
Quantum Nearest-Neighbor Algorithms for Machine Learning

Nathan Wiebe†, Ashish Kapoor∗, and Krysta M. Svore†
†Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA (USA)
∗Adaptive Systems and Interaction Group, Microsoft Research, Redmond, WA (USA)

We present several quantum algorithms for performing nearest-neighbor learning. At the core
of our algorithms are fast and coherent quantum methods for computing distance metrics such as
the inner product and Euclidean distance. We prove upper bounds on the number of queries to
the input data required to compute these metrics. In the worst case, our quantum algorithms lead
to polynomial reductions in query complexity relative to the corresponding classical algorithm. In
certain cases, we show exponential or even super-exponential reductions over the classical analog.
We study the performance of our quantum nearest-neighbor algorithms on several real-world binary
classification tasks and find that the classification accuracy is competitive with classical methods.

The discipline of machine learning has exploded in re-
cent years due to the increasing demand for automated
modeling of large amounts of data. Every day people
interact with hundreds of systems developed using ma-
chine learning techniques, including internet search en-
gines, speech recognition applications, GPS-based navi-
gation tools, and automated robots. Consider the task
faced by the U.S. postal service of routing over 160 billion
pieces of mail. The sheer magnitude of this problem ne-
cessitates the use of software to automatically recognize
the handwritten digits and letters that form the address
of a recipient. The nearest-neighbor algorithm is com-
monly used to solve tasks such as handwriting recogni-
tion due to its simplicity and high performance accuracy
[1].

Nearest-neighbor classification is a supervised machine
learning technique that relies on labeled training data to
make a classification decision. Consider the binary classi-
fication task of determining if a given unlabeled test digit
is even or odd. The training data consists of handwrit-
ten digits expressed as multidimensional feature vectors,
each with a human-assigned label of either even or odd.
The entries of each feature vector v ∈ RN , where N is the
number of features used to characterize the digit, may be
the pixel values that comprise the image. Figure 1 shows
an example of 25 digits, each of which is represented by
a 256-dimensional feature vector of pixel values.

We can divide the training set into two sets, or clusters,
of vectors in RN , {A} and {B}, such that {A} contains
only odd examples, {B} contains only even examples,
and |{A}| + |{B}| = MA + MB = M . The goal is to
classify, or label, a given unlabeled test point u ∈ RN as
u ∈ A or u ∈ B. Here we take N and M to be large; an
algorithm is efficient if it requires time O(polylog(NM)).

The nearest-neighbor algorithm first computes the dis-
tance between the test vector u and each training vector
v and then assigns u to the cluster that contains the
closest vector to u. Specifically, it assigns u to {A} if

min
a∈{A}

|u− a| ≤ min
b∈{B}

|u− b|,

for an appropriate distance metric |u − v|. Extensions
of nearest-neighbor include k-nearest-neighbors, where a

FIG. 1: An example of 25 handwritten digits. Each
digit is stored as a 256-pixel greyscale image and

represented as a unit vector with N = 256 features.

function, such as majority, of the labels of the k near-
est training vectors is used to determine the label of the
test point [2]. The classical nearest-neighbor algorithm
requires time O(NM).

Quantum computation shows promise as a powerful
resource for accelerating certain classical machine learn-
ing algorithms [3–6]. However, a major challenge facing
the development of practical quantum machine learning
algorithms is the need for an oracle to return, for exam-
ple, the distances between elements in the test and train-
ing sets. Lloyd, Mohseni, and Rebentrost [5] recently
proposed an efficient quantum algorithm to address this
problem. Namely, their algorithm computes a represen-
tative vector for each set, referred to as a centroid, by
averaging the vectors in A and B, respectively. The test
point u is assigned to {A} if the distance to the centroid
of {A}, written as mean({A}), is smallest,

|u−mean({A})| ≤ |u−mean({B})|,

and {B} otherwise.
Note that this algorithm, which we refer to as nearest–

centroid classification is a form of nearest-neighbor classi-
fication, where the nearest centroid is used to determine
the label, as opposed to the nearest training point. If
the number of clusters equals the number of points, then
it reduces to nearest–neighbor classification. In prac-
tice, nearest–centroid classification can perform poorly
because {A} and {B} are often embedded in a compli-
cated manifold where the mean values of the sets are not
within the manifold [7]. In contrast, nearest–neighbor
classification tends work well in practice and often out-

ar
X

iv
:1

40
1.

21
42

v1
 [

qu
an

t-
ph

]
 9

 J
an

 2
01

4

2

performs centroid–based classification but can be pro-
hibitively expensive on classical computers [8].

Therefore, we present a quantum nearest–neighbor al-
gorithm that assigns a point u to either cluster {A} or
{B} such that both the probability of a faulty assignment
and the number of quantum oracle queries is minimized.
We consider two choices of distance metrics within our
algorithm:

1. the inner product, |u− v| = |u||v| − u · v,

2. the Euclidean distance, |u−v| =
√∑N

i=1(ui − vi)2.

Our quantum algorithm overcomes the main drawback
of the nearest-centroid approach in [5]: low assignment
accuracy in many real–world problems.

Throughout, the test point is set to v0 := u and the
training set consists of vj , for j = 1, . . . ,M . We assume
the following: (1) The input vectors are d–sparse, i.e.,
contain no more than d non–zero entries. (2) Quantum
oracles are provided in the form

O |j〉 |i〉 |0〉 := |j〉 |i〉 |vji〉 ,
F |j〉 |`〉 := |j〉 |f(j, `)〉 , (1)

where vji is the ith element of the jth vector and f(j, `)
gives the location of the `th non–zero entry in vj . (3)
The user knows an upper bound rmax on the maximum
value of any feature in the dataset. (4) Each vector is
normalized to 1, for convenience (this is not necessary).
(5) The run time of the algorithm is dominated by the
number of queries made to oracles O and F .

We show for our algorithm that:

1. The number of queries depends on dr2
max rather

than on the feature dimension N or the sparsity d
alone. Thus, for practical applications the query
complexity is typically independent of the number
of features (i.e., rmax ∝ 1/

√
d).

2. The number of queries scales as O(
√
M log(M))

rather than M . Furthermore, the query complexity
of our Euclidean-based method can be independent
of M .

3. Our algorithm can tolerate relatively large errors
in distance calculations when applied to real–world
classification problems.

Implementation of oracle–based algorithms will require
instantiation of the oracles, which are an abstraction of
the many ways for algorithms to interact with data. If the
task is to classify chemicals, the oracle query could repre-
sent a call to an efficient quantum simulation algorithm
that yields physical features of the chemicals [9, 10]. In
other cases, the oracle query could represent accesses
to a large quantum database that contains classical bit
strings. One way to construct such a database is to use a
quantum random access memory (qRAM) [11], however
alternate implementations are possible. In this work, we
assume oracles are provided and show how to minimize
the number of queries to the oracle.

Inner Product Classification. We first describe a
quantum nearest–neighbor algorithm that uses the in-
ner product as the distance metric. We show, somewhat
surprisingly, that the required number of oracle queries
does not explicitly depend on the number of features N .
Rather, it depends implicitly on N through dr2

max and ε.

Theorem 1. Let v0 and {vj : j = 1, . . . ,M} be d–
sparse unit vectors such that maxj,i |vji| ≤ rmax, then
the task of finding maxj | 〈u|vj〉 |2 within error at most
ε and with success probability at least 1 − δ0 requires an
expected number of queries that is bounded above by

1080
√
M

⌈
4π(π + 1)d2r4

max

ε

⌉
ln
(

81M(ln(M)+γ)
δ0

)
2(8/π2 − 1/2)2

 ,
where γ ≈ 0.5772 is Euler’s constant.

Two important scaling factors in the theorem should
be emphasized. First, the scaling of the query complex-
ity with M is near–quadratically better than its classical
analog. Second, if rmax ∝ 1/

√
d then the scaling is inde-

pendent of both d and N . We expect this condition to
occur when all input vectors have at least Θ(d) sparsity.

Note that in cases where the sign of the inner product
is necessary for assignment, we can generalize the above
method by performing

|v`〉 7→
|0〉 |0⊗ log2N 〉+ |1〉 |v`〉√

2
, (2)

and then using these states in Theorem 1. This allows
direct estimation of the cosine distance and in turn the
inner product. Non–unit vectors can be trivially handled
given access to quantum oracles that return the norms of
the vectors [6].

We prove Theorem 1 by the following steps (see sup-
plementary material for more detail). Assume that we
want to compute the inner product between two states
vj and v0 := u and let vji = rjie

iφji , where rji is a
positive number. This can be achieved using a coherent
version of the swap test [12] on the states

d−1/2
∑
i

|i〉

√1−
r2
ji

r2
max

e−iφji |0〉+
vji
rmax

|1〉

 |1〉 ,
d−1/2

∑
i

|i〉 |1〉

(√
1− r2

0i

r2
max

e−iφ0i |0〉+
v0i

rmax
|1〉

)
.

(3)

which, as we show in the appendix, can be prepared using
six oracle calls and two single–qubit rotations. If the
swap test is applied to these states and a probability of
obtaining outcome ‘0’, denoted P (0), is found then

| 〈u|vj〉 |2 = (2P (0)− 1)d2r4
max.

Statistical sampling requires O(M/ε2) queries to achieve
the desired error tolerance, which can be expensive if
small values of ε are required.

3

We reduce the scaling with ε to O(1/ε) by removing
the measurement in the swap test and applying ampli-
tude estimation (AE) [13] to estimate P (0) within error

ε, denoted P̃ (0). This can be done because the state
preparation procedure and the measurement–free swap
test are invertible. If a register of dimension R is used in
AE then the inference error obeys

|P (0)− P̃ (0)| ≤ π

R
+
π2

R2
.

Choosing R to be large enough so that the error in AE
is at most ε/2 yields

R ≥
⌈

4π(π + 1)d2r4
max

ε

⌉
. (4)

The scaling with M can also be quadratically reduced
by using the maximum/minimum finding algorithm of
Dürr and Høyer [14], which combines Grover’s algorithm
with exponential search to find the largest or smallest
element in a list. In order to apply the algorithm, we
need to make the AE step reversible. We call this form
of AE coherent amplitude estimation.

