
LIQUi|〉: A Software Design Architecture and
Domain-Specific Language for Quantum Computing

Dave Wecker ∗ Krysta M. Svore ∗

Microsoft Research
{wecker,ksvore}@microsoft.com

Abstract
Languages, compilers, and computer-aided design tools will be es-
sential for scalable quantum computing, which promises an expo-
nential leap in our ability to execute complex tasks. LIQUi|〉 is a
modular software architecture designed to control quantum hard-
ware. It enables easy programming, compilation, and simulation of
quantum algorithms and circuits, and is independent of a specific
quantum architecture. LIQUi|〉 contains an embedded, domain-
specific language designed for programming quantum algorithms,
with F# as the host language. It also allows the extraction of a cir-
cuit data structure that can be used for optimization, rendering, or
translation. The circuit can also be exported to external hardware
and software environments. Two different simulation environments
are available to the user which allow a trade-off between number of
qubits and class of operations. LIQUi|〉 has been implemented on
a wide range of runtimes as back-ends with a single user front-end.
We describe the significant components of the design architecture
and how to express any given quantum algorithm.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords Quantum Programming Languages; Quantum Simula-
tors; Functional Languages; F#; Embedded Languages

1. Introduction
The harnessing of quantum mechanics for computation will cause
a paradigm shift in our notions of computational methods and de-
vices. In recent years, we have seen problems in mathematics and
computer science for which a quantum algorithm is exponentially
faster than the best-known classical algorithm. Problems include
factoring integers [24], estimating the ground state energy of com-
plex molecules [3, 15], and solving systems of linear equations
[12]. The pursuit of harnessing the laws of quantum physics for
computational speed-ups is both challenging and rewarding. Prob-
lems solvable more quickly on a quantum computer are only be-
ginning to be unveiled and the need for a high-level programming
environment to aid in their development is apparent.

There is a long history of creating software languages that en-
courage higher-level abstractions freeing the user to focus more on
problem solving and less on the details of the specific hardware in-
volved. Probably the best example of this was the introduction of
FORTRAN [4] that moved an entire community away from ma-
chine code and into general purpose algorithm creation. Quantum
computing is no exception. Quantum computing possesses unique
computational attributes which require novel programming con-
structs to enable harnessing and manipulation of quantum states.

∗Quantum Architectures and Computation Group, Microsoft Research,
One Microsoft Way, Redmond, WA, 98052

One of the grand challenges for the computer science and program-
ming language community will be the design and implementation
of a system architecture to control quantum hardware. LIQUi|〉 is
an evolutionary step along the way, building on previous language
formalisms.

A software design architecture for quantum computing [25]
should offer high-level abstractions of quantum physics and lin-
ear algebra as well as the automation of complex tasks for easy
development, simulation, and testing of quantum algorithms. The
quantum programming language needs to allow a description of
any quantum circuit at a suitable level of abstraction. It must in-
clude both quantum primitives as well as classical control defi-
nitions. Finally, it should offer an environment which aids in the
understanding of quantum physics, provides easy manipulation of
quantum circuits and classical control, and allows development of
large-scale quantum algorithms for ultimate deployment on a quan-
tum computer.

Current state-of-the-art software architectures for quantum
computing lack tools for control of quantum hardware and scalable
quantum algorithm development. Most research is focused on de-
veloping circuits for small subroutines of quantum algorithms and
performing resource cost estimates. In contrast, LIQUi|〉 (which
stands for “Language Integrated Quantum Operations”1) is an at-
tempt to provide users with an end-to-end exploration and control
environment from algorithm writing, to visualization, to simula-
tion, emulation, and deployment on target hardware.

The ultimate goal behind LIQUi|〉 is to control quantum hard-
ware. LIQUi|〉 contains a robust, large-scale domain-specific lan-
guage embedded in F# and isolated runtime for programming quan-
tum algorithms. It contains modular tools for circuit manipulation,
simulation, export, and rendering. In addition, it has the ability to
support investigations of quantum noise, quantum error-correcting
codes (QECC), circuit decomposition and optimization, classical
control integration, and architecture-specific timing and layout con-
straints.

We organize our presentation of LIQUi|〉 as follows. In Section
2, we review several existing quantum programming languages and
their similarities and differences to LIQUi|〉. In Section 3, we pro-
vide a brief background on the primitives of quantum computation
and quantum algorithm design. We introduce the LIQUi|〉 software
design architecture in Section 4 and describe the primary elements
of our system, including the language, simulators, and backends.
We provide several code examples in Section 5. In Section 6, we
show how to program and simulate Shor’s algorithm in LIQUi|〉.
Finally, we conclude and discuss future directions in Section 7.

1 A quantum operation is usually referred to as a unitary operator (U)
applied to a column state vector (also known as a ket: |·〉). The i is just
a constant scaling factor, hence the acronym.

ar
X

iv
:1

40
2.

44
67

v1
 [

qu
an

t-
ph

]
 1

8
Fe

b
20

14

2. Related Work
Several quantum programming languages have been proposed in
recent years [16]. Quantum Computation Language (QCL) [18–20]
is perhaps the most advanced imperative quantum programming
language. It is a C-style language designed for easy, structured pro-
gramming and natural quantum algorithm design. QCL divides the
components of a quantum algorithm into “quantum functions” (uni-
tary operations), “pseudo-classical operators” (quantum oracles),
and “classical procedures” (classical operations).

Another imperative quantum programming language called Q
Language was proposed by Betelli et al. [6]. It allows simulation of
decoherence on a quantum algorithm, which is especially important
since quantum computers are inherently noisy and in their infancy.
Q is developed as a class library for C++ and provides classes for
basic quantum gates. The class of gates is also user-extensible. Both
QCL and Q lack quantum data types and formal semantics.

Functional languages for quantum programming have also been
proposed. The quantum lambda calculus was originally developed
in the form of a simulation library for the Scheme language [26] and
later became an ML-style language with strong static type checking
[22, 23]. Although rigorous, the quantum lambda calculus lacks fa-
cilities for construction and manipulation of quantum circuits. The
Quantum IO Monad [2] is embedded in Haskell and offers consis-
tent operational semantics. However, it lacks suitable design tools
for development of quantum algorithms. LIQUi|〉 is a reduction of
ideas drawn from these formal functional languages to a practical,
user-friendly system that enables the development of quantum al-
gorithms and the programming of quantum devices.

