that ε(∆t) ∼ ∆2
t , which we empirically confirm.

Appendix B: Improved Trotter-Suzuki Error Bounds

Given a Hamiltonian H =
∑m

i=1Hi, the second order
Trotter-Suzuki approximation to exp(−iH∆t) is given by

UTS ≡ exp(−iH1∆t/2)... exp(−iHm∆t/2) (B1)

× exp(−iHm∆t/2)... exp(−iH1∆t/2).

The usual derivation of the bound on second order
Trotter-Suzuki error proceeds by expanding both the ex-
act expression U = exp(−iH∆t) and the second order
Trotter-Suzuki approximation UTS to third order in ∆t

and showing that they agree at first and second order and
bounding the error at third order. The error is shown to
be bounded by (mΛ∆t)

3, where Λ is an upper bound to
‖Hi‖. Thus, for evolution for a fixed time t, with time
step ∆t, the error that accumulates is t(mΛ)3∆2

t , mean-
ing that to have small error at fixed t,Λ it suffices to have
∆t � m−3/2. The Trotter number scales as 1/∆t so one
needs a Trotter number scaling as m3/2.

However, in a quantum chemistry setting, we have the
case that many of the commutators [Hi, Hj ] are equal to
zero. This significantly reduces the error. Let K be the
maximum over i of the number of terms Hj which have
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a nonvanishing commutator with Hi. For the Hamilto-
nian (1), K = O(N3), since any two terms that do not
commute must agree on at least one index. As a result,
we can bound the error by

‖U − UTS‖ ≤ O(mK2Λ3∆3
t ), (B2)

rather than the previous bound of O(m3Λ3∆3
t ), as we

now show. For our problem, with m = O(N4),K =
O(N3), this means that a Trotter number of O(N5) suf-
fices to obtain small error.

We begin with a slightly naive derivation of the bound
above using series expansions. This bound suffers from
some problems as we point out at the end, and after-
wards we give a corrected proof of the result. The series
expansion up to third order can be written as a sum of
many terms. All terms cancel at first and second or-
der. There are terms which are third order in Hi for
some given i; these also cancel exactly. There are terms
which are first order in Hi and second order in Hj for
some j 6= i. There are at most mk such terms, so they
contribute at most O(mk∆3t3) to the total error. Fi-
nally, there are terms which are first order in Hi, Hj , Hk

for i 6= j 6= k 6= i. However these terms also cancel
if any one of the three operators Hi, Hj , Hk commutes
with the other two operators. Thus, there are only at
most O(mK2∆3

t ) such terms. Thus, the third order er-
ror is bounded by O(mK2∆3

t ).
A similar calculation can be done at higher order. In

general, it is useful to introduce a “linked cluster expan-
sion” to keep track of combinatorics. Consider a term
at q-th order which is linear in Hi1 , Hi2 , ...,Him , where
the ia need not be distinct from each other. We intro-
duce a diagrammatic notation, writing q distinct points
corresponding to the terms and drawing a line between
the a-th points and the b-th point if [Hia , Hib ] 6= 0. De-
fine the “linked clusters” to be the connected compo-
nents of the resulting graph. A term at m-th order can-
cels unless at least one of the clusters contains at least
three points. Summing over all clusters satisfying this
condition, this bounds the expression at q-th order by
O(mq−2K2(Λ∆t)

q).
The trouble with this series expansion method is

twofold. First, there is a combinatoric issue of bounding
the prefactors in front of the higher order terms. While
this can be dealt with, the more serious issue is that
the expansion parameter in the series expansion is actu-
ally still mΛ∆t, so the bound O(mK2Λ3∆3

t ) can only be
proven for sufficiently small mΛ∆t.

We now give an alternate derivation that does not as-
sume mΛ∆t is small also. We first bound the error in the
second order Suzuki expansion for a problem with only
two terms, called A and B. Let us fix ∆t = 1. Define
H(x) = B + (1− x)A. We wish to bound

‖ exp(−iA
2

) exp(−iB) exp(−iA
2

)− exp(−iH(0))‖

= ‖
∫ 1

0

∂x

(
exp(−ixA

2
) exp(−iH(x)) exp(−ixA

2
)
)

dx‖.

