LIQUi|⟩: A Software Design Architecture and Domain-Specific Language for Quantum Computing

Dave Wecker * Krysta M. Svore *
Microsoft Research
{wecker,ksvore}@microsoft.com

Abstract
Languages, compilers, and computer-aided design tools will be essential for scalable quantum computing, which promises an exponential leap in our ability to execute complex tasks. LIQUi|⟩ is a modular software architecture designed to control quantum hardware. It enables easy programming, compilation, and simulation of quantum algorithms and circuits, and is independent of a specific quantum architecture. LIQUi|⟩ contains an embedded, domain-specific language designed for programming quantum algorithms, with F# as the host language. It also allows the extraction of a circuit data structure that can be used for optimization, rendering, or translation. The circuit can also be exported to external hardware and software environments. Two different simulation environments are available to the user which allow a trade-off between number of qubits and class of operations. LIQUi|⟩ has been implemented on a wide range of runtimes as back-ends with a single user front-end. We describe the significant components of the design architecture and how to express any given quantum algorithm.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory

Keywords Quantum Programming Languages; Quantum Simulators; Functional Languages; F#; Embedded Languages

1. Introduction
The harnessing of quantum mechanics for computation will cause a paradigm shift in our notions of computational methods and devices. In recent years, we have seen problems in mathematics and computer science for which a quantum algorithm is exponentially faster than the best-known classical algorithm. Problems include factoring integers [24], estimating the ground state energy of complex molecules [3, 15], and solving systems of linear equations [12]. The pursuit of harnessing the laws of quantum physics for computational speed-ups is both challenging and rewarding. Problems solvable more quickly on a quantum computer are only beginning to be unveiled and the need for a high-level programming environment to aid in their development is apparent.

There is a long history of creating software languages that encourage higher-level abstractions freeing the user to focus more on problem solving and less on the details of the specific hardware involved. Probably the best example of this was the introduction of FORTRAN [4] that moved an entire community away from machine code and into general purpose algorithm creation. Quantum computing is no exception. Quantum computing possesses unique computational attributes which require novel programming constructs to enable harnessing and manipulation of quantum states. One of the grand challenges for the computer science and programming language community will be the design and implementation of a system architecture to control quantum hardware. LIQUi|⟩ is an evolutionary step along the way, building on previous language formalisms.

A software design architecture for quantum computing [25] should offer high-level abstractions of quantum physics and linear algebra as well as the automation of complex tasks for easy development, simulation, and testing of quantum algorithms. The quantum programming language needs to allow a description of any quantum circuit at a suitable level of abstraction. It must include both quantum primitives as well as classical control definitions. Finally, it should offer an environment which aids in understanding quantum physics, provides easy manipulation of quantum circuits and classical control, and allows development of large-scale quantum algorithms for ultimate deployment on a quantum computer.

Current state-of-the-art software architectures for quantum computing lack tools for control of quantum hardware and scalable quantum algorithm development. Most research is focused on developing circuits for small subroutines of quantum algorithms and performing resource cost estimates. In contrast, LIQUi|⟩ (which stands for “Language Integrated Quantum Operations” and is an attempt to provide users with an end-to-end exploration and control environment from algorithm writing, to visualization, to simulation, emulation, and deployment on target hardware.

The ultimate goal behind LIQUi|⟩ is to control quantum hardware. LIQUi|⟩ contains a robust, large-scale domain-specific language embedded in F# and isolated runtime for programming quantum algorithms. It contains modular tools for circuit manipulation, simulation, export, and rendering. In addition, it has the ability to support investigations of quantum noise, quantum error-correcting codes (QECC), circuit decomposition and optimization, classical control integration, and architecture-specific timing and layout constraints.

We organize our presentation of LIQUi|⟩ as follows. In Section 2, we review several existing quantum programming languages and their similarities and differences to LIQUi|⟩. In Section 3, we provide a brief background on the primitives of quantum computation and quantum algorithm design. We introduce the LIQUi|⟩ software design architecture in Section 4 and describe the primary elements of our system, including the language, simulators, and backends. We provide several code examples in Section 5. In Section 6, we show how to program and simulate Shor’s algorithm in LIQUi|⟩. Finally, we conclude and discuss future directions in Section 7.

* Quantum Architectures and Computation Group, Microsoft Research, One Microsoft Way, Redmond, WA, 98052

1 A quantum operation is usually referred to as a unitary operator (U) applied to a column state vector (also known as a ket: |⟩). The i is just a constant scaling factor, hence the acronym.
2. Related Work

Several quantum programming languages have been proposed in recent years [16]. Quantum Computation Language (QCL) [18–20] is perhaps the most advanced imperative quantum programming language. It is a C-style language designed for easy, structured programming and natural quantum algorithm design. QCL divides the components of a quantum algorithm into “quantum functions” (unitary operations), “pseudo-classical operators” (quantum oracles), and “classical procedures” (classical operations).

Another imperative quantum programming language called Q Language was proposed by Betelli et al. [6]. It allows simulation of decoherence on a quantum algorithm, which is especially important since quantum computers are inherently noisy and in their infancy. Q is developed as a class library for C++ and provides classes for basic quantum gates. The class of gates is also user-extensible. Both QCL and Q lack quantum data types and formal semantics.

Functional languages for quantum programming have also been proposed. The quantum lambda calculus was originally developed in the form of a simulation library for the Scheme language [26] and later became an ML-style language with strong static type checking [22, 23]. Although rigorous, the quantum lambda calculus lacks facilities for construction and manipulation of quantum circuits. The Quantum IO Monad [2] is embedded in Haskell and offers consistent operational semantics. However, it lacks suitable design tools for development of quantum algorithms. LIQ [21] is a reduction of ideas drawn from these formal functional languages to a practical, user-friendly system that enables the development of quantum algorithms and the programming of quantum devices.

Recently, Quipper has been introduced as a language to enable high-level programming of scalable quantum computations [11]. Quipper is a strongly-typed, functional quantum programming language embedded in Haskell. Both Quipper and LIQ [21] offer powerful and extensible facilities for quantum circuit description and manipulation, including gate decomposition and circuit optimization; both include classical components such as measurements and classically-controlled gates; both offer a way to represent algorithms and circuits at multiple levels of abstraction; both systems allow quantum circuits to be exported for rendering or resource costing; and both systems are modular and user-extensible. However, the exact implementation details between the two systems differ.