Recently, Quipper has been introduced as a language to enable
high-level programming of scalable quantum computations [11].
Quipper is a strongly-typed, functional quantum programming lan-
guage embedded in Haskell. Both Quipper and LIQUi|〉 offer pow-
erful and extensible facilities for quantum circuit description and
manipulation, including gate decomposition and circuit optimiza-
tion; both include classical components such as measurements and
classically-controlled gates; both offer a way to represent algo-
rithms and circuits at multiple levels of abstraction; both systems
allow quantum circuits to be exported for rendering or resource
costing; and both systems are modular and user-extensible. How-
ever, the exact implementation details between the two systems dif-
fer.

In contrast to Quipper, we have designed LIQUi|〉 explicitly
with quantum hardware in mind. We believe that the model of
quantum computation closely matches the traditional model of a
co-processor. Qubits are real entities that have lifetimes and are
mutable. In LIQUi|〉, the qubit type reflects this reality. LIQUi|〉
also does not have built-in gates. All gates are implemented within
a library which can be modified or replaced by the user.

While both systems are equipped with simulators for universal
quantum circuits, as well as more efficient specialized simulators
for stabilizer and other classes of circuits, LIQUi|〉’s simulators are
highly optimized, taking advantage of many available techniques,
including custom memory management, cache coherence analysis,
parallelization, “gate growing”, and virtualization (running in the
cloud). LIQUi|〉’s highly optimized simulation environment allows
thorough investigation of quantum algorithms under noise, physical
device constraints, and simulation.

LIQUi|〉 is also a full optimizing compiler. A user’s input circuit
definition may be massively rewritten (under user control) to gen-
erate compact, highly-optimized versions for simulation. We can
compile any given unitary circuit with varying levels of optimiza-
tion and can mathematically prove that the pre- and post-optimized
unitary are identical even though the resulting circuits may appear
very different. Another unique component of LIQUi|〉 is its ability
to perform Hamiltonian simulations, including the efficient simula-

tion of Trotterized circuits, as well as computations in the adiabatic
model of quantum computation.

3. Quantum Computation
In this section, we briefly review primitives of quantum computa-
tion. A detailed review can be found in [17].

3.1 Qubits and Quantum Gates
In quantum computation, quantum information is stored in a quan-
tum bit, or qubit. Whereas a classical bit has a state value s ∈
{0, 1}, a qubit state |ψ〉 is a linear superposition of states:

|ψ〉 = α|0〉+ β|1〉 = [αβ] , (1)

where the {0, 1} basis state vectors are represented in Dirac nota-
tion (called ket vectors) as |0〉 =

[
1 0

]T , and |1〉 =
[
0 1

]T ,
respectively. The amplitudes α and β are complex numbers that
satisfy the normalization condition: |α|2 + |β|2 = 1. Upon mea-
surement of the quantum state |ψ〉, either state |0〉 or |1〉 is observed
with probability |α|2 or |β|2, respectively.

An n-qubit quantum state lives in a 2n-dimensional Hilbert
space and is represented by a 2n×1-dimensional state vector whose
entries represent the amplitudes of the basis states. A superposition
over 2n states is given by:

|ψ〉 =

2n−1∑
i=0

αi|i〉, such that
∑
i

|αi|2 = 1, (2)

where αi are complex amplitudes and i is the binary representation
of integer i. Note, for example, that the three-qubit state |000〉 is
equivalent to writing the tensor product of the three states: |0〉 ⊗
|0〉 ⊗ |0〉 = |0〉⊗3 = [1 0 0 0 0 0 0 0]T . The ability to represent
a superposition over exponentially many states with only a linear
number of qubits is one of the essential ingredients of a quantum
algorithm — an innate massive parallelism.

In a quantum computation, a closed quantum system transforms
by unitary evolution. In particular, the quantum state |ψ1〉 of the
system at time t1 is related to the quantum state |ψ2〉 at time t2 by
a unitary operator U that depends only on t1 and t2:

|ψ2〉 = U |ψ1〉 (3)

In turn, quantum operations are necessarily reversible. We refer
to quantum unitary operations as quantum gates. Measurement is
not reversible; it collapses the quantum state to the observed value,
thereby erasing the knowledge of the amplitudes α and β.

An n-qubit quantum gate is a 2n × 2n unitary matrix that acts
on an n-qubit quantum state. For example, the Hadamard gate
H maps |0〉 → 1√

2
(|0〉+ |1〉), and |1〉 → 1√

2
(|0〉 − |1〉). The

X gate, similar to a classical NOT gate, maps |0〉 → |1〉, and
|1〉 → |0〉. The Z gate maps |1〉 → −|1〉. The identity gate is
represented by I. The two-qubit controlled-NOT gate, CNOT, maps
|x, y〉 → |x, x⊕ y〉. The corresponding unitary matrices are:

H = [1 1
1 -1] , X = [0 1

1 0] , Z = [1 0
0 -1] , I = [1 0

0 1] , CNOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Quantum state evolution is represented in a quantum circuit
diagram, where time flows from left to right. Solid wires represent
qubits; double wires represent classical bits. Single-qubit gates are
represented by boxes containing their symbol. CNOT is denoted by
a vertical line between a • (to represent the control qubit in state
|1〉) and a ⊕ (to represent XOR). Measurement is denoted by the
meter symbol.

3.2 Example
A remarkable example of quantum computation is quantum tele-
portation [17]. It enables moving quantum information around

without access to a quantum communications channel. The goal
is for a messengerM to deliver a source qubit (src) to a recipientR
with perfect fidelity using very little classical communication. M
does not know the value of the source qubit and is only allowed to
send classical information to R. Quantum teleportation highlights
several important primitives of quantum computation, including
superposition, entanglement, and classically-controlled quantum
gates.

Src H

|0〉 H

|0〉 X Z Dest

Figure 1. Teleportation circuit auto-generated by LIQUi|〉.