We will bound the norm of the derivative on the right-
hand side of the above expression, and then integrate this
bound over 0 ≤ x ≤ 1 to bound the second order error.
Let A(t, x) = exp(iH(x)t)A exp(−iH(x)t). Then,

‖∂x
(

exp(−ixA
2

) exp(−iH(x)) exp(−ixA
2

)
)
‖

= ‖ exp(−ixA
2

) exp(−iH(x))
(
−iA

2
− iA(1, x)

2

+i

∫ 1

0

A(t, x)dt
)

exp(−ixA
2

)‖

= ‖ − A(0, x)

2
− A(1, x)

2
+

∫ 1

0

A(t, x)dt‖.

We have A(t, x) = A(0, x)+tA′(0, x)+
∫ t

0
(t−s)A′′(s, x)ds,

where A′ and A′′ represent first and second derivatives
with respect to t in A(t, x). One may verify that the
terms in A and A′ cancel in the above equation, leaving
only terms in A′′, giving after some calculus

‖∂x
(

exp(−ixA
2

) exp(−iH(x)) exp(−ixA
2

)
)
‖

≤ ‖
∫ 1

0

(
(1− s)− (1− s)2/2

)
A′′(t, s)ds‖

≤
∫ 1

0

‖A′′(t, s)‖ds.

Integrating over x, and using ‖A′′(t, s)‖ =
‖[[A,H(x)], H(x)]‖ ≤ ‖[[A,B], A] + [[A,B], B]‖, we
find that

‖ exp(−iA
2

) exp(−iB) exp(−iA
2

)− exp(−i(A+B))‖

≤ ‖[[A,B], A]‖+ ‖[[A,B], B]‖. (B3)

We now apply Eq. (B3) inductively to give the desired
bound on U − UTS . Let Uj = exp(−i

∑
j≤k≤mHk) and

let

UTS
j = exp(−iHj

∆t

2
)... exp(−iHm

∆t

2
)

× exp(−iHm
∆t

2
)... exp(−iHj

∆t

2
). (B4)

Then by a triangle inequality,

‖Uj−1 − UTS
j−1‖ (B5)

≤ ‖Uj−1 − exp(iHj−1
∆t

2
)Uj exp(−iHj−1

∆t

2
)‖

+‖ exp(iHj−1
∆t

2
)Uj exp(−iHj−1

∆t

2
)− UTS

j−1‖

= ‖Uj−1 − exp(iHj−1
∆t

2
)Uj exp(−iHj−1

∆t

2
)‖

+‖Uj − UTS
j ‖.

Using Eq. (B3) to bound the first term on the right-
hand side of the above equation, taking A = Hj−1∆t

and B =
∑

j≤k≤mHk∆t, we get

‖Uj−1−UTS
j−1‖ ≤ const.×Λ3∆3

tK
2 + ‖Uj −UTS

j ‖, (B6)
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where the constant is a numeric constant of order unity.
Summing over j, we obtain the desired bound Eq. (B2)
for ‖U − UTS‖ = ‖U1 − UTS

1 ‖.
It seems likely that this same proof will also work to

bound higher order errors in higher order Trotter-Suzuki
expressions. For 2r-th order Trotter-Suzuki, we expect to
bound the error by O(mk2rΛ2r+1∆2r+1

t ). If indeed this
holds, for K = N3 and m = N4, for sixth order Trotter-
Suzuki the Trotter number required to obtain given error
is actually sublinear in m.

Appendix C: Coalescing

Our work makes it clear that algorithmic improve-
ments are needed to make quantum chemistry practical
on a quantum computer. Here we suggest one poten-
tial improvement which signficantly decreases the total
number of gate operations required by using an adaptive
Trotter decomposition for terms of different magnitude.
Unfortunately, there is some tradeoff in this scheme as
the rearrangment we suggest likely increases the Trot-
ter error. Further research is required to understand, in
what regimes, this tradeoff is such that this is a beneficial
approach.

The key idea is based on the observation that in the
Hartree-Fock basis, many off-diagonal matrix elements
are very small. In the unitary time evolution these small
terms can be applied with much larger Trotter time steps
∆t compared to the larger terms. As a consequence fewer
circuits have to be applied and the total gate count is
significantly reduced.