We achieve this by introducing a coherent majority
voting scheme on a superposition over k–copies of the
output of AE. AE outputs a state of the form a |y〉 +√

1− |a|2 |y⊥〉, where y is a bit–string that encodes P (0)

and |y⊥〉 is orthogonal to |y〉. The median of k bitstrings
xk is computed coherently by M : |x1〉 · · · |xk〉 |0〉 7→
|x1〉 · · · |xk〉 |x̄〉, where x̄ is the median of [x1, . . . , xk]. For
this application, AE guarantees that |a|2 ≥ 8/π2 > 1/2
and Hoeffding’s inequality shows that ȳ = y with over-
whelming probability if k is sufficiently large. In par-
ticular, it is straightforward to show using the binomial
theorem that we can write

M(a |y〉+
√

1− |a|2 |y⊥〉)⊗k |0〉

= A |Ψ〉 |y〉+
√

1− |A|2 |Φ; y′⊥〉 , (5)

where |A|2 > 1 − ∆ for k ≥ ln
(

1
∆

)
/(2
(
8/π2 − 1

2

)2
)

and states |Ψ〉 and |Φ; y′⊥〉 are computationally irrele-
vant. We then use coherent majority voting to construct
a
√

2∆–approximate oracle that maps |j〉 |0〉 7→ |j〉 |ȳ〉.
This approximate oracle is then used in the Dürr Høyer
minimum finding algorithm.

We then make the pessimistic assumption that if the
use of an approximate oracle leads to an erroneous out-
come from the minimum finding algorithm even once
then the whole algorithm fails. Fortunately, since the
number of repetitions of AE scales as k ∈ O(log(1/∆)),
this probability can be made vanishingly small at low
cost. Our final cost estimate then follows by multiply-
ing, k, R, the costs of state preparation, and the number
of iterations used in the Dürr Høyer algorithm.

Euclidean Distance Classification. The classification
problem can also be solved using the Euclidean distance.
We now describe a quantum nearest-neighbor algorithm

based on the Euclidean distance between u and the clus-
ter centroids, i.e., the mean values of the vectors within
each cluster. This can be viewed as a step in a k–means
clustering algorithm [5, 15]. We refer to this algorithm
as the nearest-centroid algorithm.

Our nearest–centroid algorithm differs substantially
from that of [5] in that (1) we normalize the com-
puted distances, and (2) we consider a generalization to
cases where each cluster is subdivided into M ′ clusters
that each contain M1, . . . ,MM ′ vectors respectively. If
M ′ = M then the algorithm reduces to nearest–neighbor
classification with the Euclidean distance metric.

These differences help address two central problems of
centroid–based classification. First, imagine that cluster
{A} is dense but cluster {B} is sparse. Then even if
|u − mean({A})| ≤ |u − mean({B})|, it may be much
more likely that u ∈ {B} because the probability of a
large deviation from the centroid is much greater for {B}
than {A}. Normalizing the distance by the width of the
cluster can help address this issue [16]. We also show in
the supplemental material that this assignment reduces
to the likelihood ratio test under certain assumptions.
Second, if {A} and {B} are non–convex then the centroid
of {A} may actually be in {B}. Segmenting the data into
M ′ smaller clusters can help address this issue.

The following theorem gives the query complexity for
our quantum nearest–centroid algorithm. The normal-
ization of the distance by the cluster width can easily be
omitted from the algorithm if desired.

Theorem 2. Let v0 and {v(m)
j : j = 1, . . . ,Mm,m =

1, . . .M ′} be d–sparse unit vectors such that the com-

ponents satisfy maxm,j,i |v(m)
ji | ≤ rmax and σm =

1
Mm

∑Mm

p=1 ‖ − v
(m)
p + 1

Mm

∑
j v

(m)
j ‖22, if Mm > 1 and

σm = 1 otherwise. The task of finding

min
m

(
‖v0 − 1

Mm

∑Mm

j=1 v
(m)
j ‖22

σm

)
,

with error in the numerator and denominator bounded
above by ε and with success probability at least 1 − δ0,
requires an expected number of queries that is bounded
above by

900
√
M ′
⌈

8π(π + 1)dr2
max

ε

⌉
log
(

81M ′(log(M ′)+γ)
δ0

)
2((8/π2)2 − 1/2)2

 .

If M ′ ∈ O(polylog(MN)) and dr2
max ∈ O(1) then the

learning problem is efficient, which motivates the use
of centroid–based classification for supervised learning
problems where {A} and {B} can be partitioned into
a union of a small number of disjoint training sets that
are both unimodal and convex. Even if M ′ ∈ Θ(M) is
required, then the query complexity of this method is at
most comparable to the inner–product–based approach.

4

The proof of Theorem 2 follows similarly to that of
Theorem 1. We use coherent amplitude estimation (AE)
to find the numerator and the distance between u and
the centroid as well as the intra–cluster variance. We
then use a reversible circuit to divide the distance by the
variance and use the Dürr Høyer algorithm [14] to find
the minimum relative distance over all M ′ clusters. The
biggest conceptual difference is that in this case we do not
use the swap test; instead we use a method from [6, 17].

The result of [17] shows that for any unitary V and
transformation mapping |j〉 |0〉 7→ |j〉 |vj〉, a measure-
ment can be performed that has success probability

P (0) ∝

∣∣∣∣∣∣
Mm∑
j=0

|Vj0|2vj

∣∣∣∣∣∣
2

, (6)

for any Mm. If we choose v0 = −u, then by (6) and

|Vj0| =

{
1√
2
, j = 0
1√

2Mm
, otherwise

,

the probability of success gives the square of the Eu-
clidean distance between u and the cluster centroid. Note
that non–unit vectors can be accommodated by doubling
the number of vectors and setting vj = xj +yj where xj
and yj are unit vectors. We show in the supplemental
material that∣∣∣∣∣∣u− 1

Mm

∑
j≥1

vj

∣∣∣∣∣∣
2

= 4dr2
maxP (0).

The operator V can be implemented efficiently using
techniques from quantum simulation (see supplemental
material), and the vj are prepared using (3). The pro-
cess of estimating the distance is therefore efficient.

The remainder of the procedure is identical to that
of the inner–product–based classification. The most no-
table technical difference is that the phase estimation
procedure must succeed in both the distance and the
intra–cluster variance calculations. This results in the
success probability in phase estimation dropping from
at least 8/π2 to at least (8/π2)2 ≈ 2/3. Thus, quan-
tum nearest–centroid classification (based on Euclidean
distance) requires more iterations than quantum nearest–
neighbor classification (based on inner product distance).

Numerical Experiments. We evaluate the perfor-
mance of our algorithms on several real–world tasks. The
first task is based on handwritten digits from the MNIST
digits database [18]. Given a training set of M handwrit-
ten digits (see Figure 1) and their labels (even or odd),
assign a label (even or odd) to an unlabeled test digit.
Each digit is represented by a 256-dimensional feature
unit vector of pixel values [18]. These pixel values are
rescaled to have zero mean and unit variance over the
data set before normalizing. In all plots, error bars indi-
cate standard deviation of the accuracy.

−5 0 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Log)10)Noise

A
cc

ur
ac

y

Digit)Data)(Odd)vs)Even)

)

Centroid

NN

FIG. 2: Classification accuracy for digit data vs ε for
cases where half the dataset is used for training.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

FractionEofETrainingEData

A
cc

ur
ac

y

DigitEDataE(OddEvsEEven)

E

Centroid

NN

FIG. 3: Classification accuracy for digit data for fixed
noise ε = 10−5 as a function of the training data size.

First, we compare the accuracy of our nearest–
neighbor algorithm (NN) based on the inner product to
our nearest–centroid algorithm (Centroid) based on Eu-
clidean distance, as a function of noise ε in the distance
computation. For Centroid, we set M ′ = 1. Figure 2
plots ε versus the accuracy of both NN (blue squares)
and Centroid (red circles), for noise drawn from N (0, ε)
independently for each distance computation, where ε ∈
[10−5, 105]. The accuracy is averaged across classification
of 100 random test examples using M = 2000 training
points. In the low-noise regime, NN significantly outper-
forms Centroid by roughly 20%. At ε ≈ 0.1 ≈ 1/

√
N ,

both algorithms exhibit significant loss in accuracy and
eventually degrade to 50% accuracy. Both NN and Cen-
troid tolerate relatively large errors without sacrificing
classification accuracy.

The tolerance against noise up to size O(1/
√
N) is

well–justified for high–dimensional systems by concen-
tration of measure arguments [19], so we anticipate that

ε ∈ Θ(1/
√
N) should be appropriate for problems that

lack underlying symmetry in the assignment set (such as
even/odd classification).

Second, we study the effect of training data size on
the performance accuracy of the two algorithms for a
fixed noise rate ε = 0.1. Figure 3 plots the training data

5

size versus the performance accuracy of both NN (blue
squares) and Centroid (red circles). We vary the training
set size by taking random fractions of M = 4000 points,
at fractions of 0.1, 0.2, . . . , 0.9. For all training set sizes,
NN significantly outperforms Centroid. In addition, NN
exhibits increasing performance accuracy as M increases,
from 84% to 90%. In contrast, Centroid’s accuracy hov-
ers around 73%, even as M increases.

While NN outperforms Centroid on the digit classifica-
tion task, we find that for other tasks, outlined in the sup-
plemental material, Centroid outperforms NN. However,
in tasks where Centroid performs well, we find that both
methods exhibit low classification accuracy. This could
indicate the need for more training data, in which case
NN may begin to outperform Centroid as the amount of
training data M grows.

For the digit classification task, we estimate that accu-
racy α can be obtained using NN with a number of oracle
queries that scales (for constant success probability) as

O(
√
M) = O((1 − α)−5/4 log((1 − α)−1)). In contrast,

the number of queries in the classical nearest-neighbor
algorithm scales as O((1 − α)−5/2). The centroid–based
algorithm achieves at best α ≈ 0.78. In addition, we find
that dr2

max ≈ 2.8 for this problem, indicating that the
cost of state preparation will likely become negligible as
α→ 1 and in turn as M →∞.