The quantum circuit for teleportation is shown in Figure 1. The
protocol begins with messenger M and recipient R each having a
qubit in state |0〉 (bottom two qubits). They entangle their qubits to
create an EPR pair:M applies a H gate followed by a CNOT between
the two qubits. M and R then travel arbitrarily far apart from each
other, taking their respective qubit with them. M is then given a
message qubit (src) to send to R. She entangles src with her half
of the EPR pair using a CNOT and H gate. M then measures src and
her half of the EPR pair and sends two (classical) measurement
results to R over a classical channel. R looks at the two values and
conditionally applies an X and/or Z gate to his half of the EPR pair
(bottom qubit). The state of his qubit, labeled dest, is now equal to
the original src state. When a variant of this circuit is run in reverse,
it can be used to perform quantum superdense coding [17].

3.3 Model of Computation
Unlike classical computation, quantum computation is inherently
probabilistic due to measurement. To read the output of a quantum
algorithm or circuit as a classical bit string, the final quantum state
is measured, which probabilistically projects the state onto one of
the computational basis states. The interplay between the quantum
circuit and classical control necessitates a hybrid architecture em-
ploying both quantum hardware and a classical computer. Feed-
back between classical and quantum hardware is required for, e.g.,
classical control instructions, conditional circuit application, mea-
surement, and classical pre- and post-processing of the input and
output of the quantum device.

Several formal models of quantum computation have been pro-
posed, including the quantum Turing machine [7], the quantum cir-
cuit model [28], the quantum adiabatic model [9], and the quan-
tum random access machine (QRAM) [14]. The quantum circuit
model [28] allows the representation of actual physical operations
performed in the laboratory as a circuit, but does not provide defini-
tions for classical control instructions which are required to express
a given quantum algorithm. The QRAM model extends the circuit
model to include definitions for universal quantum and classical
computation, including classically-controlled quantum operations.
It also includes the notion of quantum registers containing qubits.

LIQUi|〉 is developed around the quantum circuit and QRAM
models, employing the quantum circuit as its underlying represen-
tation. We adhere to the quantum circuit representation since it is
universal and allows us to emulate other quantum models of com-
putation easily. For example, we have defined interfaces that allow
the user to do adiabatic evolution on first-quantized Hamiltonians
and Trotter simulation on second quantized Hamiltonians. LIQUi|〉
assumes hardware independence; it does not rely on a specific clas-
sical or quantum hardware architecture. It assumes quantum op-

erations can be performed in parallel if they act on distinct sets of
qubits, where the amount of parallelism is subject to the constraints
of the targeted quantum device. It also allows a sequence of quan-
tum gates to be conditionally applied based on the output of earlier
quantum measurements.

LIQUi|〉 allows export to target-specific devices and simulators.
Its circuit manipulation modules are user extensible to allow trans-
lation to hardware-specific gate instructions. Since real control of
a quantum computer will be highly susceptible to noise, LIQUi|〉
enables investigation of quantum noise models at the circuit and
device levels. An example is given in Section 5.2.

3.4 Quantum Algorithm Design
Many quantum algorithms have been proposed in recent years
[13]. Typically, they are described at the level of mathematics
and physics, as opposed to at the level of quantum circuits. How-
ever, the algorithm can be mapped to a quantum circuit, resulting
in components such as state preparation, classical pre- and post-
processing, quantum subroutines, quantum oracles, and measure-
ment. Some quantum algorithms are more easily expressed in the
quantum adiabatic model [9], which may also be implemented in
LIQUi|〉 using a first-quantized Hamiltonian representation.

At the beginning of a quantum algorithm, quantum state prepa-
ration is performed to initialize the quantum states. States are ini-
tialized to |0〉 and a quantum circuit can be applied to transform the
value of the quantum register. Qubits used as “scratch space” are
called ancilla qubits and initialized to |0〉 states. Ancilla qubits can
be reset to |0〉 during the computation to allow later reuse.

A quantum algorithm typically uses of one or more common
quantum subroutines, such as amplitude amplification for increas-
ing the amplitude of a desired state in a quantum superposition,
quantum phase estimation for estimating eigenvalues of a uni-
tary operator, and the quantum Fourier transform for performing
a change of basis analogous to the classical discrete Fourier trans-
form. Manipulations of the quantum subroutine may include the re-
versal or adjoint to “undo” a computation or reset an ancilla qubit
to |0〉, and repetition to increase precision (e.g., amplitude ampli-
fication). All such subroutines and manipulations can be expressed
as quantum circuits and are available in LIQUi|〉 (see Section 4.2).

Many quantum algorithms rely on a quantum oracle to perform
function evaluation. Recall that a classical oracle is normally a
boolean function that maps an n-dimensional boolean input to
an m-dimensional boolean output. An algorithm then queries the
oracle to perform the mapping from n → m. A classical boolean
oracle can be converted into a quantum oracle by increasing the
input and output spaces from n and m bits, respectively, to n+m
qubits each. This maps the boolean function to a reversible function
that can be represented as a unitary matrix. Example oracles include
arithmetic functions, graph functions, and lookup tables. LIQUi|〉
supports the definition of quantum oracles; an example is given in
Section 6.

To read the output of the algorithm as a classical bit string, the
final quantum state is measured and optionally post-processed clas-
sically. Classical pre- and post-processing consists of classical ma-
nipulation of the data before input or after measurement. Classical
pre-processing is a series of classical procedures performed prior
to initialization of the quantum states. Classical post-processing in-
cludes checking if the classical output is a proper solution to the
problem (when a solution can be efficiently verified), performing
statistical analysis of output, and determining when the algorithm
can be terminated. Classical processing can also be heavily inter-
leaved with the logical operations of the quantum algorithm. For
example, during quantum error correction, the next sequence of
quantum operations is determined based on the error syndrome
measurement outcomes.

Language: F#

Script C#

Functions: Gates...

Circuits: Optimize QECC

Repl Export Render...

Simulators: Universal

Stabilizer Hamiltonian

Runtimes: Client

Service Cloud

Backends: Classical

Quantum

Figure 2. LIQUi|〉 architecture.