Specifically, we propose to use a different time step

∆
(k)
t for each of the terms in the Hamiltonian hk and

to choose them such that the product of the amplitude

of the term and the time step ∆
(k)
t · ‖ hk ‖ is roughly

homogeneous across all terms.
Equivalently, consider the Trotter-decomposed time

evolution operator for a given total time T ,

U =
(∏

Uk

)T/∆t

, (C1)

where Uk applies the Hamiltonian term hk for a Trotter
step ∆t. In the Hartree-Fock basis, many of these terms
are extremely close to the identity. We can then imagine
rearranging the terms in this expansion such that identi-
cal terms that are very close to the identity, i.e. that have
a very small coefficient in the Hamiltonian, are grouped
together and can be executed at once.

From this description it becomes clear that some addi-
tional discretization error will be accumulated by chang-
ing the order of terms, and it may therefore be necessary
to reduce the Trotter time step to keep the total error
fixed. This leads to a trade-off between grouping terms
and keeping the error constant. The best scheme within
this trade-off depends sensitively on the specific distri-
bution of Hamiltonian terms hk. In this paper, we do
not address this question in detail, but defer it to future

work. However, we do give a brief theoretical analysis of
one simple coalescing scheme.

Let the Hamiltonian H be a sum of terms H =
∑

iHi.
Divide these terms Hi into buckets, so that every term
is in exactly one bucket. Label the buckets 1, ..., k, and
let Ba be the set of integers i so that Hi is in bucket a.
Assume that there are Na terms in bucket a with ‖Hi‖ ≤
Λa for i ∈ Ba. We arrange the buckets to contain terms
in decreasing order of magnitude, so that B1 contains the
largest terms and is executed the most frequently, while
later buckets are exectued less frequently.

We wish to approximate U = exp(−iHt) with a quan-
tum circuit, and we assume that we have circuits to im-
plement exp(−iθHi) for any i.

We analyze a coalescing scheme to approximat this uni-
tary, and show that it achieves error ε in operator norm
bounded by

ε ≤
∑
a

O(
S3
a + Ta−1S

2
a + T 2

a−1Sa

(2k−a)2
), (C2)

where we define

Sa = NaΛat (C3)

and

Ta =
∑
b≤a

Sb, (C4)

with T0 = 0. The scheme is defined by Eqs. (C8,C9,C11),
with Vk defined by those equations being the approxima-
tion to U .

To gain some intuition for Eq. (C2), let Ka =∑
i∈Ba

Hi be the sum of all terms in bucket a. Then, the

first term O(S3
a/(2

k−a)2) in the equation is the error we
obtain by approximating exp(−iKat) by doing a a sec-
ond order Trotter-Suzuki expansion to exp(−iKa

t
2k−a )

and then taking the 2k−a-th power of that approxima-
tion. In a sense, this first term results from errors in
commutators in a single bucket. The terms in Ta−1S

2
a

and T 2
a−1Sa result from interaction between buckets. The

terms resulting from interaction between buckets have
one unfortunate effect: if there is a large term in the
first bucket (which gives a large Ta and which will be ap-
proximated with a very short Trotter step), then ideally
we would like to suppress the error by a large denomi-
nator (2k−1)2, and indeed the first term in Eq. (C2) is
suppressed by this factor. However, since this term in-
teracts with terms in later buckets, there will be error
terms with denominators of order (2k−a)2 for all a also
appearing in the second and third terms in Eq. (C2) and
this is a smaller denominator. However, these terms will
be at most second order in T1 and will be at least first
order in Sa so if Sa is small then this will help suppress
these terms.

To define and analyze the scheme, let

Ja =
∑
b≤a

∑
i∈Bb

Hi (C5)
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be the sum of all terms in buckets 1, ..., a and let

Ua = exp(−iJa
t

2k−a
), (C6)

so that U = Uk. We proceed inductively, using an
approximation to Ua to construct an approximation to
Ua+1. We call this approximation Va. and let

εa = ‖Va − Ua‖. (C7)

We define V1 by a standard second order Trotter-Suzuki
as follows. Let

Wa =
∏
i∈B1

exp(−i1
2
Hi

t

2k−a
), (C8)

where the product is taken in any fixed arbitrary order,
and let W ′a denote the same product as Wa except taken
in the reverse order (if H is real, then W ′a = WT

a ). Then,
let

V1 = W1W
′
1. (C9)

By standard estimates,

ε1 ≤ O(
S1

2k−1
)3. (C10)

This estimate for ε1 is based on a third order Taylor ex-
pansion; the lower order terms in the Taylor expansion
cancel, and the higher order terms in the Taylor expan-
sion are higher order in S1.