In contrast to Quipper, we have designed LIQ [21] explicitly with quantum hardware in mind. We believe that the model of quantum computation closely matches the traditional model of a co-processor. Quibits are real entities that have lifetimes and are mutable. In LIQ [21], the quibt type reflects this reality. LIQ [21] also does not have built-in gates. All gates are implemented within a library which can be modified or replaced by the user.

While both systems are equipped with simulators for universal quantum circuits, as well as more efficient customized simulators for stabilizer and other classes of circuits, LIQ [21]’s simulators are highly optimized, taking advantage of many available techniques, including custom memory management, cache coherence analysis, parallelization, “gate growing”, and virtualization (running in the cloud). LIQ [21]’s highly optimized simulation environment allows thorough investigation of quantum algorithms under noise, physical device constraints, and simulation.

LIQ [21] is also a full optimizing compiler. A user’s input circuit definition may be massively rewritten (under user control) to generate compact, highly-optimized versions for simulation. We can compile any given unitary circuit with varying levels of optimization and can mathematically prove that the pre- and post-optimized unitary are identical even though the resulting circuits may appear very different. Another unique component of LIQ [21] is its ability to perform Hamiltonian simulations, including the efficient simulation of Trotterized circuits, as well as computations in the adiabatic model of quantum computation.

3. Quantum Computation

In this section, we briefly review primitives of quantum computation. A detailed review can be found in [17].

3.1 Qubits and Quantum Gates

In quantum computation, quantum information is stored in a quantum bit, or qubit. Whereas a classical bit has a state value \(s \in \{0, 1\} \), a qubit state \(|\psi\rangle\) is a linear superposition of states:

\[
|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = |\psi\rangle,
\]

where the \(\{0, 1\} \) basis state vectors are represented in Dirac notation (called ket vectors) as \(|0\rangle = [\begin{array}{c} 1 \\ 0 \end{array}]^T \) and \(|1\rangle = [\begin{array}{c} 0 \\ 1 \end{array}]^T \), respectively. The amplitudes \(\alpha \) and \(\beta \) are complex numbers that satisfy the normalization condition: \(|\alpha|^2 + |\beta|^2 = 1 \). Upon measurement of the quantum state \(|\psi\rangle\), either state \(|0\rangle \) or \(|1\rangle \) is observed with probability \(|\alpha|^2 \) or \(|\beta|^2 \), respectively.

An n-qubit quantum state lives in a \(2^n \)-dimensional Hilbert space and is represented by a \(2^n \times 1 \)-dimensional state vector whose entries represent the amplitudes of the basis states. A superposition over \(2^n \) states is given by:

\[
|\psi\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle, \quad \text{such that} \quad \sum_i |\alpha_i|^2 = 1,
\]

where \(\alpha_i \) are complex amplitudes and \(i \) is the binary representation of integer \(i \). Note, for example, that the three-qubit state \(|000\rangle\) is equivalent to writing the tensor product of the three states:\n
\[
|000\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle = |0\rangle^3 = |00000000\rangle^T.
\]

The ability to represent a superposition over exponentially many states with only a linear number of qubits is one of the essential ingredients of a quantum algorithm — an innate massive parallelism.

In a quantum computation, a closed quantum system transforms by unitary evolution. In particular, the quantum state \(|\psi_1\rangle\) of the system at time \(t_1 \) is related to the quantum state \(|\psi_2\rangle\) at time \(t_2 \) by a unitary operator \(U \) that depends only on \(t_1 \) and \(t_2 \):

\[
|\psi_2\rangle = U|\psi_1\rangle
\]

In turn, quantum operations are necessarily reversible. We refer to quantum unitary operations as quantum gates. Measurement is not reversible; it collapses the quantum state to the observed value, thereby erasing the knowledge of the amplitudes \(\alpha \) and \(\beta \).

An n-qubit quantum gate is a \(2^n \times 2^n \) unitary matrix that acts on an n-qubit quantum state. For example, the Hadamard gate \(\mathbf{H} \) maps \(|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \), and \(|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \). The \(\mathbf{X} \) gate, similar to a classical NOT gate, maps \(|0\rangle \rightarrow |1\rangle \), and \(|1\rangle \rightarrow |0\rangle \). The \(\mathbf{Z} \) gate maps \(|1\rangle \rightarrow -|1\rangle \). The identity gate is represented by \(\mathbf{I} \). The two-qubit controlled-NOT gate, \(\mathbf{CNOT} \), maps \(|x, y\rangle \rightarrow |x, x \oplus y\rangle \). The corresponding unitary matrices are:

\[
\mathbf{H} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.
\]

Quantum state evolution is represented in a quantum circuit diagram, where time flows from left to right. Solid wires represent qubits; double wires represent classical bits. Single-qubit gates are represented by boxes containing their symbol. \(\mathbf{CNOT} \) is denoted by a vertical line between a \(\bullet \) (to represent the control qubit in state \(|1\rangle \)) and a \(\oplus \) (to represent XOR). Measurement is denoted by the meter symbol.

3.2 Example

A remarkable example of quantum computation is quantum teleportation [17]. It enables moving quantum information around
without access to a quantum communications channel. The goal
is for a messenger M to deliver a source qubit (src) to a recipient R
with perfect fidelity using very little classical communication. M
does not know the value of the source qubit and is only allowed
to send classical information to R. Quantum teleportation highlights
several important primitives of quantum computation, including
superposition, entanglement, and classically-controlled quantum
gates.

![Teleportation Circuit](image.png)

Figure 1. Teleportation circuit auto-generated by LIQUD.

The quantum circuit for teleportation is shown in Figure 1. The
protocol begins with messenger M and recipient R each having a
qubit in state $|0\rangle$ (bottom two qubits). They entangle their qubits
to create an EPR pair: M applies a H gate followed by a $CNOT$
between the two qubits. M and R then travel arbitrarily far apart from each
other, taking their respective qubit with them. M is then given a
message qubit (src) to send to R. She entangles src with her half
of the EPR pair using a $CNOT$ and H gate. M then measures src
and her half of the EPR pair and sends two (classical) measurement
results to R over a classical channel. R looks at the two values
and conditionally applies an X and/or Z gate to his half of the EPR pair
(bottom qubit). The state of his qubit, labeled $dest$, is now equal to
the original src state. When a variant of this circuit is run in reverse,
it can be used to perform quantum superdense coding [17].