Conclusions. We have presented two quantum algo-
rithms for performing nearest-neighbor classification that
promise significant speed-ups over their classical counter-
parts. Our algorithms enable classification over datasets
with both a high-dimensional feature space as well as a
large number of training examples. Computation of dis-
tance metrics is extremely common in machine learning
algorithms; we have developed two fast methods for com-
puting distance metrics on a quantum computer that can
be implemented coherently. Finally, we have shown that
our algorithms are robust to noise and perform well when
applied to typical real–world tasks.

We find that quantum algorithms for machine learn-
ing can provide algorithmic improvements over classical
machine learning techniques. Our algorithms are a step
toward blending fast quantum methods with proven ma-
chine learning techniques. In future work, these methods
could be used to develop quantum k-nearest–neighbor
algorithms or more generally other supervised, unsuper-
vised or semi–supervised learning algorithms.

ACKNOWLEDGMENTS

We thank Matt Hastings for valuable comments and
feedback.

[1] Thomas Cover and Peter Hart. Nearest neighbor pattern
classification. Information Theory, IEEE Transactions
on, 13(1):21–27, 1967.

[2] Keinosuke Fukunaga and Patrenahalli M. Narendra.
A branch and bound algorithm for computing k-
nearest neighbors. Computers, IEEE Transactions on,
100(7):750–753, 1975.

[3] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs.
Machine learning in a quantum world. In Advances in
Artificial Intelligence, pages 431–442. Springer, 2006.

[4] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong
Tarn. Quantum reinforcement learning. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on, 38(5):1207–1220, 2008.

[5] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost.
Quantum algorithms for supervised and unsupervised
machine learning. arXiv preprint arXiv:1307.0411, 2013.

[6] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd.
Quantum support vector machine for big feature and big
data classification. arXiv preprint arXiv:1307.0471, 2013.

[7] Ilya Levner. Feature selection and nearest centroid clas-
sification for protein mass spectrometry. BMC bioinfor-
matics, 6(1):68, 2005.

[8] Nuanwan Soonthornphisaj, Kanokwan Chaikulseriwat,
and Piyanan Tang-On. Anti-spam filtering: a centroid-
based classification approach. In Signal Processing, 2002
6th International Conference on, volume 2, pages 1096–
1099. IEEE, 2002.

[9] James D Whitfield, Jacob Biamonte, and Alán Aspuru-
Guzik. Simulation of electronic structure hamiltoni-
ans using quantum computers. Molecular Physics,

109(5):735–750, 2011.
[10] Dave Wecker, Bela Bauer, Bryan K Clark, Matthew B

Hastings, and Matthias Troyer. Can quantum chemistry
be performed on a small quantum computer? arXiv
preprint arXiv:1312.1695, 2013.

[11] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.
Quantum random access memory. Physical review letters,
100(16):160501, 2008.

[12] Harry Buhrman, Richard Cleve, John Watrous, and
Ronald De Wolf. Quantum fingerprinting. Physical Re-
view Letters, 87(16):167902, 2001.

[13] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain
Tapp. Quantum amplitude amplification and estimation.
arXiv preprint quant-ph/0005055, 2000.

[14] Christoph Durr and Peter Hoyer. A quantum algo-
rithm for finding the minimum. arXiv preprint quant-
ph/9607014, 1996.

[15] Stuart Lloyd. Least squares quantization in pcm. Infor-
mation Theory, IEEE Transactions on, 28(2):129–137,
1982.

[16] Robert Tibshirani, Trevor Hastie, Balasubramanian
Narasimhan, and Gilbert Chu. Diagnosis of multi-
ple cancer types by shrunken centroids of gene expres-
sion. Proceedings of the National Academy of Sciences,
99(10):6567–6572, 2002.

[17] Andrew M Childs and Nathan Wiebe. Hamiltonian sim-
ulation using linear combinations of unitary operations.
Quantum Information & Computation, 12(11-12):901–
924, 2012.

[18] Yann LeCun and Corinna Cortes. The mnist database of
handwritten digits, 1998.

6

[19] Michel Ledoux. The concentration of measure phe-
nomenon, volume 89. AMS Bookstore, 2005.

[20] Anil K Jain. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8):651–666, 2010.

[21] K. Bache and M. Lichman. UCI machine learning repos-
itory, 2013.

[22] Olvi L Mangasarian, W Nick Street, and William H Wol-
berg. Breast cancer diagnosis and prognosis via linear
programming. Operations Research, 43(4):570–577, 1995.

[23] John Ross Quinlan, PJ Compton, KA Horn, and
L Lazarus. Inductive knowledge acquisition: a case study.
In Proceedings of the Second Australian Conference on
Applications of expert systems, pages 137–156. Addison-
Wesley Longman Publishing Co., Inc., 1987.

[24] Yoshua Bengio. Learning deep architectures for AI.
Foundations and Trends in Machine Learning, 2(1):1–
127, 2009. Also published as a book. Now Publishers,
2009.

[25] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quan-
tum state generation and statistical zero knowledge. In
Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 20–29. ACM, 2003.

[26] Andrew M Childs, Richard Cleve, Enrico Deotto, Ed-

ward Farhi, Sam Gutmann, and Daniel A Spielman. Ex-
ponential algorithmic speedup by a quantum walk. In
Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 59–68. ACM, 2003.

[27] Nathan Wiebe, Dominic W Berry, Peter Høyer, and
Barry C Sanders. Simulating quantum dynamics on a
quantum computer. Journal of Physics A: Mathematical
and Theoretical, 44(44):445308, 2011.

[28] Ashwin Nayak and Felix Wu. The quantum query com-
plexity of approximating the median and related statis-
tics. In Proceedings of the thirty-first annual ACM sym-
posium on Theory of computing, pages 384–393. ACM,
1999.

[29] Sylvester Eriksson-Bique, Mary Solbrig, Michael Ste-
fanelli, Sarah Warkentin, Ralph Abbey, and Ilse CF
Ipsen. Importance sampling for a monte carlo matrix
multiplication algorithm, with application to informa-
tion retrieval. SIAM Journal on Scientific Computing,
33(4):1689–1706, 2011.

[30] Dénes Petz and Júlia Réffy. On asymptotics of large
haar distributed unitary matrices. Periodica Mathemat-
ica Hungarica, 49(1):103–117, 2004.

Appendix A: Additional Numerical Experiments

We evaluate the performance of our nearest–neighbor (NN) and nearest–centroid (Centroid) algorithms on several
additional machine learning tasks. A list of datasets, their respective training set sizes, and feature dimensions are
listed in Table I. Each task is mapped to a binary classification problem (two classes). The data sets do not, in
general, contain an equal number of training vectors per class. We denote the number of training vectors in classes A
and B to be MA and MB , respectively.

The noise induced by inaccurate estimation of the distances is modeled by introducing Gaussian random noise with
zero mean and variance ε2 and then clipping the result to the interval [0,∞). Other distributions, such as uniformly
distributed noise, gave qualitatively similar results. The features used in each data set can take on dramatically
different value types. For example, the diabetes data set contains features such as patient age and blood pressure. In
all tasks, we scale each feature to have zero mean and unit variance over the given data set.

We do not scale the vectors to unit length because the length of the vector is important for classification since points
in one class are likely to be nearly co-linear with those in another class in low–dimensional spaces. Non–unit vectors
can be easily accommodated by our algorithms by multiplying by the norms of the vectors in the inner–product based
approach or by increasing the number of vectors used in the centroid approach. This also means that |vj | will typically

be on the order of
√
N , which suggests that for the data sets that we consider |vj | ∈ [1, 10] is not unreasonable. Hence

we will refer to the regime where ε ≤ 1 as the low–noise regime and ε ∈ (1, 10] as the high–noise regime.
We first evaluate our algorithms on a standard machine learning benchmark commonly referred to as the “half moon”

dataset, which consists of two synthetically generated crescent-shaped clusters of points, as shown in Figure 4. The
dataset challenges classification algorithms since the convex hulls of the two “moons” overlap and the mean value
for each cluster (denoted by a star) sits in a region not covered by points. This data set will be hard to classify
with centroid–based methods (using one cluster) because 14.3% of the data is closer to the centroid of the opposite
set than to its own centroid. This means that the accuracy of centroid–based assignment will be at most 85.7%.
In contrast, we expect nearest–neighbor classification to work well because the typical (Euclidean) distance between
points is roughly 0.03, whereas the two classes are separated by a distance of approximately 0.5. This means that NN
should succeed with near 100% probability, except in cases where the training set size is very small.

In Figure 5, we plot the accuracies of our nearest–neighbor algorithm (NN; blue squares) and our nearest–centroid
algorithm (Centroid; red circles) as functions of noise ε in the distance computation. NN significantly outperforms
Centroid in the low–noise regime, exhibiting an accuracy near 100% versus Centroid’s 86% accuracy. As the noise
level increases, the accuracy of both algorithms decays; however, in the low noise regimes, NN outperforms Centroid
with statistical significance. At high noise levels, both algorithms decay to 50% accuracy as expected.

Figure 6 shows accuracy as a function of training data size. Here the training data size is taken to be a fraction, f ,
of the 2000 vectors in the set and the remaining fraction, 1− f , of the 2000 vectors was used to test the accuracy of
the assignments. Again, NN is almost always successful in classifying vectors; whereas Centroid achieves accuracies

7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 Assigns to blue

Assigns to red

FIG. 4: Half–moon data set, vectors are unnormalized. The two clusters of red and blue vectors correspond to the
two classes used in the assignment set and the red and blue stars give the centroids of the corresponding cluster.

−5 0 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Logd10dNoise

A
cc

ur
ac

y

HalfdMoondData

d

Centroid

NN

FIG. 5: Accuracy as a function of noise ε in distance
computation for half–moon data. 50% of the data
was used to train the classifier and the remaining

50% was used to test it.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

FractiondofdTrainingdData

A
cc

ur
ac

y

HalfdMoondData

d

Centroid

NN

FIG. 6: Accuracy as a function of training data size
for half–moon data. Noise of ε = 10−5 was used

here.

between 84 − −88%. Neither algorithm exhibits significant improvements in learning as the training set size is
increased. This behavior indicates the difficulty of this classification task for Centroid.