We then define

Va+1 = Wa+1V
2
aW

′
a+1. (C11)

Note that

‖Va+1 −Wa+1U
2
aW

′
a+1‖ ≤ 2εa. (C12)

Also,

‖Ua+1 −Wa+1U
2
aW

′
a+1‖ (C13)

≤ O(
S3
a+1 + ‖Ja‖S2

a+1 + ‖Ja‖2Sa+1

(2k−a−1)3
),

as can be estimated using a Taylor series similar to be-
fore. So, by Eqs. (C12,C13),

εa+1 ≤ 2εa +O(
S3
a+1 + TaS

2
a+1 + T 2

aSa+1

(2k−a−1)3
), (C14)

using the fact that ‖Ja‖ ≤ Ta.
Hence,

εa ≤
∑
b≤a

2a−bO(
S3
b + Tb−1S

2
b + T 2

b−1Sb

(2k−b−1)3
), (C15)

and

εk ≤
∑
a

O(
S3
a + Ta−1S

2
a + T 2

a−1Sa

(2k−a)2
). (C16)

Appendix D: Circuits

Following the approach set out in Ref. [22], we convert
each term in Equation 1 via a Jordan-Wigner transfor-
mation which expresses fermionic operators in terms of
Pauli spin operators {σx, σy, σz,1}. This technique al-
lows us to preserve the necessary commutation relations
by entangling all of the spin-orbitals (qubits) between an-
nihilation and creation operators with CNOT gates, per-
forming the unitary propagator (exp(−iHt)) at a given
strength (tpq or Vpqrs) and then unentangling by revers-
ing the order of the applied CNOTs. If the propagator
is in the computational basis σz, then a rotation of the
desired strength may be applied directly. If the propa-
gator is in the σx basis then the basis must be flipped
from σx to σz with a Hadamard transformation H; the
operation is then performed and then returned from σz

to σx with an additional H at the end. Likewise, Y and
Y† may be used to flip between σy and σz. The basis
flip operations are:

H =
1√
2

[
1 1
1 −1

]
Y =

1√
2

[
1 i
i 1

]
(D1)

The resulting circuits are presented in Figs. 5, 6, 7 and
8. These circuits coincide with those of Ref. [22], except
for those for Hpqqr which were not needed in the exam-
ple discussed in the reference. In all circuits, θ refers to
the term strength (tpq or Vpqrs) computed by a standard
technique. In our case this was PyQuante [44] running a
Restricted Hartree-Fock model.

The circuits shown above are easily parameterized to
show expected resource usage as much larger molecules
are modeled. Table III shows exact counts for both se-
quential and parallel implementation of all one and two
body terms used in the the Hamiltonian.

Appendix E: Commuting Two Body Terms in an
Enlarged Basis

Consider a the two body term 1
2

∑
pqrs Vpqrsc

†
pc
†
qcrcs.

We show that we can find a larger single-particle basis, of
size O(N3), such that the two body term becomes diag-
onal, as follows. We define the enlarged basis by adding
additional orbitals to the original basis; we continue to
number the original orbitals by 1, ..., N and number the
additional orbitals by N + 1, ..., O(N3). We define an

operator P̂ that projects on the states in Fock space in
which all of electrons are only in the original orbitals.
What we will show is that we can implement a basis ro-
tation U in this enlarged space such that, after rotation,
the two-body term is equal to

P̂
∑
p

∑
q

Wpqc
†
pcpc

†
qcqP̂ + single body terms, (E1)

where the single body terms are terms quadratic in c†p, cp
and can be cancelled by adding additional single body
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(i)

Phase •
P −Tθ

(ii)

Phase • •

P H • • H Y • • Y †

• • • •

• • • •

Q H −θZ/2 H Y −θZ/2 Y †

FIG. 5. Circuit representations of Hamiltonian terms Hpp and Hpq.

−Tθ/4 • • •

θZ/4 • •

θZ/4 −θZ/4

FIG. 6. Circuit representation of Hamiltonian terms Hpqqp.