3.3 Model of Computation

Unlike classical computation, quantum computation is inherently
probabilistic due to measurement. To read the output of a quantum
algorithm or circuit as a classical bit string, the final quantum state
is measured, which probabilistically projects the state onto one of
the computational basis states. The interplay between the quantum
circuit and classical control necessitates a hybrid architecture
employing both quantum hardware and a classical computer. Feedback
between classical and quantum hardware is required for, e.g.,
classical control instructions, conditional circuit application, measure-
ment, and classical pre- and post-processing of the input and output of the quantum
device.

Several formal models of quantum computation have been pro-
posed, including the quantum Turing machine [7], the quantum cir-
cuit model [28], the quantum adiabatic model [9], and the quantum
random access machine (QRAM) [14]. The quantum circuit model
[28] allows the representation of actual physical operations
performed in the laboratory as a circuit, but does not provide defini-
tions for classical control instructions which are required to express
a given quantum algorithm. The QRAM model extends the circuit
model to include definitions for universal quantum and classical
computation, including classically-controlled quantum operations.
It also includes the notion of quantum registers containing qubits.

LIQUD [31] is developed around the quantum circuit and QRAM
models, employing the quantum circuit as its underlying representa-
tion. We adhere to the quantum circuit representation since it is
universal and allows us to emulate other quantum models of com-
putation easily. For example, we have defined interfaces that allow
the user to do adiabatic evolution on first-quantized Hamiltonians
and Trotter simulation on second quantized Hamiltonians. LIQUD
assumes hardware independence; it does not rely on a specific clas-
sical or quantum hardware architecture. It assumes quantum op-
erations can be performed in parallel if they act on distinct sets of
qubits, where the amount of parallelism is subject to the constraints
of the targeted quantum device. It also allows a sequence of quan-
tum gates to be conditionally applied based on the output of earlier
quantum measurements.

LIQUD [31] allows export to target-specific devices and simulators.
Its circuit manipulation modules are user extensible to allow trans-
lation to hardware-specific gate instructions. Since real control of
a quantum computer will be highly susceptible to noise, LIQUD
enables investigation of quantum noise models at the circuit and
device levels. An example is given in Section 5.2.

3.4 Quantum Algorithm Design

Many quantum algorithms have been proposed in recent years
[13]. Typically, they are described at the level of mathematics
and physics, as opposed to at the level of quantum circuits. How-
ever, the algorithm can be mapped to a quantum circuit, resulting
in components such as state preparation, classical pre- and post-
processing, quantum subroutines, quantum oracles, and measure-
ment. Some quantum algorithms are more easily expressed in the
quantum adiabatic model [9], which may also be implemented in
LIQUD [31] using a first-quantized Hamiltonian representation.

At the beginning of a quantum algorithm, *quantum state prep-
paration* is performed to initialize the quantum states. States are ini-
tialized to $|0\rangle$ and a quantum circuit can be applied to transform the
value of the quantum register. Qubits used as “scratch space” are
called ancilla qubits and initialized to $|0\rangle$ states. Ancilla qubits can
be reset to $|0\rangle$ during the computation to allow later reuse.

A quantum algorithm typically uses one or more common
quantum subroutines, such as *amplitude amplification* for increas-
ing the amplitude of a desired state in a quantum superposition,
quantum phase estimation for estimating eigenvalues of a unit-
ary operator, and the *quantum Fourier transform* for performing a
change of basis analogous to the classical discrete Fourier trans-
form. Manipulations of the quantum subroutine may include the re-
versal or adjoint to “undo” a computation or reset an ancilla qubit to
$|0\rangle$, and *repetition* to increase precision (e.g., amplitude ampli-
fication). All such subroutines and manipulations can be expressed
as quantum circuits and are available in LIQUD [31] (see Section 4.2).

Many quantum algorithms rely on a quantum oracle to perform
function evaluation. Recall that a classical oracle is normally a
boolean function that maps an n-dimensional boolean input to an
m-dimensional boolean output. An algorithm then queries the
oracle to perform the mapping from $n \rightarrow m$. A classical boolean
oracle can be converted into a quantum oracle by increasing the
input and output spaces from n and m bits, respectively, to $n + m$
qubits each. This maps the boolean function to a reversible function
that can be represented as a unitary matrix. Example oracles include
arithmetic functions, graph functions, and lookup tables. LIQUD
supports the definition of quantum oracles; an example is given in
Section 6.

To read the output of the algorithm as a classical bit string, the
final quantum state is measured and optionally post-processed clas-
sically. *Classical pre- and post-processing* consists of classical ma-
nipulation of the data before input or after measurement. Classical
pre-processing is a series of classical procedures performed prior
to initialization of the quantum states. Classical post-processing in-
cludes checking if the classical output is a proper solution to the
problem (when a solution can be efficiently verified), performing
statistical analysis of output, and determining when the algorithm
can be terminated. Classical processing can also be heavily inter-
leaved with the logical operations of the quantum algorithm. For
example, during quantum error correction, the next sequence of
quantum operations is determined based on the error syndrome
measurement outcomes.
4. LIQUij Software Design Architecture

A software architecture for scalable quantum computing requires programming languages, compilers, optimizers, and simulators with well-defined interfaces between the components [25]. We have architected LIQUij with the components of a desirable quantum design architecture in mind. The various system components have been carefully designed to promote efficiency and interoperability. Since the input and output formats are modular, interoperability with other tools, languages, or operating systems is easily achievable. For example, we can currently import data from classical programming languages, compilers, optimizers, and simulators that can only interact with the rest of the system via defined interfaces (creation, properties, and functions) that are restricted to operate within the scope of the opaque type (a monad). It has no access to program state outside of itself and is opaque to the user. This allows these types to be state-full and at the same time not pollute the rest of the functional environment. Qubits and Kets are objects that exist on their own and may be communicated with, but are fully isolated from the rest of the system.

In addition, Qubits are merely identifiers to refer to parts of the state vector (Ket). The Ket contains all information about the simulation and Gates are applied to the Ket one at a time (via direct function calls) or as an extracted Circuit data structure (reflected on from the function calls that would have been done). This data structure may be manipulated in many ways, as described in the next two sections, but is ultimately viewed as a sequence of Gates applied to the Ket.