There are of course other methods that can be employed in order to boost the success probability of centroid–based
classification. The simplest is to cluster the data using a k–means clustering algorithm to subdivide each of the half
moons into two or more clusters. This semi–supervised approach often works well, but can be expensive for certain
representations of the data [20].

The next tasks that we consider consist of determining whether a given disease was present or not based on patient
data. The diseases considered include breast cancer, heart disease, thyroid conditions, and diabetes. All data is taken
from the UCL Machine Learning Repository [21]. Details on the features and data size are given in Table I.

N , Number of Features M , Number of Points MA MB Year
Half Moon 2 2000 1000 1000 –

Breast Cancer [21, 22] 9 683 239 444 1992
Heart Disease (Statlog Data Set) [21] 13 270 120 150 1993

Thyroid [21, 23] 5 215 150 65 1987
Diabetes (Pima) [21] 7 532 177 355 1990

TABLE I: Evaluation datasets. Sizes of each data set for the conditions examined in Figure 7.

8

−5 0 5
0.4

0.5

0.6

0.7

0.8

0.9

1

LogP10PNoise

A
cc

ur
ac

y

BreastPCancer

Centroid

NN

−5 0 5
0.4

0.5

0.6

0.7

0.8

0.9

LogP10PNoise

A
cc

ur
ac

y

Heart

Centroid

NN

−5 0 5

0.4

0.5

0.6

0.7

0.8

0.9

1

LogP10PNoise

A
cc

ur
ac

y

Thyroid

Centroid

NN

−5 0 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

LogP10PNoise

A
cc

ur
ac

y

Pima

Centroid

NN

0 0.2 0.4 0.6 0.8 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

FractionPofPTrainingPData

A
cc

ur
ac

y

BreastPCancer

Centroid

NN

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

FractionPofPTrainingPData

A
cc

ur
ac

y

Heart

Centroid

NN

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

FractionPofPTrainingPData

A
cc

ur
ac

y

Thyroid

Centroid

NN

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

FractionPofPTrainingPData

A
cc

ur
ac

y

Pima

Centroid

NN

FIG. 7: (Left Column) Accuracy as a function of noise ε in the distance computation; (Right Column) Accuracy as
a function of training set size for breast cancer (first row), heart disease (second row), thyroid (third row), and

diabetes (fourth row) data. 50% of the data is used for training and the remainder for testing for all data in the left
column. ε = 10−5 is taken for all data in the right column.

In some cases, we modified the data slightly. The breast cancer data, thyroid data, and the Pima diabetes study all
contained instances of missing data. In each case we removed any vector that had a missing value. We also removed

9

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

LogP10PNoise

A
cc

ur
ac

y

Thyroid

P

Centroid

NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

PercentagePofPTrainingPData

A
cc

ur
ac

y

Thyroid

P

Centroid

NN

FIG. 8: Accuracy as a function of noise ε in the distance computation and the fraction of the total data that is used
for training for thyroid data set where the normalization step in the distances has been omitted. 50% of the data is

used for training and the remainder for testing in the left plot. ε = 10−5 is taken for all data in the right plot.

boolean features from the thyroid and Pima diabetes data sets.
The left column of Figure 7 shows the accuracy of NN (blue squares) and Centroid (red circles) as a function of noise

ε in the distance computations. The first row shows the accuracies on the breast cancer data. Both algorithms exhibit
similarly high accuracies above 94% in the low–noise regime, with NN outperforming Centroid with significance only
at ε = 1. In the extreme noise regime, NN performs just slightly better than random as expected.

In the second and last rows, the accuracies for heart disease and diabetes data are shown. In these tasks, we find
that in the low–noise regime, Centroid slightly outperforms NN, without statistical significance (except when ε = 1).
In the presence of high amounts of noise, both methods exhibit some learning; however, in all cases, learning is limited
to around 55%.

In the third row, accuracy for the thyroid data is shown. NN exhibits significantly better accuracy of 90% as
compared to less than 40% for Centroid. In this case, the centroid–based algorithm performed worse than random
guessing. Poor accuracy is caused, in part, by our decision to divide the distance by the standard deviation in the
distances as seen in Figure 8. We found that the variance of the hypothyroid cases (XB) was high enough that the
mean of the training vectors that tested negative for thyroid conditions (XA) was within one standard deviation of it.

In particular,
√

Ev∈XA
(|v −mean(XB)|22)/σB ≈ 0.49 and

√
Ev∈XB

(|v −mean(XA)|22)/σA ≈ 4.4. Thus this test will
incorrectly assign vectors from XA with high probability and correctly assign vectors from XB with high probability.
We therefore expect the accuracy to be roughly 30% since the probability of drawing a vector from XB is roughly
65/215. This is close to to the observed accuracy of 37%± 4%.

The data in Figure 8, which forgoes normalizing the computed distances in Centroid, is devoid of these problems.
For low noise, Centroid succeeds roughly 86% of the time and falls within statistical error of the NN data at ε ≈ 1.
Also, we observe that the assignment accuracy increases for both methods as more training data is used. This is
in stark contrast to the data in Figure 7; however, this does not imply that the centroid–based method is actually
performing well. If we were to assign the data to class A every time, regardless of the distance, we would succeed
with probability 70%. If Centroid is used, then the accuracy only increases by roughly 15%. Also, since the two
clusters strongly overlap, distance to the centroid is not a trustworthy statistic on which to base classification. For
these reasons, the use of Centroid to diagnose thyroid conditions, either with or without normalization, is inferior to
using other methods.

The right column of Figure 7 shows the accuracy of our two algorithms as a function of training set size. In the
breast cancer task (first row), we see that both NN and Centroid exhibit little variation in accuracy as the amount
of training data increases. Similarly, in the heart disease and diabetes tasks (second and last rows), an increase
in training data size does not imply significant increases in accuracy. However, in the thyroid task, we see some
differences in learning between NN and Centroid as the training data size increases. NN’s accuracy improves, from
85% to 96%, while Centroid’s accuracy decreases slightly.

It is hard to determine in general why Centroid sometimes outperforms NN, but outliers in the data are frequently
one reason. Outliers can cause problems for NN because it becomes increasingly likely as more training data is
included that an outlier point from XB is close to any given element of XA. Thus increasing the training size can

10

actually be harmful for certain nearest–neighbor classification problems. Centroid is less sensitive to these problems
because averaging over a data set reduces the significance of outliers. Such problems can be addressed in the case
of NN by using k–nearest neighbor classifiers instead of nearest–neighbor classification [2]. Our quantum algorithms
can be trivially modified to output the classes of each of the k closest vectors. Alternatively, such problems can also
be addressed by using alternative machine learning strategies such as deep learning [24].

In summary, our numerical results indicate that classification accuracy, and in turn the best choice of algorithm, is
highly dependent on the particular task and dataset. While nearest–neighbor classification appears to be the preferred
algorithm on most of the tasks presented here, in practice, a highly non-linear combination of classification algorithms
is more commonly used [24]. However, such classical approaches can be computationally expensive, in particular when
classification over a large dataset is required. Our quantum algorithms for classification offer the advantage of fast
classification in conjunction with high performance accuracy, and may enable accurate classification of datasets that
otherwise classically would not be possible.

Appendix B: Proofs of Theorems 1 and 2

We present the proofs of Theorem 1 and Theorem 2 by way of a number of propositions that can be independently
verified. We begin with preliminary results that show that the state preparations used in our algorithms are efficient.
We then review known results on the performance of the quantum minimum finding algorithm and amplitude estima-
tion. We present our coherent majority voting scheme and variant of the swap test and provide intermediate results
needed to apply the Dürr Høyer algorithm and amplitude estimation coherently. We then use these results to prove
Theorem 1. Finally, we turn our attention to proving Theorem 2 which uses many of the same techniques used to
prove Theorem 1, but in addition requires the introduction of new methods for computing the distances to the cluster
centroids and the intra–cluster variance.

1. Preliminary Results

We begin by introducing a method to implement the operator V which is needed for our nearest–centroid classifi-
cation algorithm.

Lemma 3. A unitary V can be efficiently synthesized within error O(ε) on a quantum computer equipped with H
(Hadamard), T (π/8) and CNOT gates such that

|Vj0| =

{
1√
2
, j = 0

1√
2M

, otherwise.

Proof. Since H is unitary and Hermitian it is a straightforward exercise in Taylor’s theorem to show that for any
t ∈ R

e−iH
⊗mt = 11 cos(t)− iH⊗m sin(t). (B1)

Thus if we choose V to be e−iHt for some fixed value of t then

V |0〉 =

(
cos(t)− i sin(t)√

M + 1

)
|0〉 − i sin(t)√

M + 1

∑
j>0

|j〉 . (B2)

The value of t is found by setting P (0)/P (j > 0) = 1/M , which yields

t = sin−1

(√
M + 1

2M

)
. (B3)

Finally, H can be made sparse efficiently by

(HT 2)H(T 6H) =

[
0 eiπ/4

e−iπ/4 0

]
, (B4)

and hence H⊗n can be transformed into a one–sparse matrix by applying this basis transformation to each qubit.
One–sparse matrices can be efficiently simulated [25–27], completing the proof of the lemma. ut

11

|ip〉 • •
|Mp〉

•

FIG. 9: Circuit for performing CMP illustrated for a single qubit inputs |ip〉 and |Mp〉 after repeating this circuit n
times, the lower most register will contain |1〉 if i > M .

Lemma 4. The state 1√
M

∑M
j=1 |j〉 can be prepared efficiently and deterministically using a quantum computer.

Proof. Let m = dlog2(M + 1)e, and let |M〉 be the computational basis state that stores M as a binary string. The
proof follows from the fact that the following circuit

|0⊗m〉 H⊗m

CMP|M〉

|0〉

|0〉

prepares the desired state given measurement outcomes of 0 and 0, which occurs with probability M
2m . Here the

operation CMP obeys

CMP |i〉 |M〉 |0〉 =

{
i ≤M, |i〉 |M〉 |0〉
i > M, |i〉 |M〉 |1〉 .

(B5)

Here CMP can be implemented using the circuit in Figure 9. Hence the state can be prepared efficiently and with
high probability if measurements are used. Also, note that the quantum control on the value of Mp can be replaced
with classical control in cases where a quantum superposition over different values of M is not needed.