4. LIQUi|〉Software Design Architecture
A software architecture for scalable quantum computing requires
programming languages, compilers, optimizers, and simulators
with well-defined interfaces between the components [25]. We have
architected LIQUi|〉 with the components of a desirable quantum
design architecture in mind. The various system components have
been carefully designed to promote efficiency and interoperability.
Since the input and output formats are modular, interoperability
with other tools, languages, or operating systems is easily achiev-
able. For example, we can currently import data from classical
quantum chemistry systems (orbital integrals) and can output state
vectors, circuits, and compiled unitaries for export to large linear
algebra packages if desired.

The LIQUi|〉 software architecture is summarized in Fig. 2.
Entry into the system is via a programming language. This can be
F# via a compilation environment, the F# interpreter, or any other
high-level language (e.g., C#) that has the ability to link with the
LIQUi|〉 library. This input is then either compiled to run directly
on a simulator, or is sent to a circuit manipulator that edits the
circuit in a desired way and prepares it for either simulation, export,
or drawing. The available simulators run on Windows Clients and
Servers, as a Windows Service on any machines that share a LAN
or Cluster, and in the Azure cloud for remote execution.

4.1 Language
A quantum programming language should preserve the “no-cloning”
theorem [17] which says that an arbitrary quantum state cannot be
copied. It must also support the unitary evolution of a quantum
state. In some languages, a qubit is viewed as a linear type (e.g., to
preserve no cloning) and the development of a full logic based on
this approach is attempted in [22, 23]. However, a linear type does
not map well to the reality of a physical qubit which is a truly mu-
table entity and may be read classically in specific circumstances
without destroying it (non-destructive measurement). A language
based on linear types is also challenging to both implement and
write programs in. A functional language with an isolated physical
model (further described below), on the other hand, offers efficient,
compact code and static type-checking.

We have chosen to develop a domain-specific language embed-
ded in F#. We chose F# because it provides .NET support including
classes and supports both object-oriented and functional program-
ming. It allows introspection of compiled code (reflection), access

to the compiler’s internal Abstract Syntax Tree (AST), and strong
static typing. F# also provides an easy interface to external libraries
(including non-managed C++ and FORTRAN math libraries) and
can be called by other languages. It supports the full suite of Mi-
crosoft Visual Studio development tools including multi-threaded
debugging and performance analysis.

LIQUi|〉 relies on a basic set of data types that are embedded in
the host language. These include:

Bit A classical value that may take values {Zero, One, Unknown}.
Unknown represents the value of a Qubit that has not been
measured (still in a quantum state).

Qubit A quantum value defined by Eq (1). Its Bit value moves
from Unknown to Zero or One after measurement.

Ket The state vector representing all qubits in our system, as de-
fined in Eq (2). This starts at the size of the number of qubits n
in the system, but as qubits become entangled, it may grow as
large as 2n. Efficient handling of the state vector and operations
on it is one of the central roles of LIQUi|〉.

Gate To perform operations on Kets, we define Gates. In its sim-
plest form it may be a unitary matrix that defines a specific op-
eration (e.g., H, X, CNOT, . . .) as defined in Eq (3). There are
also non-unitary Gates (e.g., Measurement and Reanimation)
as well as several meta operations.

Operation Since Gates are merely data structures, when wrapped
in F# functions they become operators that can apply a Gate to
a set of Qubits. Calling the Hadamard function (H) on a list of
qubits (qs) in F# merely becomes “H qs”, where H is applied to
the first qubit in the list. A Gate will generate an error if handed
arguments that do not match its definition.

Circuit One of the goals of LIQUi|〉 is to provide various ma-
nipulations of quantum algorithms such as drawing, paralleliz-
ing, substitution (some gates will not be available in target
physical systems), optimization, export, and re-execution. The
Circuit data structure achieves this goal. Instead of running
the Operations defining the quantum algorithm, the same calls
can be used to build a Circuit that can be manipulated by a va-
riety of tools.

By design, Qubits and Kets are implemented as opaque types
that can only interact with the rest of the system via defined in-
terfaces (creation, properties, and functions) that are restricted to
operate within the scope of the opaque type (a monad). It has no
access to program state outside of itself and is opaque to the user.
This allows these types to be state-full and at the same time not
pollute the rest of the functional environment. Qubits and Kets are
objects that exist on their own and may be communicated with, but
are fully isolated from the rest of the system.

In addition, Qubits are merely identifiers to refer to parts of
the state vector (Ket). The Ket contains all information about the
simulation and Gates are applied to the Ket one at a time (via direct
function calls) or as an extracted Circuit data structure (reflected
on from the function calls that would have been done). This data
structure may be manipulated in many ways, as described in the
next two sections, but is ultimately viewed as a sequence of Gates
applied to the Ket.

There is not a static global ordering of the Qubits in a Ket state
vector. The arguments to the gate definitions are user-defined and
are local to that function’s definition. Qubits themselves are self-
identifying and unique. If higher-level abstractions are desired, they
can be easily user-defined (e.g., quantum registers).

The use of lists in Gate definitions is a choice. Gates can
equally be defined using strongly-typed, fixed or variable argu-
ments. In fact, all arguments are required to be strongly typed in the
system. Qubits, Kets, Gates, and Circuits are all strong quan-
tum types and enforced within the system. LIQUi|〉 gates are func-

tions. The function can be as high- (or low-) level as the user de-
sires.

LIQUi|〉 has the capability to create and destroy Qubits, for
example for ancilla allocation, however we do not currently pro-
vide a programmatic interface to the user. We are exposing this in a
future version. Note that the classical programming language is un-
restricted and that Gates may contain any number of local classical
variables.

4.2 Functions
Executable Gates used in a quantum algorithm are referred to in
LIQUi|〉 as Operations. An Operation appears externally as a
typical F# function whose signature is required to have the last
argument as a list of qubits and returns unit (void). The qubits
are required to define where the gate operates within a state vector
(Ket) and since Qubits/Kets exist in their own scope, the function
never returns a value. An Operation can be unitary or non-unitary.