There is not a static global ordering of the Qubits in a Ket state vector. The arguments to the gate definitions are user-defined and are local to that function’s definition. Qubits themselves are self-identifying and unique. If higher-level abstractions are desired, they can be easily user-defined (e.g., quantum registers).

The use of lists in Gate definitions is a choice. Gates can equally be defined using strongly-typed, fixed or variable arguments. In fact, all arguments are required to be strongly typed in the system. Qubits, Kets, Gates, and Circuits are all strong quantum types and enforced within the system. LIQUij gates are func-
tions. The function can be as high- (or low-) level as the user desires.

LIQU[i] has the capability to create and destroy Qubits, for example for ancilla allocation, however we do not currently provide a programmatic interface to the user. We are exposing this in a future version. Note that the classical programming language is unrestricted and that Gates may contain any number of local classical variables.

4.2 Functions

Executable Gates used in a quantum algorithm are referred to in LIQU[i] as Operations. An Operation appears externally as a typical F# function whose signature is required to have the last argument as a list of qubits and returns unit (void). The qubits are required to define where the gate operates within a state vector (ket) and since Qubits/Kets exist in their own scope, the function never returns a value. An Operation can be unitary or non-unitary.

One of the unique aspects of LIQU[i] is that all Operations/Gates are user functions/class instances which may be extended by the user as desired. To allow this, the Gate class also defines instructions for how it is to be rendered and run-time aspects that are needed by the system. This makes the system fully extensible.

Measurement, written as \(\mathcal{M} \), represents a non-unitary gate. It is a special case of a Gate that causes the collapse of a Qubit within the Ket (known as a projection). This un-entangles the qubit and turns its Bit value into Zero or One (instead of Unknown as before the measurement). Measurement is a probabilistic operation that depends on the amplitude of the current state and its entanglement with other qubits. If the same quantum circuit followed by measurement is executed several times, it will not in general return the same value due to its probabilistic nature. However, if repeated sufficiently many times, the actual probability of measuring a 0 (or 1) for a given system can be recovered. To measure all qubits in a list, we write \(\mathcal{M} \), \(\mathcal{M} \), \(\mathcal{M} \).

Reset is another non-unitary gate that may be used to prepare a qubit in state \(|0\rangle \) after it has been measured. This is a common operation, e.g., in quantum error correction when ancillas are continuously measured and then reprepared to be used again. "Reset Zero \(\times |q\rangle \) resets all qubits in a list to \(|0\rangle \).

Select gates are listed in App. A. Various functions on Gates exist in LIQU[i] for easy programming and simulation, including:

- **Gate wrapping** may be used to wrap a Gate definition that may be as simple as a unitary matrix or any number of Gates (sequentially or in parallel) to form a reusable sub-circuit using WrapOp. This makes design and manipulation of quantum algorithms easier. It allows the programmer to build larger circuits as Gates that contain sub-Gates. For example, an entire multi-body Hamiltonian term can be implemented as a Wrap Gate that might have dozens of primitive gates inside it. Another example is an adder or Quantum Fourier Transform (QFT) (see Section 6).
- **Adjoint** may be used to take the complex conjugate transpose of any unitary Gate \(U \) by writing \(\text{Adj} U \). Reverse may be used to reverse an entire circuit of unitary gates. It performs the adjoint of all gates along the way and is called by writing \(\text{let circRev } = \text{circ.Reverse()} \). If an Operation is implemented as a matrix, Reverse may be applied to it. If a gate is defined as a function or as a non-unitary operation, Reverse cannot be applied.
- **Controlled gates** may easily be created using AddControl. A single- or multi-qubit unitary Gate can be extended into a single- or multi-controlled unitary. For example, a CNOT gate can be built by adding a control to an \(X \) gate with the command "Gate \(X \) qs".

Parametrization allows dynamic Gates to take any number of parameters as long as the final one is a list of qubits. For example, consider 2 rotations by \(2\pi i/2^k \) used in the QFT, where \(k \) is the parameter (see Sec. 5). This can be written in LIQU[i] as:

```fsharp
    /// 2pi / 2^k gate.
    let circRev = circ.Reverse() // Rest of gate definition
    let phiI = Math.Sin phi
    let phiR = Math.Cos phi
    let phi1 = Math.Sin phi
    CSMat(2.0, (0, 0, 0, 0) : (1, 1, phiR, phiI))
```

Non-unitary operations (e.g., Measure, Reset, Restore) may also be parameterized (e.g., reset qubit to \(|0\rangle \) or \(|1\rangle \)).

Block operation enables Gates to be created that operate on a variable number of qubits. It may be used to operate on subsets of qubits, registers, or entire state vectors. The only limitation is that all qubits used in a Gate must come from a single state vector. For example, we can apply an \(H \) gate on all qubits in a list by writing \(\mathcal{H} \times q_a \), or alternatively "for \(q \in q_a \) do \(H \ [q]\)" or "List.iter \(\text{fun q -> H} [\ q] \) q". A more detailed example for applying the QFT is given in Section 5.

Gate growing does not affect the algorithm but massively shortens run-times by collapsing sequential unitary gates into a single larger unitary operation. Trade-offs are made by the system in terms of size of the resulting matrix and density. There are diminishing returns as the density and size grow; the system optimizes this for best simulation throughput.

Flatten turns a hierarchical circuit into a sequence of low-level gates. This is useful for analysis and resource estimation.

Execution of the circuit is done using Run. Section 4.5 contain details on different modes of execution.

A Gate is introspective, so it can ask if it is Unitary. For example, Adi requires its operation to be Unitary and checks this condition upon the call. Similarly, a Gate can determine if its call parameters match its Gate definition, returning an error if there is a mismatch.

The operations that happen behind the scenes on Qubits/Kets require a large amount of complex arithmetic (especially matrix-vector multiples and tensor products). After working with several native alternatives, we built our own optimized sparse complex linear algebra package in F# that is highly optimized for this specific application. Examples include optimized re-use of memory to avoid garbage collection, lazy allocation using skyline vectors based on qubit entanglement, re-ordering of state vectors to turn all tensor products into parallelizable block diagonal operations and many other space and time operations that allow moderate numbers of qubits (30 on a 32GB memory machine) to perform universal quantum operations with no restriction.