Since the success probability is known, the success probability can be boosted to certainty through amplitude

amplification which requires Θ
(√

2m

M

)
= Θ(1) applications of CMP [13]. This means that the measurement can be

removed in the state preparation step without sacrificing the efficiency of the algorithm. ut

Another important result is the method of Dürr and Høyer which is given as the following lemma [14].

Lemma 5 (Dürr Høyer). The expected number of Grover iterations needed to learn min{yi : i = 1, . . . ,M} is bounded
above by

45

2

√
M.

Nayak and Wu show that this algorithm is also near–optimal by providing a matching lower bound of Ω(
√
M) for

minimum finding (proven using the polynomial method) [28].
Similarly, we also use the amplitude estimation result of Brassard et al. [13] to estimate the amplitude squared

of a marked component of a quantum state, which we denote as a. The algorithm works by applying the phase
estimation algorithm to an operator Q, which performs an iteration of Grover’s algorithm where we wish to estimate
the amplitude of the marked state. We provide a circuit for amplitude estimation in Figure 10. The following theorem
shows that amplitude estimation can learn the resultant probabilities quadratically faster than statistical sampling.

Theorem 6 (Brassard, Høyer, Mosca and Tapp). For any positive integers k and L, the amplitude estimation
algorithm of [13] outputs ã (0 ≤ ã ≤ 1) such that

|ã− a| ≤ 2πk

√
a(1− a)

L
+

(
πk

L

)2

with probability at least 8/π2 when k = 1 and with probability greater than 1− 1/(2(k − 1)) for k ≥ 2. It uses exactly
L iterations of Grover’s algorithm. If a = 0 then ã = 0 with certainty, and if a = 1 and M is even, then ã = 1 with
certainty.

12

|0〉 / FL • F †L |y〉

/ Qj

FIG. 10: Quantum circuit for amplitude estimation where FL is the L–dimensional Fourier transform and the
controlled Qj operator applies j Grover iterations to the target state if the top most register is |j〉

2. Proof of Theorem 1

In order to find the minimum value of a set of different quantum amplitudes using Lemma 5 we need to be able
to perform iterations of Grover’s algorithm using the result of Theorem 6. This cannot be done directly (with high
probability) because the traditional approach to amplitude estimation is not reversible. We provide below a reversible
algorithm that uses a coherent form of majority voting to obtain a reversible analog for algorithms like amplitude
estimation.

Lemma 7. Let A be a unitary operation that maps |0⊗n〉 7→
√
a |y〉+

√
1− |a| |y⊥〉 for 1/2 < |a0| ≤ |a| ≤ 1 using Q

queries then there exists a deterministic algorithm such that for any ∆ > 0 there exists an integer k and a state |Ψ〉
can be produced that obeys ‖ |Ψ〉 − |0⊗nk〉 |y〉 ‖2 ≤

√
2∆ using a number of queries bounded above by

2Q

⌈
ln(1/∆)

2
(
|a0| − 1

2

)2
⌉
.

Proof. The basic idea behind the algorithm is to prepare k copies of the state
√
a |y〉+

√
1− a |y⊥〉, and then coherently

compute the median via a reversible circuit and uncompute the k resource states used to find the median of the values
of y. First, let M be a circuit that performs

M : |y1〉 · · · |yk〉 |0〉 7→ |y1〉 · · · |yk〉 |ȳ〉 , (B6)

where we use ȳk to denote the median. This transformation can be performed by implementing a sort algorithm using
O(kn log(k)) operations and hence is efficient.

The initial state for this part of the protocol is of the form

(
√
a |y〉+

√
1− |a| |y⊥〉)⊗k.

We can therefore partition the k–fold tensor product as a sum of two disjoint sets: the sum of states with median y
and another sum of states with median not equal to y. We denote these two sums as |Ψ〉 and |Φ〉 respectively, which
is equivalent to expressing

(
√
a |y〉+

√
1− |a| |y⊥〉)⊗k := A |Ψ〉+

√
1− |A|2 |Φ〉 , (B7)

for some value of A. A direct consequence of (B7) is that there exists (a possibly entangled state) |Φ; y⊥〉 such that

M(
√
a |y〉+

√
1− |a| |y⊥〉)⊗k = A |Ψ〉 |y〉+

√
1− |A|2 |Φ; y⊥〉 , (B8)

where A |Ψ〉 +
√

1− |A|2 |Φ〉 := (
√
a |y〉 +

√
1− |a| |y⊥〉)⊗k and |Ψ〉 represents the subspace where the median is y

and |Φ〉 is its compliment Our goal is now to show that |A|2 > 1−∆ for k sufficiently large.
To see this, let us imagine measuring the first register in the computational basis. The probability of obtaining p

results, from the k resulting bit strings, that are not y is given by the binomial theorem:

P (p) =

(
k

p

)
|a|p|1− |a||k−p. (B9)

Now we can compute the probability that a measurement of the last register will not yield y by observing the fact
that in any sequence of measurements that contains more than k/2 y–outcomes, the median must be k/2. Therefore

13

the probability that the computed value of the median is not y is at most the probability that the measured results
contain no more than k/2 y outcomes. This is given by (B9) to be

P (y⊥) ≤
bk/2c∑
p=0

(
k

p

)
|a|p|1− |a||k−p. (B10)

Using Hoeffding’s inequality on (B10) and |a| ≥ |a0| > 1/2 we find that

P (y⊥) ≤ exp

(
−2
(
k|a| − k

2

)2
k

)
= exp

(
−2k

(
|a0| −

1

2

)2
)
. (B11)

Eq. (B11) therefore implies that P (y⊥) ≤ ∆ if

k ≥
ln
(

1
∆

)
2
(
|a0| − 1

2

)2 . (B12)

Next, by applying A†⊗k to the first register, we obtain

A†⊗k
(
A |Ψ〉 |y〉+

√
1− |A|2 |Φ; y⊥〉

)
= A†⊗k

(
A |Ψ〉 |y〉+

√
1− |A|2 |Φ〉 |y〉

)
+A†⊗k

(√
1− |A|2

(
|Φ; y⊥〉 − |Φ〉 |y〉

))
= |0⊗nk〉 |y〉+A†⊗k

(√
1− |A|2

(
|Φ; y⊥〉 − |Φ〉 |y〉

))
. (B13)

Note that
〈
y|y⊥

〉
= 0 and hence |Φ; y⊥〉 is orthogonal to |Φ〉 |y⊥〉. If | · | is taken to be the 2–norm then (B13) gives

that ∣∣∣A†⊗k (A |Ψ〉 |y〉+
√

1− |A|2 |Φ; y⊥〉
)
− |0⊗nk〉 |y〉

∣∣∣ ≤√2(1− |A|2) ≤
√

2∆, (B14)

since P (y⊥) := 1 − |A|2 ≤ ∆ for k chosen as per (B12). The result then follows after noting that k must be chosen
to be an integer and that the total number of queries made to prepare the state is 2Qk. ut

Lemma 7 shows that coherent majority voting can be used to remove the measurements used in algorithms such
as amplitude estimation at the price of introducing a small amount of error in the resultant state. We can use such
a protocol in the Dürr Høyer algorithm to find the minimum value of all possible outputs of the algorithm, as shown
in the following corollary.

Corollary 8. Assume that for any j = 1, . . .M , a unitary transformation |j〉 |0⊗n〉 7→
√
a |yj〉 +

√
1− |a| |y⊥j 〉 for

1/2 < |a0| ≤ |a| ≤ 1 can be performed using Q queries then the expected number of queries made to find minj yj with
failure probabilty at most δ0 is bounded above by

90
√
MQ

ln
(

81M(ln(M)+γ)
δ0

)
2
(
|a0| − 1

2

)2
 .

Proof. Lemma 5 states that at most 45
√
M/2 applications of Grover’s search are required, which requires 45

√
M

queries to an (approximate) oracle that prepares each yj since two queries are required per Grover iteration. Lemma 7
therefore says that the cost of performing this portion of the algorithm is

Nqueries ≤ 90
√
MQ

⌈
ln(1/∆)

2
(
|a0| − 1

2

)2
⌉
. (B15)

Next, we need to find a value of ∆ that will make the failure probability for this approximate oracle at most δ0.
Now let us assume the worst case scenario that if the measurement of yj fails to output the desired value even once,
then the entire algorithm fails. We then upper bound the probability of failure by summing the probability of failure
in each of the steps in the search. Assuming that the algorithm is searching for an element of rank at least r then the
number of calls to the oracle yielding yj is at most [13]

9

√
M

r − 1
.

14

This means that the amplitude of the erroneous component of the state (using subadditivity of quantum errors) is at
most

9

√
∆M

r − 1
.

The worst case scenario is that the algorithm must search through all M entries (this is extremely unlikely if M is

large because the average complexity is O(
√
M)). This means that the probability of at least one failed observation

occuring is at most

M∑
r=2

81∆M

r − 1
= 81MHM−1 ≤ 81M(ln(M) + γ). (B16)

Here HM−1 is the M − 1th harmonic number and γ is Euler’s constant. Therefore if we want the total probability of
error to be at most δ0 then it suffices to choose

∆ =
δ0

81M(ln(M) + γ)
. (B17)

Then combining (B15) and (B17) gives us that the average query complexity obeys

Nqueries ≤ 90
√
MQ

ln
(

81M(ln(M)+γ)
δ0

)
2(|a0| − 1/2)2

 . (B18)

ut

Note that we want to maximize the value of sin2(πyj/R) that is yielded by the amplitude estimation algorithm
for each j. This maximization is equivalent to minimizing |R/2 − yj |. Given that yj is returned coherently by our
de–randomized amplitude estimation circuit, a measurement–free circuit can be used that computes |R/2 − yj | for
any input yj . This requires no further oracle calls. Hence Corollary 8 applies to our circumstances with no further
modification.

The results of Theorem 1 and Theorem 2 follow directly from Corollary 8 by substitution of appropriate values of
Q and |a0|. The remaining work focuses on devising an appropriate state preparation algorithm that can be used
in Theorem 6.