One of the unique aspects of LIQUi|〉 is that all Operations/Gates
are user functions/class instances which may be extended by the
user as desired. To allow this, the Gate class also defines instruc-
tions for how it is to be rendered and run-time aspects that are
needed by the system. This makes the system fully extensible.

Measurement, written as M, represents a non-unitary gate. It is a
special case of a Gate that causes the collapse of a Qubit within
the Ket (known as a projection). This un-entangles the qubit and
turns its Bit value into Zero or One (instead of Unknown as be-
fore the measurement). Measurement is a probabilistic operation
that depends on the amplitude of the current state and its entangle-
ment with other qubits. If the same quantum circuit followed by
measurement is executed several times, it will not in general return
the same value due to its probabilistic nature. However, if repeated
sufficiently many times, the actual probability of measuring a 0 (or
1) for a given system can be recovered. To measure all qubits in a
list, we write “M >< qs”.

Reset is another non-unitary gate that may be used to prepare
a qubit in state |0〉 after it has been measured. This is a common
operation, e.g., in quantum error correction when ancillas are con-
tinually measured and then reprepared to be used again. “Reset
Zero >< qs” resets all qubits in a list to |0〉.

Select gates are listed in App. A. Various functions on Gates
exist in LIQUi|〉 for easy programming and simulation, including:

Gate wrapping may be used to wrap a Gate definition that may
be as simple as a unitary matrix or any number of Gates (se-
quentially or in parallel) to form a reusable sub-circuit using
WrapOp. This makes design and manipulation of quantum algo-
rithms easier. It allows the programmer to build larger circuits
as Gates that contain sub-Gates. For example, an entire multi-
body Hamiltonian term can be implemented as a Wrap Gate
that might have dozens of primitive gates inside it. Another ex-
ample is an adder or Quantum Fourier Transform (QFT) (see
Section 6).

Adjoint may be used to take the complex conjugate transpose of
any unitary Gate U by writing “Adj U”.

Reverse may be used to reverse an entire circuit of unitary gates.
It performs the adjoint of all gates along the way and is
called by writing “let circRev = circ.Reverse()”. If an
Operation is implemented as a matrix, Reverse may be ap-
plied to it. If a gate is defined as a function or as a non-unitary
operation, Reverse cannot be applied.

Controlled gates may easily be created using AddControl. A
single- or multi-qubit unitary Gate can be extended into a
single- or multi-controlled unitary. For example, a CNOT gate
can be built by adding a control to an X gate with the command
“Cgate X qs”.

Parametrization allows dynamic Gates to take any number of
parameters as long as the final one is a list of qubits. For
example, consider Z rotations by 2πi/2k used in the QFT,
where k is the parameter (see Sec. 5). This can be written in
LIQUi|〉 as:

/ / / 2 p i / 2 ˆ k g a t e .
[<LQD>] l e t R (k : i n t) (qs : Q u b i t s) =

. . . / / Res t o f g a t e d e f i n i t i o n
Mat = (

l e t p h i = (2 . 0∗Math . PI) / (pown 2 . 0 k)
l e t phiR = Math . Cos p h i
l e t p h i I = Math . S in p h i
CSMat (2 , [(0 , 0 , 1 . , 0 .) ; (1 , 1 , phiR , p h i I)]))

Non-unitary operations (e.g., Measure, Reset, Restore) may
also be parameterized (e.g., reset qubit to |0〉 or |1〉).

Block operation enables Gates to be created that operate on a
variable number of qubits. It may be used to operate on subsets
of qubits, registers, or entire state vectors. The only limitation
is that all qubits used in a Gate must come from a single
state vector. For example, we can apply an H gate on all qubits
in a list by writing “H >< qs”, or alternatively “for q in
qs do H [q]” or “List.iter (fun q -> H [q]) qs”. A
more detailed example for applying the QFT is given in Section
5.

Gate growing does not affect the algorithm but massively shortens
run-times by collapsing sequential unitary gates into a single
larger unitary operation. Trade-offs are made by the system
in terms of size of the resulting matrix and density. There are
diminishing returns as the density and size grow; the system
optimizes this for best simulation throughput.

Flatten turns a hierarchical circuit into a sequence of low-level
gates. This is useful for analysis and resource estimation.

Execution of the circuit is done using Run. Section 4.5 contain
details on different modes of execution.

A Gate is introspective, so it can ask if it is Unitary. For
example, Adj requires its operation to be Unitary and checks this
condition upon the call. Similarly, a Gate can determine if its call
parameters match its Gate definition, returning an error if there is
a mismatch.

The operations that happen behind the scenes on Qubits/Kets
require a large amount of complex arithmetic (especially matrix-
vector multiples and tensor products). After working with several
native alternatives, we built our own optimized sparse complex lin-
ear algebra package in F# that is highly optimized for this spe-
cific application. Examples include optimized re-use of memory
to avoid garbage collection, lazy allocation using skyline vectors
based on qubit entanglement, re-ordering of state vectors to turn all
tensor products into parallelizable block diagonal operations and
many other space and time operations that allow moderate numbers
of qubits (30 on a 32GB memory machine) to perform universal
quantum operations with no restriction.

At generation time, LIQUi|〉 performs the following functions:
Optimization of unitary Gates for efficient Universal simulation
(collapsing unitaries together based on size/sparseness); Optimiza-
tion of unitary Gates for efficient Hamiltonian simulation (remov-
ing non-physical states, exponentiation of the entire circuit); Op-
timization of depth (parallelization of the circuit to compute ac-
tual parallel depth); Replacement of non-available gates (e.g., rota-
tions) to estimate actual depth given a desired substitution method;
Rewriting of Hamiltonian circuits for optimized depth on target
hardware (e.g., coalescing of Trotter steps); Rewriting to map log-
ical to physical qubits with QECC; Output of circuit to disk as a
data structure that could be loaded by other applications; Output of
circuit drawing after any of the above manipulations.