(i)

Phase • • • •

P H • • H Y • • Y †

• • • •

• • • •

Q • • • •

• • • •

• • • •

R H θZ/4 −θZ/4 H Y θZ/4 −θZ/4 Y †

(ii)

Phase • • • •

P H • • H Y • • Y †

• • • •

• • • •

R H −θZ/4 θZ/4 H Y −θZ/4 θZ/4 Y †

Q • • • •

FIG. 7. Circuit representations of Hamiltonian terms (i) Hpqqr, p < q < r, and (ii) Hpqqr, q < p or q < r.
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(i)

Phase • • • •

P H • • H Y • • Y † H • • H Y • • Y †

• • • • • • • •

• • • • • • • •

Q H • • H Y • • Y † H • • H Y • • Y †

R H • • H Y • • Y † Y • • Y † H • • H

• • • • • • • •

• • • • • • • •

S H −θZ0 /8 H Y −θZ0 /8 Y † Y −θZ1 /8 Y † H −θZ1 /8 H

(ii)

Phase • • • •

P Y • • Y † H • • H Y • • Y † H • • H

• • • • • • • •

• • • • • • • •

Q H • • H Y • • Y † H • • H Y • • Y †

R Y • • Y † H • • H H • • H Y • • Y †

• • • • • • • •

• • • • • • • •

S H −θZ2 /8 H Y −θZ2 /8 Y † Y −θZ3 /8 Y † H −θZ3 /8 H

FIG. 8. Circuit representation of Hamiltonian terms Hpqrs.

Sequential Circuit Global Rz H, Y, Y† CNOT CRz BSM Total
Hpp 1 1
Hpq 8 2(q − p) 4 12 + 2(q − p)
Hpqqp 1 2 3 1+5

Hpqqr, p < q < r 8 4(r − p) 4 12 + 4(r − p)
Hpqqr, q < p or r < q 8 4(r − p+ 1) 4 16 + 4(r − p)

Hpqrs 8 · 8 8 · 2(q − p+ s− r + 1) 8 · 1 8 · 9 + 8 · 2(q − p+ s− r + 1)

Parallel Circuit Global Rz H, Y, Y† CNOT CRz BSM Total
Hpp 1 1
Hpq 8 2 4 4 18
Hpqqp 1 2 3 1+5
Hpqqr 4 8 4 4 24
Hpqrs 8 · 2 8 · 2 8 · 1 8 · 2 8 · 7

TABLE III. Circuit depths of the circuits for the individual terms in the Hamiltonian for sequential (top) and parallel (bottom)
execution of the circuits. The global rotation gate in the Hpqqp term needs to be counted only once for all such terms. The
eight terms in Hpqrs can be reduced to 4 or 2 for terms where some of the angles θi are 0 due to symmetry. For the parallel
circuits, the method of Ref. [51] can execute the Jordan-Wigner strings in constant time at the cost of additional Bell-state
measurements (BSM).

terms to the Hamiltonian.
To implement this, note that

1

2

∑
pqrs

Vpqrsc
†
pcrc

†
qcs + single body terms. (E2)

Again up to single body terms, we can assume that Vpqrs
is symmetric under interchanging p, r with q, s. Hence,
we can decompose the above sum as∑

a

λaO(a)O(a) + single body terms, (E3)

where λa are scalars and each O(a) is some single body

term:

O(a) =
∑
p,q

A(p, q, a)c†pcq. (E4)

There are k = O(N2) terms in the sum of Eq. (E3). Each
O(a) can be diagonalized by some unitary rotation U(a),
giving some diagonal matrix Λ(a). Let Λ(a)ii denote the
diagonal entries of Λ(a).
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Let V be a kN -by-N matrix given by

1√
k

U(1)
U(1)
...
U(k)

 , (E5)

where here we write V as a block matrix. Note that V

is an isometry. Hence, we can find a unitary matrix U
of size kN -by-kN whose first N columns are equal to V .
Let p = ak + b and q = ck + d with 1 ≤ b, d ≤ N . Then,
we define Wpq to equal 0 if a 6= c. If a = c, then we set

Wpq =
√
kλ(a)Λ(a)bbΛ(a)dd. One can verify that this U

and Wpq have the desired properties.
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