Lemma 9. Let vj be d–sparse and assume that the quantum computer has access to O and F then a unitary trans-
formation exists that can be implemented efficiently using 3 oracle calls and, for all j, maps

|j〉 |0〉 7→ 1√
d
|j〉

d∑
i=1

|f(j, i)〉

√1−
r2
jf(j,i)

r2
jmax

e−iφjf(j,i) |0〉+
rjf(j,i)e

iφjf(j,i)

rjmax
eiφjf(j,i) |1〉

 .

Proof. We begin by preparing the state

1√
d

d∑
i=1

|j〉 |i〉 |0〉 |0〉 , (B19)

which can be prepared reversibly and efficiently by applying Lemma 4.
The next step is to apply the oracle F to the result, this performs

1√
d

d∑
i=1

|j〉 |i〉 |0〉 |0〉 7→ 1√
d

d∑
i=1

|j〉 |f(j, i)〉 |0〉 |0〉 . (B20)

Then querying O implements

1√
d

d∑
i=1

|j〉 |f(j, i)〉 |0〉 |0〉 7→ 1√
d

d∑
i=1

|j〉 |f(j, i)〉 |vj,f(j,i)〉 |0〉 . (B21)

15

|0〉 H • H

|ψ〉 ×
|φ〉 ×

FIG. 11: The swap test [12]. The probability of measuring the top qubit to be zero is 1/2 + |〈φ|ψ〉|2/2, which allows
statistical testing to be used to efficiently discriminate the states.

By applying Ry(2 sin−1(rjf(ji)/rjmax)) on the final qubit in (B21), we obtain

1√
d

d∑
i=1

|j〉 |f(j, i)〉 |vj,f(j,i)〉 |0〉 7→
1√
d
|j〉

d∑
i=1

|f(j, i)〉 |vj,f(j,i)〉

√1−
r2
jf(j,i)

r2
jmax

|0〉+
rjf(j,i)

rjmax
|1〉

 . (B22)

The result then follows by applying Rz(2φjf(j,i)) to the last qubit in (B22) and using O† to clean the ancilla register
containing |vj,f(j,i)〉. Three queries are used in this process. ut

Next we use the swap test to provide a method to compute the inner product between two vectors. The test is
implemented by the circuit in Figure 11 for arbitrary states |φ〉 and |ψ〉. The resultant state before measurement is

1

2
|0〉 (|φ〉 |ψ〉+ |ψ〉 |φ〉) +

1

2
|1〉 (|φ〉 |ψ〉 − |ψ〉 |φ〉),

and the probability of measuring the first qubit to be 1 is 1/2−| 〈φ|ψ〉 |2/2. We do not ignore this measurement since
we want to use the swap test within the Grover iterations used in Theorem 6.

Lemma 10. For any fixed ε > 0 and any pair of d–sparse unit vectors u ∈ Cn and vj ∈ Cn a state of the form√
|A| |Ψ〉 |y〉 +

√
1− |A| |Φ; y⊥〉 can be efficiently prepared where y encodes | 〈u|vj〉 |2 within error ε and |A| ≥ 8/π2

using a number of queries that is bounded above by

Q ≤ 12

⌈
4π(π + 1)d2r2

0 maxr
2
jmax

ε

⌉
,

where | 〈i|vj〉 | ≤ rjmax for any i ≥ 0 and d is a power of 2.

Proof. Lemma 9 provides a method for constructing the states

|ψ〉 :=
1√
d

d∑
i=1

|f(j, i)〉 |0⊗n
′
〉

√1−
r2
jf(j,i)

r2
jmax

e−iφjf(j,i) |0〉+
vjf(j,i)

rjmax
|1〉

 |1〉 . (B23)

|φ〉 :=
1√
d

d∑
i=1

|f(0, i)〉 |0⊗n
′
〉 |1〉

√1−
r2
0f(0,i)

r2
0 max

e−iφ0f(0,i) |0〉+
v0f(0,i)

r0 max
|1〉

 . (B24)

We then see that

〈φ|ψ〉 =
1

d

∑
i

vjiv
∗
0i

rjmaxr0 max
=

〈v0|vj〉
drjmaxr0 max

. (B25)

Note that we do not directly apply the swap test between the two states here because an undesirable contribution

to the inner product of the form

√
1−

r2
jf(j,i)

r2j max
e−iφjf(j,i)

√
1−

r2
0f(0,i)

r20max
eiφ0f(0,i) would arise. We remove the possibility of

such terms appearing by adding an ancilla qubit in (B23) and (B24) that selects out only the component that gives
us information about the inner product of vj and u.

The probability of measuring 0 in the swap test is |A| = 1
2 (1 + | 〈φ|ψ〉 |2), which implies that

(2|A| − 1)d2r2
jmaxr

2
0 max = | 〈u|vj〉 |2. (B26)

16

At this point we could learn A by sampling from the distribution given by the swap test, but it is more efficient to use
amplitude estimation. Amplitude estimation, in effect, uses a controlled Grover search oracle. In this case the Grover
oracle requires that we implement a reflection about the initial state and also reflect about the space orthogonal to
the target state. We refer to this reflection as Sχ. Unlike Grover’s problem, the reflection about the target state is
trivial since the target state is obtained when the swap test yields 0. This means that no oracle calls are needed to
implement the reflection about the final state. The reflection about the initial state is of the form AS0A†, where A
is an algorithm that maps |02n′+2n+4〉 → |φ〉 |ψ〉, and S0 is of the form

S0 |x〉 =

{
|x〉 , x 6= 0

− |x〉 , x = 0
. (B27)

This can be implemented using a multi–controlled Z gate, and hence is efficient. The prior steps show that A can be
implemented using 6 oracle calls: Lemma 9 implies that three queries are needed for the preparation of |ψ〉 and three
more are needed for the preparation of |φ〉. This implies that a step of Grover’s algorithm, given by AS0A†Sχ, can
be implemented using 12 oracle queries.

Amplitude estimation requires applying an iteration of Grover’s algorithm in a controlled fashion at most R times
(where R is the Hilbert–space dimension of the register that contains the output of the amplitude estimation algo-
rithm). The controlled version of AS0A†Sχ requires no additional oracle calls because AS0A† can be made control-
lable by introducing a controlled version of S0 and using a controlled Ry rotation in the implementation of A (given
by Lemma 9); furthermore, both S0 and Sχ do not require oracle calls and hence can be made controllable at no
additional cost.

The error in the resultant estimate of P (0) after applying amplitude estimation is with probability at least 8/π2 at
most [13]

|A− Ã| ≤ π

R
+
π2

R2
. (B28)

This means that |P (0)− P̃ (0)| ≤ δ if

R ≥ π(π + 1)

δ
. (B29)

Now given that we want the total error, with probability at least 8/π2, to be ε/2 (the factor of 1/2 is due to the
fact that the calculation of sin−1(rji/rjmax) is inexact) then (B26) gives us that choosing δ to be

δ =
ε

4d2r2
0 maxr

2
jmax

, (B30)

is sufficient. Eq. (B30) then gives us that it suffices to take a number of steps of Grover’s algorithm that obeys

R ≥

⌈
4π(π + 1)d2r2

0 maxr
2
jmax

ε

⌉
. (B31)

Since each Grover iteration requires 12 applications of the oracles F or O the query complexity of the algorithm is

Q = 12R ≤ 12

⌈
4π(π + 1)d2r2

0 maxr
2
jmax

ε

⌉
, (B32)

as claimed.
Now lastly, we need to show that the error in the resultant probabilities from inexactly evaluating sin−1(rji/rjmax)

can be made less than ε/2 at polynomial cost. As shown previously, if n′ ∈ O(log(1/ε)) and if |φ̃〉 and |ψ̃〉 are the
approximate versions of the two inner products then∣∣∣∣∣∣∣〈φ|ψ〉∣∣∣2 − ∣∣∣〈φ̃|ψ̃〉∣∣∣2∣∣∣∣ ∈ O(ε).

This means that since sin−1(·) is efficient (it can be computed easily using a Taylor series expansion or approximation
by Chebyshev polynomials), the cost of making the numerical error sufficiently small is at most polynomial. ut

The proof of Theorem 1 now trivially follows:

Proof of Theorem 1. Proof follows as an immediate consequence of Corollary 8 and Lemma 10 using |a0| ≥ 8/π2 and
rj,max ≤ rmax. ut

17

3. Proof of Theorem 2

The structure of the proof of Theorem 2 is similar to that of Theorem 1. The biggest difference is that the swap test
is not used to compute the Euclidean distance in this case. We use the method of Childs and Wiebe [17] to perform
this state preparation task. To see how their method works, let us assume that we have access to an oracle U such
that for any j

U |j〉 |0〉 = |j〉 |vj〉 . (B33)

Then for any unitary V ∈ Clog2M×log2M , the following circuit

|0⊗ log2M 〉 V
U

V †

|0⊗n〉

,

has the property that the probability of the measurement yielding 0 is ‖
∑M
j=0 |Vj,0|2vj‖. Thus the Euclidean distance

can be computed by this approach by setting |v0〉 = − |u〉 and choosing the unitary V appropriately. We employ a
variant of this in the following lemma, which explicitly shows how to construct the required states.

Lemma 11. For any fixed ε > 0, the quantities a state of the form
√
|A| |Ψ〉 |y〉 |y′〉+

√
1− |A| |Φbad〉 can be efficiently

and reversibly prepared such that y encodes ‖ − |u〉 + 1
M

∑
j |vj〉 ‖22 within error ε and y′ encodes 1

M

∑
p ‖ − |vp〉 +

1
M

∑
j |vj〉 ‖22 within error ε such that |A| ≥ 64/π4 ≈ 2/3 using a number of queries bounded above by

Q ≤ 10

⌈
8π(π + 1)dr2

max

ε

⌉
,

where rmax ≥ maxj rjmax.