At execution time, it performs: Function execution for direct
simulation of algorithms; Circuit execution for taking advantage of
Generation Time optimization and re-writing; Injection of user de-
fined unitary and non-unitary noise and statistical analysis; Debug-
ging for allowing inspection/manipulation of the normally opaque
state during execution (one of the benefits of simulation). LIQUi|〉
has the ability to schedule across distributed systems as an ensem-
ble computation in LAN, Cluster and Cloud environments. The
entire system contains more than 30,000 lines of source code.
LIQUi|〉 maintains full double-precision complex numbers and in
addition re-unitarizes compliled circuit matrices as they drift from
unitary due to numerical precision limits.

4.3 Circuits Manipulators
A circuit data structure can be passed to a variety of Circuit
modules, including:

Decomposition for replacing unitary gates with low-level gate
sequences, primarily to enable fault-tolerant implementation in
the laboratory;

Optimization for trading-off circuit depth and width. A simple op-
timization called Fold removes excess identity gates by sliding
gates over them (to the left in a circuit diagram) until a non-
identity gate is reached;

Translation and rule-based rewriting for mapping to different gate
sets and for use in optimization algorithms;

Export for outputting the circuit data structure to a file;
Resource costing for counting the number and types of gates.
Quantum error-correcting codes (QECC) for inserting fault-

tolerant protocols for error correction. Section 5.2 contains an
example.

Rendering for drawing a circuit diagram automatically from the
LIQUi|〉 code.

4.4 Simulators and Backends
Currently, there are two simulators built into the system represent-
ing different levels of abstraction: (1) Universal for executing a
universal quantum computation and (2) Stabilizer for efficiently
executing a restricted class of gates. Backends can be classical ma-
chines (for simulation) or an actual quantum computer (for physical
implementation).

The Universal Simulator is the most flexible of the simulators.
It allows a universal set of quantum and classical operations to be
performed. It fully executes the linear algebra and classical control
underlying the circuit representation and evolves the full quantum
state. It requires memory resources that grow exponentially with
the number of qubits. It can handle execution of millions of op-
erations (gates), is highly optimized for parallel execution, and is
highly efficient in memory usage. LIQUi|〉 has been architected for
a virtually unlimited number of qubits (natively 64 bit), but quickly
runs out of memory to represent them. More than a petabyte of
main memory would be required to simulate 45 qubits; 32GB of
RAM allows roughly 30 qubits.

To optimize simulation, we have created classes to embody
dynamic arrays that are used as temporary storage throughout the
math package that prevent us from both garbage collecting and
returning and re-allocating memory that will be used for the same
general purpose over time. All of the storage is globally managed
across an entire simulation (instead of on an operation by operation
basis). This ensures an extremely stable memory footprint.

Enhanced parallelization also contributes to the universal simu-
lation speed. Quantum simulation does not lend itself to distributed
computing models. If the network or disk (no matter how fast they
appear to be) need to be accessed, the simulation times will grow to
an unacceptable value. However, efficient use of hardware threads

gives massive speed-ups with virtually no cost. LIQUi|〉 has been
designed from the ground up with parallelism in mind. The vast
majority of operations are designed to be thread-safe and lock-free.

There is coordination between levels so that hardware threads
are not all allocated at a given level if lower levels are able to take
better advantage of them. For example, if a tensor product is exe-
cuted, it may pay to only use a few threads since the sub-operations
are going to be matrix-vector or matrix-matrix multiplies that can
better use the available threads for inner-loop operations.

We also make note of the size of the items being worked on and
sprout less threads as the work reduces or even take a different code
path with no threading when we have reached too small a size for it
to be beneficial. The inner loops have all been optimized for cache
coherence and idiosyncrasies of the host language, e.g., 64 bit for
loops are significantly slower than 32 bit ones in F# (usually, tail-
recursive subroutines are even faster).

We have invested heavily in efficient memory management.
Many of the techniques used are very domain specific. For exam-
ple, even though a state vector is typically very large (2n complex
numbers for n qubits), there are many times when only sections of
the vector are active (even though it is viewed as dense). We al-
locate the vector in blocks (skyline vector) in an on-demand style
which allows us to view the entire vector as dense but only lazily
created as needed.

A second major savings comes from keeping track of qubit
entanglement. Even though the vector (logically) has 2n entries, if
the qubits are all fully un-entangled, we only need to keep n entries.
As entanglement grows (i.e., multi-qubit gates are performed), our
memory representation grows. When measurement occurs on a
single entangled qubit, our storage drops by 1/2.

Measurement is the only simple case where we know that qubits
have become dis-entangled. LIQUi|〉 provides an interface for the
user to tell the simulator when groups of qubits have become dis-
entangled (e.g., at the end of a sub-circuit where registers are no
longer entangled). There is also a version of this call that actually
checks if the qubits are really unentangled (very expensive) that
helps the user check assertions of her circuit.

We have also developed a package on top of the universal
simulator that provides simulation of Hamiltonians. The simulation
environment attempts to model some of the realistic physics in
a quantum system developed in a laboratory. It differs from the
other simulators in that it has the concept of the time it takes for
an operation to be performed (since it is numerically solving a
differential equation). It is also (by its very nature) slow due to the
requirements for simulating a state evolving over time. An example
Hamiltonian simulation is given in Appendix D.

The Stabilizer Simulator is a restricted simulator based on meth-
ods in Ref. [1]. It performs a specialized class of quantum opera-
tions (the so-called “Clifford-group” operations). It evolves only
the stabilizer information in a matrix tableau, rather than the full
quantum state. Thus, it requires memory resources that grow lin-
early with the number of qubits. The set of circuits simulable in-
cludes most quantum error correction protocols. Efficient simula-
tion offerings could be extended to include methods in Refs. [10,
27].

The Stabilizer simulator has the virtue of allowing large cir-
cuits (millions of operations) on massive numbers of qubits (tens
of thousands). The main limitation is the types of gates which may
be included in the circuit. They are fixed in the system and come
from the stabilizer class (e.g., Clifford group). This limits the use-
fulness of the types of algorithms that can be implemented and
tested. However, it does allow the design and test of Quantum Error
Correction Codes (QECC) which requires large numbers of phys-
ical qubits per logical qubits. An example usage of the Stabilizer
simulator is given in Section 5.

4.5 Execution Modes
LIQUi|〉 code can be executed in several ways:

1. Test mode: Many built-in tests of the system can be invoked
from the command line and are useful demonstrations, includ-
ing all examples provided in this paper (see App. C).