At generation time, LIQU[i] performs the following functions:
- Optimization of unitary Gates for efficient Universal simulation (collapsing unitaries together based on size/sparseness); Optimization of unitary Gates for efficient Hamiltonian simulation (removing non-physical states, exponentiation of the entire circuit); Optimization of depth (parallelization of the circuit to compute actual parallel depth); Replacement of non-available gates (e.g., rotations) to estimate actual depth given a desired substitution method; Rewriting of Hamiltonian circuits for optimized depth on target hardware (e.g., coalescing of Trotter steps); Rewriting to map logical to physical qubits with QEC; Output of circuit to disk as a data structure that could be loaded by other applications; Output of circuit drawing after any of the above manipulations.
At execution time, it performs: Function execution for direct simulation of algorithms; Circuit execution for taking advantage of Generation Time optimization and re-writing; Injection of user defined unitary and non-unitary noise and statistical analysis; Debugging for allowing inspection/manipulation of the normally opaque state during execution (one of the benefits of simulation). LIQUID® has the ability to schedule across distributed systems as an ensemble computation in LAN, Cluster and Cloud environments. The entire system contains more than 30,000 lines of source code. LIQUID® maintains full double-precision complex numbers and in addition re-unitarizes compiled circuit matrices as they drift from unitary due to numerical precision limits.

4.3 Circuits Manipulators

A circuit data structure can be passed to a variety of Circuit modules, including:

- **Decomposition** for replacing unitary gates with low-level gate sequences, primarily to enable fault-tolerant implementation in the laboratory;
- **Optimization** for trading-off circuit depth and width. A simple optimization called Fold removes excess identity gates by sliding gates over them (to the left in a circuit diagram) until a non-identity gate is reached;
- **Translation and rule-based rewriting** for mapping to different gate sets and for use in optimization algorithms;
- **Export** for outputting the circuit data structure to a file;
- **Resource costing** for counting the number and types of gates.

Quantum error-correcting codes (QECC) for inserting fault-tolerant protocols for error correction. Section 5.2 contains an example.

Rendering for drawing a circuit diagram automatically from the LIQUID® code.

4.4 Simulators and Backends

Currently, there are two simulators built into the system representing different levels of abstraction: (1) **Universal** for executing a universal quantum computation and (2) **Stabilizer** for efficiently executing a restricted class of gates. **Backends** can be classical machines (for simulation) or an actual quantum computer (for physical implementation).

The **Universal Simulator** is the most flexible of the simulators. It allows a universal set of quantum and classical operations to be performed. It fully executes the linear algebra and classical control underlying the circuit representation and evolves the full quantum state. It requires memory resources that grow exponentially with the number of qubits. It can handle execution of millions of operations (gates), is highly optimized for parallel execution, and is highly efficient in memory usage. LIQUID® has been architected for a virtually unlimited number of qubits (natively 64 bit), but quickly runs out of memory to represent them. More than a petabyte of memory representation grows. When measurement occurs on a single entangled qubit, our storage drops by 1/2.

Measurement is the only simple case where we know that qubits have become dis-entangled. LIQUID® provides an interface for the user to tell the simulator when groups of qubits have become dis-entangled (e.g., at the end of a sub-circuit where registers are no longer entangled). There is also a version of this call that actually checks if the qubits are really unentangled (very expensive) that helps the user check assertions of her circuit.

We have also developed a package on top of the universal simulator that provides simulation of Hamiltonians. The simulation environment attempts to model some of the realistic physics in a quantum system developed in a laboratory. It differs from the other simulators in that it has the concept of the time it takes for an operation to be performed (since it is numerically solving a differential equation). It is also (by its very nature) slow due to the requirements for simulating a state evolving over time. An example Hamiltonian simulation is given in Appendix D.

The **Stabilizer Simulator** is a restricted simulator based on methods in Ref. [1]. It performs a specialized class of quantum operations (the so-called “Clifford-group” operations). It evolves only the stabilizer information in a matrix tableau, rather than the full quantum state. Thus, it requires memory resources that grow linearly with the number of qubits. The set of circuits simulable includes most quantum error correction protocols. Efficient simulation offerings could be extended to include methods in Refs. [10, 27].

The Stabilizer simulator has the virtue of allowing large circuits (millions of operations) on massive numbers of qubits (tens of thousands). The main limitation is the types of gates which may be included in the circuit. They are fixed in the system and come from the stabilizer class (e.g., Clifford group). This limits the usefulness of the types of algorithms that can be implemented and tested. However, it does allow the design and test of Quantum Error Correction Codes (QECC) which requires large numbers of physical qubits per logical qubits. An example usage of the Stabilizer simulator is given in Section 5.
4.5 Execution Modes
LIQUi| code can be executed in several ways:

1. **Test mode**: Many built-in tests of the system can be invoked from the command line and are useful demonstrations, including all examples provided in this paper (see App. C).

2. **Script mode**: The system can be run directly from an F# text script (.fsx file). This allows the simulator to be operated by simply running the executable (no separate language compilation required). The entire simulator is available from this mode, but interactive debugging is difficult and start-up times are slower. Script mode allows users to experiment with fast turn-around time and ease of use (no need to install a complete development environment). This is also the method used for submission to Cloud services.

3. **Function mode**: This is the normal development mode. It requires a compilation environment (e.g., Visual Studio) and the use of a .Net language (typically F#). The user has the full range of APIs at her disposal and can extend the environment in many ways as well as building her own complete applications. Here is the actual top level of the LIQUi| executable:

```fsharp
<EntryPoint>
let Main args =
    let env = Environment.GetCommandLineArgs() in
    let [key | skip | list] = Seq.toList args
    let args = List.map (fun s -> argOfKey env s)
    let las = ParseArgs args
    p.CommandRun las // Run the command line
</EntryPoint>
```

A user may implement this, mark any callable functions with the [<LQD>] attribute and then link with the LIQUi| libraries. Then the user can write: "Liquid UserFunc(args,...)" and get all the command line features built into the parser.

4. **Circuit mode**: Function mode can be compiled into a circuit data structure on qubits \(q_s \) that can be simulated with "circ.Run qs". This data structure can be manipulated by the user, run through built-in optimizers, have quantum error correction added, rendered as drawings, exported for use in other environments, and may be run directly by all the simulation engines.