Proof. First let us define an oracle W such that

W |j〉 |p〉 |i〉 |0〉 |0〉 =

{
|0〉 |p〉 |i〉 |vp,i〉 |v0,i〉 , j = 0

|j〉 |p〉 |i〉 |vj,i〉 |vp,i〉 , otherwise
(B34)

A query to W can be implemented via

|j〉

O

×

O

×

|i〉

|0〉 × × ×
|p〉 × ×
|0〉 × × ×

We see that the following transformation is efficient and can be performed using one query to F by applying V to
the first register, and applying Lemma 4 to the second and third registers

|0⊗n〉 |0⊗m〉 |0⊗m〉 |0⊗n
′
〉 |0〉 7→ 1√

Md

M∑
j=1

M∑
p=1

d∑
i=1

Vj0 |j〉 |f(j, i, p)〉 |p〉 |0⊗n
′
〉 |0〉 . (B35)

Here we take f(j, i, p) = f(j, i) if j ≥ 1 and f(j, i, p) = f(p, i) if j = 0; furthermore, we use the convention that

|v0〉 = −u and |v(p)
0 〉 = −vp. We also take m = dlog2Me and n′ to be the number of bits needed to store the

components of each vj .
The following state can be implemented efficiently within error at most ε/2 using 3 oracle calls by applying Lemma 9

with the modification that W is used in the place of O and then applying V †:

1√
Md

M∑
q,j=0

d∑
i=1

M∑
p=1

V †qjVj0 |q〉 |f(j, i, p)〉 |p〉

√√√√√1−

r(p)
jf(j,i,p)

rmax

2

e
−iφ(p)

jf(j,i,p) |0〉+
r

(p)
jf(j,i,p)

rmax
e
iφ

(p)

jf(j,i,p) |1〉

 |Θ(j, i, p)〉 ,

(B36)

18

where |Θ(j, i, p)〉 is a computational basis state that stores the ancilla qubits prepared by W . The qubit register
containing |Θ(j, i, p)〉 does not need to be cleaned since these qubits do not affect the trace.

We then use the definition of V in Lemma 3 the probability of measuring the first register in the state |0⊗n〉 and
the second–last register in the state |1〉 is:

Tr

 1

dMr2
max

∑
i,i′

∑
j,j′

∑
p,p′

Vj0V
†
0jV

∗
j′0V

†∗
0j′vjp,iv

∗
j′p′,i |i〉〈i′| ⊗ |p〉〈p′|

=

 1

dMr2
max

∑
i

∑
j,j′

∑
p

Vj0V
†
0jV

∗
j′0V

†∗
0j′

〈
i|v(p)

j

〉〈
v

(p)
j′ |i

〉
=

 1

Mdr2
max

∑
p

∣∣∣∣∣∣−1

2
|vp〉+

1

2M

∑
j≥1

|vj〉

∣∣∣∣∣∣
2
 (B37)

We drop the state |Θ(j, i, p)〉 above because it does not affect the trace. Thus the mean square distance between each
vj and the centroid is

1

M

∑
p

∣∣∣∣∣∣− |vp〉+
1

M

∑
j≥1

|vj〉

∣∣∣∣∣∣
2

= 4dr2
maxP (0). (B38)

Three queries are needed to draw a sample from this distribution.
The distance can be computed similarly, except O can be queried directly instead of W and the “p”–register can

be eliminated since we do not need to average over different distances. This saves one additional query, and hence it
is straightforward to verify that the relationship between the distance squared and the probability of success is∣∣∣∣∣∣− |vp〉+

1

M

∑
j≥1

|vj〉

∣∣∣∣∣∣
2

= 4dr2
maxP (0). (B39)

Two queries are needed to draw a sample from this distribution.
Similar to the proof of Lemma 10, we use amplitude estimation to estimate P (0) in both cases. By following the

same arguments used in (B28) to (B32) coherent AE can be used to prepare a state with probability of the form√
|A| |Ψgood〉 |y′〉+

√
1− |A| |Ψbad; y′⊥〉 where |A| ≤ 8/π2 using a number of queries bounded above by

6

⌈
8π(π + 1)dr2

max

ε

⌉
. (B40)

Similarly, the cost of preparing a state of the form
√
|A| |Ψ〉 |y〉+

√
1− |A| |Φ; y⊥〉 where |A| ≤ 8/π2 and |y〉 encodes

|u−mean({vj})| is

4

⌈
8π(π + 1)dr2

max

ε

⌉
. (B41)

Therefore, by combining (B40) and (B42) we see that a state of the form
√
|A| |Ψ〉 |y〉 |y′〉 +

√
1− |A| |Φbad〉 can be

constructed where |A| ≤ (8/π2)2 ≈ 2/3 using a number of oracle calls bounded above by

10

⌈
8π(π + 1)dr2

max

ε

⌉
, (B42)

ut

Lemma 11 not only provides an essential step towards our proof of Theorem 2 but it also provides an upper bound
for the query complexity for nearest–centroid classification using M ′ = 1. It also gives an upper bound for the query
complexity of the un–normalized centroid–based algorithm in [6]. We give these bounds explicitly in the following
corollary.

19

Corollary 12. Let v0 and {vj : j = 1, . . . ,M} be d–sparse unit vectors such that the components satisfy maxj,i |vji| ≤
rmax. The task of finding ∥∥∥∥∥∥v0 −

1

M

M∑
j=1

vj

∥∥∥∥∥∥
2

2

,

with error bounded above by ε and with success probability at least 1− δ0 requires an expected number of queries that
is bounded above by ⌈

64 ln(1/δ0)

π2(8/π2 − 1/2)2

⌉⌈
8π(π + 1)dr2

max

ε

⌉
.

Proof. (B42) gives the cost of solving this problem within error ε and success probability 8/π2. The Chernoff bound
then gives us that we can boost this success probability to 1− δ0 by repeating the experiment Nsamp times where

Nsamp =
16 ln(1/δ0)

π2(8/π2 − 1/2)2
. (B43)

The result then follows by multiplying (B42) by (B43) and taking the ceiling function of the pre–factor. ut

Theorem 2 is proved similarly to Corollary 12, with the exception that coherent amplitude amplification and the
Durr Høyer minimization algorithm is used to coherently estimate the distance from u to the centroid of a cluster.
The proof follows trivially from the above results and is given below.

Proof of Theorem 2. Proof follows as a trivial consequence of taking M = M ′ in Corollary 8, applying Lemma 11
and observing that dividing the calculated distance by σm is efficient irrespective of whether M ′ > 1 or M ′ = 1.
Note that the upper bound is not tight in cases where M ′ = 1 because σm does not need to be computed in such
cases; nonetheless, removing this cost only reduces the expected query complexity by a constant factor so we do not
change the theorem statement for simplicity. Also, using a non–constant value for M1, . . . ,MM ′ does not change the
problem since the state preparation method of Lemma 4 takes M as an input state that can be set to M1, . . . ,MM ′

coherently. ut

Appendix C: Justification for Normalizing Distance

An important question remains: when is the normalized distance between u and the cluster centroid a useful
statistic in a machine learning task? Of course, as mentioned earlier, this statistic is not always optimal. In cases
where the training data points live on a complicated manifold, there will be many points that are close to the cluster
centroid yet are not in the cluster. Even in such circumstances, the normalized distance leads to an upper bound on
the probability that u is in the cluster.

For concreteness, let us assume that

|u−mean({A})| = ξA,

|u−mean({B})| = ξB . (C1)

If we then define the intra–cluster variances to be σ2
A and σ2

B for clusters {A} and {B}, then Chebyshev’s inequality
states that regardless of the underlying distributions of the clusters that for any point x

Pr(|x−mean({A})| ≥ ξA|x ∈ {A}) ≤
σ2
A

ξ2
A

,

Pr(|x−mean({B})| ≥ ξB |x ∈ {B}) ≤
σ2
B

ξ2
B

. (C2)

Eq. (C2) tells us that if the normalized distance is large then the probability that the point is in the corresponding
cluster is small.

Unfortunately, (C2) does not necessarily provide us with enough information to merit use in a decision problem
because there is no guarantee that the inequalities are tight. If Chebyshev’s inequality is tight then basing a decision
on the normalized distance is equivalent to the likelihood–ratio test, which is widely used in hypothesis testing.

20

Theorem 13. Assume there exist positive numbers a, b, α, β such that for all χ ≥ min{ξA, ξB}

a
σ2
A

χ2
≤Pr(|x−mean({A})| ≥ χ|x ∈ {A}) ≤ ασ

2
A

χ2

b
σ2
B

χ2
≤Pr(|x−mean({B})| ≥ χ|x ∈ {B}) ≤ β σ

2
B

χ2
,

and either a ≥ β or α ≤ b, then using the normalized distance to the cluster centroid to decide whether u ∈ {A} or
u ∈ {B} is equivalent to using the likelihood ratio test.

Proof. The likelihood ratio test concludes that u should be assigned to A if

Pr(|u−mean({A})| ≥ χ|x ∈ {A})
Pr(|u−mean({B})| ≥ χ|x ∈ {B})

> 1. (C3)

Our assumptions show that (C3) is implied if

a
σ2
A

ξ2A

β
σ2
B

ξ2B

> 1⇒ a

β
>

((
σB
ξB

)(
σA
ξA

)−1
)2

. (C4)

If the normalized distance is used as the classification decision, then u is assigned to {A} if

((
σB

ξB

)(
σA

ξA

)−1
)
≤ 1.

Therefore the two tests make the same assignment if a ≥ β.
The likelihood ratio test similarly assigns u to {B} if

Pr(|u−mean({A})| ≥ χ|x ∈ {A})
Pr(|u−mean({B})| ≥ χ|x ∈ {B})

< 1, (C5)

which, similar to (C4) is implied by α
b <

((
σB

ξB

)(
σA

ξA

)−1
)2

and is further equivalent to the distance–based assignment

if α ≤ b. ut

Theorem 13 shows that the validity of distance–based assignment depends strongly on the tightness of Chebyshev’s
bound; however, it is not necessarily clear a priori whether lower bounds on Pr(|u −mean({A})| ≥ χ|x ∈ {A}) and
Pr(|u − mean({B})| ≥ χ|x ∈ {B}) exist for values of a and b that are non–zero. Such bounds clearly exist if, for
example, {A} and {B} are both drawn from Gaussian distributions. This follows because Pr(|u − mean({B})| ≥
χ|x ∈ {B}) can be upper– and lower–bounded by a function of the distance and appropriate values of a and α can
be extracted from the covariance matrix. Since both distributions are the same in this case, a = b, and α = β, the
normalized distance is well motivated if {A} and {B} are drawn from two Gaussian distributions whose centroids are
sufficiently distant from each other.