2. Script mode: The system can be run directly from an F# text
script (.fsx file). This allows the simulator to be operated by
simply running the executable (no separate language compi-
lation required). The entire simulator is available from this
mode, but interactive debugging is difficult and start-up times
are slower. Script mode allows users to experiment with fast
turn-around time and ease of use (no need to install a com-
plete development environment). This is also the method used
for submission to Cloud services.

3. Function mode: This is the normal development mode. It re-
quires a compilation environment (e.g., Visual Studio) and the
use of a .Net language (typically F#). The user has the full range
of APIs at her disposal and can extend the environment in many
ways as well as building her own complete applications. Here
is the actual top level of the LIQUi|〉 executable:

[<E n t r y P o i n t >]
l e t Main =

l e t a r g s = / / Sk ip t h e program name
Envi ronment . GetCommandLineArgs ()
|> Seq . s k i p 1 |> Seq . t o L i s t

l e t p = P a r s e r (a r g s)
l e t l a s = p . CommandArgs ()
p . CommandRun l a s / / Run t h e command l i n e

A user may implement this, mark any callable functions with
the [<LQD>] attribute and then link with the LIQUi|〉 libraries.
Then the user can write: “Liquid UserFunc(args,...)”
and get all the command line features built into the parser.

4. Circuit mode: Function mode can be compiled into a circuit data
structure on qubits qs that can be simulated with “circ.Run
qs”. This data structure can be manipulated by the user, run
through built-in optimizers, have quantum error correction
added, rendered as drawings, exported for use in other environ-
ments, and may be run directly by all the simulation engines.

4.6 Environments
The two ways to interact with the system are via a full compilation
environment in Visual Studio linked to the LIQUi|〉 library (dll),
or via an F# script hosted by the LIQUi|〉 application (exe). Both
provide advantages. Compilation provides IntelliSense editing and
a full debugging environment, while scripting provides a quick and
easy way to prototype and extend LIQUi|〉 while quickly turning
around simulations with varying parameters.

Any function in the system that is tagged with the [<LQD>]
attribute may be called from the command line (including any user
extensions). For example the function showStr(<string>) will
show a string on the console. This function is marked with [<LQD>]
and can be invoked directly:

> Liquid __show(‘‘Hello world")
Hello world

Some very sophisticated functions are built into the system and are
demonstrated in the example for running Shor’s algorithm (Sec. 6).

LIQUi|〉 also has the ability to run in a fully distributed manner
via ensemble computations. Often, simulations of quantum circuits
are run a large number of times with either slightly different circuits
or parameters or to check statistical results. Ensemble computations
are accomplished easily by defining an Ensemble.xml file. An
example ensemble run on 5 machines is written as:

<Ensemble D e f a u l t =” Shor ”>
<P a r s>

<Exe>\\machine00\L i q u i d\L i q u i d . exe</ Exe>
<Host>machine00</ Host>
<Host>machine01</ Host>
<Host>machine02</ Host>
<Host>machine03</ Host>
<Host>machine04</ Host>

</ P a r s>
<Shor Count=” 12 ” Args= ’ / p fx ”%N4%|” ’>

<Cmd Range=” 1 ,1 ,2 ” Name=” 129 ”> S h o r (%N%, t r u e)</Cmd>
<Cmd Range=” 1 ,1 ,2 ” Name=” 259 ”> S h o r (%N%, t r u e)</Cmd>
<Cmd Range=” 1 ,1 ,2 ” Name=” 513 ”> S h o r (%N%, t r u e)</Cmd>
<Cmd Range=” 1 ,1 ,2 ” Name=” 1025 ”> S h o r (%N%, t r u e)</Cmd>
<Cmd Range=” 1 ,1 ,2 ” Name=” 2049 ”> S h o r (%N%, t r u e)</Cmd>
<Cmd Range=” 1 ,1 ,2 ” Name=” 4097 ”> S h o r (%N%, t r u e)</Cmd>

</ Shor>
</ Ensemble>

We define the command Shor which will factor 6 numbers twice
(Count="12") across the machines. LIQUi|〉 did not have to be in-
stalled on any of the other machines. When the ensemble command
is given to LIQUi|〉 , it will install itself as a Windows Service on
all of the other machines, start them up, run the simulations, and
then shut down the services. All of this is invisible to the user.

5. Code Example: Quantum Teleportation
5.1 The Circuit
We now present the LIQUi|〉 code for quantum teleportation:

/ / D e f in e an EPR f u n c t i o n
l e t EPR (qs : Q u b i t s) = H qs ; CNOT qs

/ / T e l e p o r t q u b i t 0 t o q u b i t 2
l e t t e l e p o r t (qs : Q u b i t s) =

l e t qs ’ = qs . T a i l

LabelL >!< / / Give names t o t h e q u b i t s
([” Src ” ; ”\\ k e t {0}” ; ”\\ k e t {0}”] , qs)

EPR qs ’ ; CNOT qs ; H qs
M qs ’ ; BC X qs ’ / / Maybe a p p l y X
M qs ; BC Z ! ! (qs , 0 , 2) / / Maybe a p p l y Z
LabelR ” Des t ” ! ! (qs , 2) / / Labe l o u t p u t

We define a function called EPR that takes a list of qubits and then
applies a Hadamard gate to the first qubit and a CNOT to the first
two qubits. By convention, gates will take as many qubits as they
require from the beginning of the list. If a gate can take a variable
number of qubits (like a quantum Fourier Transform) then a list of
the length to be used must be provided.

Now we can use the EPR function within a teleport function.
In the first line of the function we take the Tail of the qubit list
so that we are left with qubits 1 and 2 (named qs’). Now we
label all the qubits with names for drawing. LabelL is an example
of a non-unitary gate that puts information in any renderings of
the circuit, but does not affect the circuit simulation in any way.
The >!< function is an example of a LIQUi|〉 specific operator
that maps a gate to a list of arguments. Now we call the EPR
function previously defined. We then perform a CNOT and H on the
first two qubits. To receive, the message we measure qubit 1 and
conditionally apply an X gate to qubit 2 depending on the value
measured. This binary control gate (BC) is another example of a
non-unitary gate. We then repeat with Z gate on qubit 2, controlled
by qubit 0. Finally we place a drawing Label on qubit 2.