4.6 Environments
The two ways to interact with the system are via a full compilation environment in Visual Studio linked to the LIQUi| library (dll), or via an F# script hosted by the LIQUi| application (exe). Both provide advantages. Compilation provides IntelliSense editing and a full debugging environment, while scripting provides a quick and easy way to prototype and extend LIQUi| while quickly turning around simulations with varying parameters.

Any function in the system that is tagged with the [<LQD>] attribute may be called from the command line (including any user extensions). For example the function showStr<string> will show a string on the console. This function is marked with [<LQD>] and can be invoked directly:

```fsharp
> Liquid show("Hello world")
Hello world
```

Some very sophisticated functions are built into the system and are demonstrated in the example for running Shor’s algorithm (Sec. 6.1). LIQUi| also has the ability to run in a fully distributed manner via ensemble computations. Often, simulations of quantum circuits are run a large number of times with either slightly different circuits or parameters or to check statistical results. Ensemble computations are accomplished easily by defining an Ensemble.xml file. An example ensemble run on 5 machines is written as:

```xml
<Ensemble Default="Shor"
<Pars>
```

We define the command `Shor` which will factor 6 numbers twice (Count="12") across the machines. LIQUi| did not have to be installed on any of the other machines. When the ensemble command is given to LIQUi|, it will install itself as a Windows Service on all of the other machines, start them up, run the simulations, and then shut down the services. All of this is invisible to the user.

5. Code Example: Quantum Teleportation
5.1 The Circuit
We now present the LIQUi| code for quantum teleportation:

```fsharp
// Define an EPR function
let EPR (qs:Qubits) = H qs; CNOT qs

// Teleport qubit 0 to qubit 2
let teleport (qs:Qubits) =
    let qs' = qs.Tail
    LabelR "Dest" ![qs,2] / / Label output
    EPR qs'; CNOT qs; H qs
    M qs'; BC X qs' / / Maybe apply X
    M qs; BC Z ![qs,0,2] / / Maybe apply Z
    LabelR "Dest" ![qs,2] / / Label output
```

We define a function called EPR that takes a list of qubits and then applies a Hadamard gate to the first qubit and a CNOT to the first two qubits. By convention, gates will take as many qubits as they require from the beginning of the list. If a gate can take a variable number of qubits (like a quantum Fourier Transform) then a list of the length to be used must be provided.

Now we can use the EPR function within a teleport function. In the first line of the function we take the Tail of the qubit list so that we are left with qubits 1 and 2 (named qs'). Now we label all the qubits with names for drawing. LabelR is an example of a non-unitary gate that puts information in any renderings of the circuit, but does not affect the circuit simulation in any way. The \(>t \) function is an example of a LIQUi| specific operator that maps a gate to a list of arguments. Now we call the EPR function previously defined. We then perform a CNOT and H on the first two qubits. To receive, the message we measure qubit 1 and conditionally apply an X gate to qubit 2 depending on the value measured. This binary control gate (BC) is another example of a non-unitary gate. We then repeat with Z gate on qubit 2, controlled by qubit 0. Finally we place a drawing LabelR on qubit 2.

With the teleport LIQUi| function, we can perform several operations as depicted below:

```fsharp
let ket = Ket(3) / / Create state
let qs = ket.Qubits

let teleport qs // Run Teleport
let circ = // Compile to circuit
  Circuit.Compile teleport qs

let circ.Run qs // Run circuit
circ.Dump() // Dump gates to log
```
To begin, we create a state vector \(|\psi\rangle\) of 3 qubits and get a reference to those qubits \(|s\rangle\). The line `teleport qs` calls `teleport` and runs it on the state vector. We can map the logical to those qubits \(q_s \). The line `GATE H is a Hadamard 0.7071 0.7071` sets up a Hadamard gate to create a superposition of states. `WIRE 1` and `WIRE 2` are used to connect the logical qubits to the physical qubits. `GATE CNOT is a Controlled NOT 1 0 0 0 0 0 1 0 0 1 0 0 1 0` sets up a CNOT gate, which is a controlled NOT gate. `WIRE 1` and `WIRE 2` are used to connect the logical qubits to the physical qubits. `GATE X is a Pauli X flip 0 1 1 0` sets up a Pauli X gate, which is a single-qubit gate that flips the state of the qubit. `WIRE 1` and `WIRE 2` are used to connect the logical qubits to the physical qubits. `GATE Meas is a Collapse State 1 0 0 1` sets up a measurement gate, which collapses the state of the qubit. `WIRE 1` and `WIRE 2` are used to connect the logical qubits to the physical qubits. `WIRE 1` and `WIRE 2` are used to connect the logical qubits to the physical qubits.

5.2 The Circuit with Error Correction

A necessary step in targeting a high-level representation of a quantum algorithm to a low-level quantum hardware architecture is the insertion of quantum error correction circuitry (see [17] for review of quantum error correction). The use of quantum error correction can help reduce the probability of errors in a given quantum circuit by replacing it with a fault-tolerant, noise-reducing circuit. Each logical qubit is encoded in a set of physical qubits using a quantum error correction circuit. The exact circuit depends on the particular quantum code being used. Similarly, a logical gate is replaced by an encoded circuit operating at the level of physical gates. An encoded computation thus requires substantially more resources than an unencoded computation, but when the components operate below a certain error threshold, it reduces the probability of errors at the logical level of computation. To enable investigation of quantum error-correcting codes (QECC), LIQ/qi includes packages to replace logical gates and qubits with error correction protocols involving physical qubits and gates.

As an example, consider the \([7, 1, 3]\) Steane code (see [17] for details) which encodes a single logical qubit in 7 physical qubits and can correct one physical error. To encode the `teleport` function, we may write:

```plaintext
let televl (qs:Qubits) = // Stabilizer friendly teleport
    X qs // teleport a |1\>
    teleport qs // do the circuit !!!(qs,2) // measure at the end
vs7 = Steane7(circ) // Apply a Steane code
let errC , stats = vs7.Inject 0.01 // Inject errors
let stab = Stabilizer(errC , ket) // Setup simulation
stab.Run() // Run the simulation
```

Here we have wrapped the `teleport` function in a new function (`televl`) which flips the message qubit (prepares a \(|1\rangle\)), teleports it, and then measures the result. First we compile this function into a circuit and instantiate one of the QECC classes (`Steane7`) which transforms the circuit from the logical level to the physical level by encoding each logical qubit in 7 physical qubits. Each logical gate is also replaced with physical-level gates.