Appendix D: Comparison to Monte–Carlo Approaches

It is often sufficient in practice to classify a test point based on a randomly chosen subset of training vectors (and
perhaps also features) rather than the complete training set. These approaches are called Monte–Carlo algorithms
and they are very powerful in cases where the training data is tightly clustered in high–dimensional spaces. The
nearest–centroid classification algorithms are also useful in this regime, so it is natural compare the cost of performing
centroid–based classification using Monte–Carlo sampling to the cost of our nearest–centroid algorithm.

A Monte–Carlo approximation to the inner product of two d–sparse vectors a and b can be found via the following
approach. First Nc samples of individual components of a and b are taken. If we assume that the locations where a and
b are mutually non–zero are not known apriori then we can imagine that each vector is of dimension D = max(N, 2d).
Let us denote the sequence of indexes to be it. Then each component of the D–dimensional vector should be drawn
with uniform probability (i.e., p(it = x) = 1/D for all x in the union of the set of vectors that support a and b). Then
an unbiased estimator of the inner product is given by

X =
D

Nc

Nc∑
t=1

aitbit . (D1)

21

In particular, it is shown in [29] that

E[X] = aT b, V[X] =
1

Nc

(
D

N∑
i=1

a2
itb

2
i − (aT b)2

)
∈ O

(
d2r4

max

Nc

)
. (D2)

Chebyshev’s inequality therefore implies that for fixed vectors a and b that Nc ∈ O(d2r4
maxε

−2) is sufficient to
guarantee that X is a correct estimate to within distance ε with high probability. Also, for random unit vectors,

D
∑N
i=1 a

2
it
b2i − (aT b)2 = O(1) with high probability so typically the cost of the estimate will simply be O(1/ε2). The

cost of nearest neighbor classification is then O(Md2r4
max/ε

2), which is (up to logarithmic factors) quadratically worse
than our nearest–neighbor algorithm for cases where dr2

max ∈ O(1).
A similar calculation implies that we can estimate the components of the mean vector to within error ε/Nc (which

guarantees that the overall error is at most ε). To estimate this, we need to have the variance of each component of
the vector. Let {v(m)} be a set of d–sparse unit vectors then

Vm[v
(m)
k] =

1

M

M∑
m=1

(v
(m)
k − Em[v

(m)
k])2 ≤ 4r2

max. (D3)

Thus if we wish to estimate Em[v
(m)
j] within error ε/Nc (with high probability) then it suffices to take a number of

samples for each vector component (i.e., each it) that obeys

Ns ∈ O
(
r2
maxN

2
c

ε2

)
. (D4)

Since there are Nc different components, the total cost is NcNs which implies that

Cost ∈ O
(
r2
maxN

3
c

ε2

)
∈ O

(
d6r14

max

ε8

)
. (D5)

Since |a − b|2 = aTa + bT b − 2aT b, it follows that the Euclidean distance to the centroid can be computed using a
number of queries that scales as (D5).

The Euclidean distance between a test point and the centroid of a cluster can therefore be efficiently estimated,
for fixed ε, using a classical sampling algorithm. The costs of doing so may be substantially worse than our quantum
algorithm if non–constant ε is required, N is large and d−3/7 ∈ o(rmax). We will see in the following that ε ∈ O(1/

√
N)

will typically be needed to make an accurate assignment in high–dimensional vector spaces, which implies that our
quantum algorithms may typically offer substantial speedups over even classical Monte–Carlo algorithms in tasks
where many features are present.

Appendix E: Sensitivity of Decision Problem

Although our quantum algorithms for computing the inner product and Euclidean distance provide better scaling
with N and M (the dimension of the vectors and the number of vectors in the training set) than their classical analogs,
the quantum algorithms introduce a O(1/ε) scaling with the noise tolerance (where ε is the error tolerance in the
distance computation). If the typical distances in the assignment set shrink as 1/Nγ for positive integer γ, then it
is possible that the savings provided by using a quantum computer could be negated because ε−1 ∈ Ω(Nγ) in such
cases.

We will now show that in “typical” cases where the vectors are uniformly distributed over the unit sphere that
ε ∈ Θ(1/

√
N) will suffice with high probability. Since our nearest–neighbor algorithms scale as

√
M/ε (which in

the Euclidean case corresponds to M ′ = M) this implies that our algorithms’ cost scales as O(
√
NM). This scales

quadratically better than its classical analog or Monte–Carlo sampling (see appendix for more details on Monte–Carlo
sampling).

This result is similar to concentration of measure arguments over the hypersphere, which show that almost all unit
vectors are concentrated in a band of width O(1/

√
N) about any equator of the hypersphere [19]. The concentrated

band of vectors is the origin of the “curse of dimensionality”, which implies that almost all random unit vectors are
within a Euclidean distance of

√
2−O(1/

√
N) of any fixed unit vector. This means that the underlying distribution

of distances in nearest–neighbor learning tends to flatten as N → ∞, implying that very accurate estimates of the
distances may be needed in high–dimensional spaces.

22

For Haar–random vectors, it can be shown that the probability distribution for the magnitude of each component
of the vector is (to within negligible error in the limit of large N) independently distributed and has a probability
density of [30]

p(|[vj]k| = r) = 2(N − 1)r(1− r2)N−2, (E1)

which after a substitution gives

p(|
√
N [vj]k| = u) =

2(N − 1)u√
N

(
1− u2

N

)N−2

∼ 2u
√
Ne−u

2

= 2rNe−Nr
2

. (E2)

Chebyshev’s inequality then can be used to show that with high probability r ∈ Θ(1/
√
N) for each component,

and (E2) shows that the distribution varies smoothly and hence it is highly probable that the differences between any

two components of such random vectors are Θ(1/
√
N).

Since the Haar measure is invariant under unitary transformation, we can take u to be a basis vector without loss
of generality. Then if we define w and z to be the two closest vectors we see that with high probability in the limit
as N →∞

|u−w|2 = (1−w1)2 +

N∑
j=2

w2
j

= (1−w1)2 + (1− |w1|2)

= 1 + (1−w1)2 +O(1/N)

= 2 + Θ(1/
√
N), (E3)

where the last line follows from the observation that with high probability |w1| ∈ Θ(1/
√
N). By repeating the same

argument we see that

|u− z|2 = 2 + Θ(1/
√
N), (E4)

and hence from the fact that the distribution of distances is smooth and the components of w and z are independent
we see that

|u− z|2 − |u−w|2 ∈ Θ(1/
√
N). (E5)

This suggests that ε ∈ O(1/
√
N) for the case where the members of the training set are Haar–random vectors. We

demonstrate this point numerically below.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

D
is

ta
nc

e
G

ap
 B

e
tw

ee
n

T
w

o
C

lo
se

st
 V

ec
to

rs

N

FIG. 12: Mean difference in Euclidean distance between two closest vectors to u for vectors randomly chosen
according to the Haar measure. The plot is computed for M = 100 using 100 trials per value of N . The blue crosses

show the mean values of the distances and the dashed lines give a 50% confidence interval on the distance. The
green line gives the the best powerlaw fit to the data.

23

We generate the data in Figure 12 by generating a large set of random vectors chosen uniformly with respect to the
Haar measure. We take |u〉 = |0〉 in all these examples without loss of generality because the measure is rotationally
invariant. We then compute for each j = 1, . . . ,M |u − wj |2 and sort the distances between u and each of the
randomly drawn vectors. Finally, we compute the distance gap, or the difference between the two smallest distances,
and repeat this 100 times in order to get reliable statistics about these differences.

Figure 12 shows that the difference between these two distances tends to be on the order of 1/
√
N as anticipated

from concentration of measure arguments. It is easy to see from Taylor’s theorem that the differences in the square
distances is also O(1/

√
N). Hence taking ε ∈ O(1/

√
N) will suffice with high–probability since an error of this scale

or smaller will not be sufficient to affect the decision about the identity of the nearest vector.
In contrast, the scaling with M is much less interesting because the volume expands exponentially with N . Hence

it takes a very large number of points to densely cover a hypersphere. For this reason, we focus on the scaling with
N rather than M . However, for problems with small N , large M , and no discernable boundaries between U and V ,
this issue could potentially be problematic.

We can now estimate the regime in which our quantum algorithms will have a definite advantage over a brute–
force classical computation. We assume that ε = 1/

√
N , δ0 = 0.5, dr2

max = 1 and M ′ = M . We then numerically
compute the points where the upper bounds on the query complexity in Theorem 1 and Theorem 2 equal the cost
of a brute–force classical computation. We use these points to estimate the regime where our quantum algorithms
be cost–advantageous over classical brute–force classification. As seen in Figure 13, our quantum algorithms exhibit
superior time complexities for a large range of M and N values. This trade–off point for the centroid method occurs
when M ≈ 1016N−1.07, and M ≈ 2× 1014N−1.08 for the inner–product method.

It is important to note that the upper bounds on the query complexity are not expected to be tight, which means
that we cannot say with confidence that our quantum algorithms will not be beneficial if the upper bounds are less
than NM . Tighter bounds on the query complexity of the algorithm may be needed in order to give a better estimate
of the performance of our algorithm in typical applications.

10
2

10
4

10
6

10
8

10
4

10
6

10
8

10
10

10
12

10
14

10
16

M

N

8

Both8Q.8Alg8Superior

Inner8Product8Q.8Alg8Superior

Unknown

FIG. 13: Estimated regions where our quantum algorithms are cost-advantageous over a brute–force classical
calculation. The shaded regions represent the parameter space where the upper bounds from Theorem 1 and

Theorem 2 are greater than the brute–force classical cost of NM .

	Quantum Nearest-Neighbor Algorithms for Machine Learning
	Abstract
	 Acknowledgments
	 References
	A Additional Numerical Experiments
	B Proofs of Theorems 1 and 2
	1 Preliminary Results
	2 Proof of Theorem 1
	3 Proof of Theorem 2

	C Justification for Normalizing Distance
	D Comparison to Monte–Carlo Approaches
	E Sensitivity of Decision Problem