The `Steane7` class is derived from the abstract `QECC` class. The `QECC` class can be easily extended by the user to permit other codes such as concatenated codes and topological codes like the surface code. The circuit created \((s7)\) contains many more qubits and gates than the original logical-level `teleport` circuit. A high-level view of \((s7)\) is shown in Fig. 3. Here, the boxes represent parts of the QEC routine, such as encoding, syndrome preparation, syndrome extraction, and correction. Fig. 4 shows `s7` at the level of physical qubits and operations. The three logical qubits are encoded in 21 physical qubits. The other qubits shown are ancilla qubits used for error syndrome extraction. In this example, we have chosen not to apply error correction to idle circuit locations (identity gates).

Figures 3 and 4 show quantum error correction layered over the quantum teleportation circuit at different levels of detail. LIQ/qi allows drawing circuits at different levels of abstraction, depending on the needs of the user. For example, Fig. 3 is useful when examining qubit usage and parallelization, while Fig. 4 is useful for verifying the circuit in its entirety. Both levels are of great use to algorithm developers.

The challenge in simulating large quantum error-correcting codes on a classical computer is that we quickly run out of qubits since each logical qubit is encoded in a few to thousands of physical qubits depending on the code. There is a better solution. We can switch from the Universal to the Stabilizer simulator. This is
what the call above to Stabilizer() does. Say, for example, that we are interested in modeling errors. We may first Inject depolarizing errors (X, Y, or Z gates) with a given probability to create an error circuit (errC) and then create an instance of the Stabilizer simulator to run. LIQUID can easily handle simulations of tens of thousands of qubits in this way. The last three lines in the code above convert (decode) physical qubits back to logical ones so we can check if we teleported the proper message. The distances between the encoded logical qubits and the expected codewords are also returned. More realistic noise models that involve non-unitary operations (see [17] for examples) can be modeled using the Universal simulator.

6. Shor’s Algorithm in LIQUID

Quantum algorithms find solutions to some problems exponentially faster than the corresponding best-known classical algorithms. The most famous example is Shor’s polynomial-time quantum algorithm for prime factorization [24]. The algorithm uses an important primitive called the quantum Fourier transform (QFT). It also requires classical pre- and post-processing and quantum circuits for modular arithmetic.

At a high level, Shor’s algorithm begins with classical preprocessing of the n-bit number N to be factored. At the heart of the algorithm is quantum order finding, which determines the least positive integer r such that \(a^r \mod N \) is congruent to 1. It is shown at a high level in Fig. 5 and executes as follows: a register of quantum states is placed in superposition and a second register of quantum states is initialized to \([1]\). Next a controlled application of modular exponentiation is applied (modular \(N \)) between two quantum registers, followed by an inverse QFT applied to the top quantum register. Finally, classical post-processing is performed to find the factors, or the algorithm is repeated if none are found.

\[
\begin{align*}
|0\rangle & \xrightarrow{H} |\chi(0)\rangle \\
|1\rangle & \xrightarrow{SU^r} |\chi'(1)\rangle \\
& \xrightarrow{QFT'} |\chi''\rangle \\
& \text{Measure} \\
& a^r \mod N
\end{align*}
\]

Figure 5. High-level circuit for order finding [17].

6.1 Code Example: Order Finding

Quantum order finding requires a quantum oracle to perform modular exponentiation and a quantum Fourier transform (we follow the circuit given in [17]). Here, we present circuit examples for these routines and the corresponding LIQUID code.

Quantum Fourier Transform. The QFT is an important primitive that can be performed using only \(O(n^2) \) quantum operations, in contrast to \(\Theta(n2^n) \) classical operations for a discrete Fourier transform. It may also be used, for example, within quantum phase estimation and quantum arithmetic functions.

The LIQUID code for the inverse QFT (QFT') on an arbitrary number of qubits is given by:

```java
let QFT' (qs:Qubits) =
    let n = qs.Length // Get number of qubits
    for aldx in 0..n-1 do // Process each qubit
        let a = qs.[aldx] // Get the current qubit
        for k in aldx+1..n-1 do // Extract the control
            let c = qs.[aldx-(k-1)] // Apply the controlled rotation
            CR' k [c;a] // Add to the state
        end
    end
    H [a] // Hadamard each when done
```

The corresponding diagram generated by the LIQUID code is shown in Fig. 5. Note the use of controlled ad-joint rotations (CR') which uses the Cgate, Adj, and R definitions described earlier.

Modular Addition. Modular exponentiation, that is the operation \(a^r \mod N \) referred to above, can be performed using repeated multiplication, which in turn requires modular addition. Here, we program a modular adder based on addition using the quantum Fourier transform [5, 8]. In this design, both QFT and QFT' are required. Throughout, the \(^{'} \) indicates inverse. The circuit requires subcircuits (not shown here, see [5]) for addition controlled by two qubits (CCAdd), addition controlled by one qubit (CAddA), and addition without controls (AddA).

\[
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} u_s |s\rangle = |1\rangle.
\]
The largest number we have factored is a 14-bit number (8193) which required 31 qubits in 50GB of memory, 28 rounds with half a million gates per round (reduced to 18,000 using gate growing), and ran for 43384 minutes (30.1 days). The answer was 8193 = 3 × 2731. The simulation output is provided in Appendix B. This represents the largest number fully factored in a quantum computer simulator.3 Factoring a 14-bit number is of course still within the range of instant solution in the classical realm; exponential scaling becomes important in the range at and beyond 1024-2048 bits, which represent current and future RSA key sizes.

These numbers are generated from a simulation (on a classical computer) of the quantum operations. A real quantum computer could factor this size instance in negligible time. The goal in LIQU[i]) is to simulate all operations that would be performed on the quantum machine to enable algorithm development, optimization, and verification of correctness. Previous simulations have not factored numbers beyond 15 and 21, equivalent to 13 qubits and 70K gates (to the best of our knowledge). Our simulations, due to extensive optimization, can target simulations using up to around 30 qubits using only 32 GB RAM. The number 8193 required 31 qubits and 7M gates.

Fig. 8 plots the LIQU[i]) simulation time of Shor’s algorithm for a range of bits. The blue diamonds represent an early implementation with optimized linear algebra and simulation of each gate sequentially. The red squares are after adding gate growing (massively reducing the number of gates). The green triangles are after a full rewrite of the complex math package with optimized memory usage and tighter inner loops. The significant improvements between the blue and green markers (from 3 years to 4 days for 13-bit simulation) highlights the importance of optimized simulation environments and domain-specific languages and tools for quantum computing.

7. Conclusions and Future Work

LIQU[i]) is a fully architected (Fig. 2) quantum software platform that allows for efficient simulation of complex quantum circuits in a range of bits. These numbers are generated from a simulation (on a classical computer) of the quantum operations. A real quantum computer could factor this size instance in negligible time. The goal in LIQU[i]) is to simulate all operations that would be performed on the quantum machine to enable algorithm development, optimization, and verification of correctness. Previous simulations have not factored numbers beyond 15 and 21, equivalent to 13 qubits and 70K gates (to the best of our knowledge). Our simulations, due to extensive optimization, can target simulations using up to around 30 qubits using only 32 GB RAM. The number 8193 required 31 qubits and 7M gates.

Figure 6. LIQU[i]) circuit diagram for QFT† on 5 qubits.

Figure 8. Plot of number of bits vs. simulation time (in minutes) for simulation of Shor’s algorithm on varying number of qubits.

3 Authors of Ref. [21] have shown the classical requirements for pieces of quantum factorization of a 15-bit number on a supercomputer. We have fully factored a 14-bit number on a single desktop, simulating an end-to-end circuit implementation of Shor’s algorithm.
H. J. Garcia and I. L. Markov. Quipu: High-performance simulation with future designs of quantum computers. It provides researchers with valuable information for experimenting with various hardware implementations in the laboratory. Soon, it will be possible to specify architectural constraints such as circuit design, improved simulation on various back-ends (both classical and quantum).

In future versions of LIQUi|â), we plan to extend the software architecture to include layout of qubits, improved simulation of realistic noise models, gate timing constraints, and additional quantum error correction support. We also plan to more closely integrate classical and quantum instructions and incorporate the ability to manipulate large sub-circuits, such as taking the adjoint of a circuit consisting of both classical and quantum pieces. A key extension will be the ability to specify architectural constraints such as timing, communication latency, and qubit proximity. Quantum algorithms with classical components may then be mapped to specific hardware implementations in the laboratory. Soon, this will provide researchers with invaluable information for experimenting with future designs of quantum computers.

References

APPENDIX

A. Quantum Gates

Standard gates are presented in Figure 9.

B. Large Shor Simulation Run

This is the raw log from factoring the number 8193 (14 bits, 31 qubits) in 30.1 days. This includes 28 applications of a Shor round (each defined with 515,032 gates). At the end of this Run the factorization gates that generate the factors (3 × 2731).

C. LIQui]| Built-in Tests

D. Hamiltonian Simulation

A package for simulating Hamiltonians is included in LIQui| and built on top of the universal modeling simulator. There are three main ways to use this environment.

D.1 Adiabatic simulator

The first is with time-varying Hamiltonians that represent adiabatic spin glass problems (4). This simulator has been used for applications from modeling the D-Wave machine (a hardware decoherence model is available) to implementing Machine Learning algorithms (e.g., Traveling Salesman).

\[H(t) = \sum_i \Delta_i \sigma_i^z + \lambda(t) \sum_{i<j} J_{ij} \sigma_i^z \sigma_j^z \]

The adiabatic approach starts in a known ground state in \(\sigma_0 \) and then moves continuously to the unknown ground state in \(\sigma_1 \) (which is the solution of our problem). By moving slowly enough we can stay in the ground state of the entire system and reach the solution to the problem specified by the \(h_i \) and \(J_{ij} \) values in the equation.

D.2 Fermionic simulator

The fermionic Hamiltonian (5) is a second quantized Hamiltonian that represents the interactions of electrons in a molecular model. LIQui| provides gates that represent number excitation, Coulomb, exchange, number excitation and double excitation operators. This simulator has been used to implement sophisticated models including ones for \(H_2 \) and \(H_2O \). Fig. 10 shows a complete ground state model for water where the x axis varies the bond length between the oxygen and the hydrogen atoms, while the y
Figure 9. Sampling of basic quantum gates available in LIQU(|⟩⟩).

axis varies the angle between the hydrogen bonds. The z axis is the energy predicted (units are Hartree).

\[
H = \sum_{p<q} h_{pq} a_p^\dagger a_q + \frac{1}{2} \sum_{p<q<r<s} h_{pqrs} a_p^\dagger a_q^\dagger a_r a_s
\] (5)

The first half of the equation represent the single electron terms (H_{pp}, H_{pq}) while the second half are the two electron terms (H_{pqrs}).

- $\eta_i,\sigma = c_i^\dagger,\sigma c_i,\sigma = \text{local spin density}$
- $\eta_i = \sum_\sigma \eta_i,\sigma = \text{total local density}$

The model implemented is a 2d lattice (as shown in Fig. 11) where we define plaquettes that will be evolved adiabatically separately into the ground state, merged, and then separated to determine if we are left in a superconducting state.

Figure 10. Results of H_2O ground state modeling

D.3 Mixing simulators

The adiabatic and fermionic simulators can be mixed to allow fermionic simulation of time-varying Hamiltonians. One example of this is implemented as the Hubbard model (6) which is an effective Hamiltonian for modeling high temperature superconductors (cuprates).

\[
H = -\sum_{i,j} t_{ij} (c_{i,\sigma}^\dagger c_{j,\sigma} + c_{j,\sigma}^\dagger c_{i,\sigma}) + U \sum_i \eta_i,\uparrow \eta_i,\downarrow + \sum_\sigma \epsilon_i \eta_i
\] (6)

The goal is to model different chemical compositions as spacing between the copper oxide layers in a cuprate, which modify the ratio of interaction to hopping U/t. After preparing 2 plaquettes with 6 electrons we adiabatically separate them and measure the probability of finding three electrons on each (Fig. 12). If electrons are paired, the probability of having an odd number should be suppressed, and we can thus see pairing as suppression of P_{33} in the figure as the length of our annealing schedule is increased.

Figure 11. Hubbard lattice model with two plaquettes
Figure 12. Probability of breaking superconducting pairs as function of annealing time for various interaction strengths.