With the teleport LIQUi|〉 function, we can perform several
operations as depicted below:

l e t k e t = Ket (3) / / C r e a t e s t a t e
l e t qs = k e t . Q u b i t s
t e l e p o r t qs / / Run T e l e p o r t
l e t c i r c = / / Compile t o c i r c u i t

C i r c u i t . Compile t e l e p o r t qs
c i r c . Run qs / / Run c i r c u i t
c i r c . Dump () / / Dump g a t e s t o l o g

c i r c . Fo ld () / / Fo ld t h e c i r c u i t
. RenderHT (‘ ‘ T e l e p o r t ’ ’) / / Draw HTML and TeX

l e t c i r c 2 = / / Grow U n i t a r i e s t o g e t h e r
c i r c . GrowGates k e t

c i r c 2 . Run qs / / Run t h e o p t i m i z e d c i r c u i t

To begin, we create a state vector (Ket) of 3 qubits and get a refer-
ence to those qubits (qs). The line teleport qs calls teleport
and runs it on the state vector. We can map teleport into a
Circuit data structure by compiling it into circ. This can be run
before or after any manipulations. The Dump command provides
complete information about the item begin exported. In this case,
we get a complete specification for all parts of the teleport circuit
(part is shown below):

SEQ
APPLY

GATE H i s a Hadamard
0 .7071 0 .7071
0 .7071 −0.7071

WIRE(Id : 1)
WIRE(Id : 2)

APPLY
GATE CNOT i s a C o n t r o l l e d NOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

WIRE(Id : 1)
WIRE(Id : 2)

PAR
APPLY

GATE Meas i s a C o l l a p s e S t a t e
1 0
0 1

WIRE(Id : 1)
Bi tCon

GATE B i t C o n t r o l
WIRE(Id : 1)
WIRE(Id : 2)

APPLY
GATE X i s a P a u l i X f l i p

0 1
1 0

WIRE(Id : 2)

We see a SEQuence of gate APPlications (here the CNOT and H gates
after EPR) followed by the first of the Binary Control (BC) gates.

The two operations GrowGates and Run optimize the circuit
by growing gates into larger unitaries and then runs the optimized
circuit. Now the sources for teleport (EPR, CNOT, and H) have
been combined into one gate as:

SEQ
APPLY

GATE 64B8DB5 i s a grown g a t e
0 . 5 0 0 . 5 0 0 0 . 5 0 −0.5
0 0 . 5 0 0 . 5 0 . 5 0 −0.5 0
0 0 . 5 0 −0.5 0 . 5 0 0 . 5 0
0 . 5 0 −0.5 0 0 0 . 5 0 0 . 5
0 . 5 0 0 . 5 0 0 −0.5 0 0 . 5
0 0 . 5 0 0 . 5 −0.5 0 0 . 5 0
0 0 . 5 0 −0.5 −0.5 0 −0.5 0
0 . 5 0 −0.5 0 0 −0.5 0 −0.5

WIRE(Id : 0)
WIRE(Id : 1)
WIRE(Id : 2)

Finally, the circuit can be parallelized by removing identity
gates (Fold()) and then Rendered to a file as shown in Fig. 1. The
rendering contains all of the elements we defined, plus information
about the qubits (via double wires) showing where they were con-
verted to binary (Bit) values after being measured. RenderHT gen-
erates both HTML (SVG graphics) and TEX(TIKZ) files, as shown
in this paper. Note that the examples throughout use only destruc-
tive measurement, however non-destructive measurements are also
available in LIQUi|〉.

5.2 The Circuit with Error Correction
A necessary step in targeting a high-level representation of a quan-
tum algorithm to a low-level quantum hardware architecture is the
insertion of quantum error correction circuitry (see [17] for review
of quantum error correction). The use of quantum error correction
can help reduce the probability of errors in a given quantum circuit
by replacing it with a fault-tolerant, noise-reducing circuit. Each
logical qubit is encoded in a set of physical qubits using a quantum
error correction circuit. The exact circuit depends on the particular
quantum code being used. Similarly, a logical gate is replaced by
an encoded circuit operating at the level of physical gates. An en-
coded computation thus requires substantially more resources than
an unencoded computation, but when the components operate be-
low a certain error threshold, it reduces the probability of errors at
the logical level of computation. To enable investigation of quan-
tum error-correcting codes (QECC), LIQUi|〉 includes packages to
replace logical gates and qubits with error correction protocols in-
volving physical qubits and gates.

As an example, consider the [[7, 1, 3]] Steane code (see [17]
for details) which encodes a single logical qubit in 7 physical
qubits and can correct one physical error. To encode the teleport
function, we may write:
l e t t e l e 1 (qs : Q u b i t s) = / / S t a b i l i z e r f r i e n d l y t e l e p o r t

X qs / / t e l e p o r t a |1>
t e l e p o r t qs / / do t h e c i r c u i t
! ! (qs , 2) / / measure a t t h e end

l e t c i r c = C i r c u i t . Compile t e l e 1 qs
l e t s7 = S t e a n e 7 (c i r c) / / Apply a S t e a n e code
l e t errC , s t a t s = s7 . I n j e c t 0 . 0 1 / / I n j e c t e r r o r s
l e t s t a b = S t a b i l i z e r (errC , k e t) / / Se tup s i m u l a t i o n
s t a b . Run () / / Run t h e s i m u l a t i o n

/ / Conve r t p h y s i c a l r e s u l t t o l o g i c a l r e s u l t
l e t b i t 0 , d i s t 0 = s7 . Log2Phys 0 |> s7 . Decode
l e t b i t 1 , d i s t 1 = s7 . Log2Phys 1 |> s7 . Decode
l e t b i t 2 , d i s t 2 = s7 . Log2Phys 2 |> s7 . Decode

Here we have wrapped the teleport function in a new function
(tele1) which flips the message qubit (prepares a |1〉), teleports it,
and then measures the result. First we compile this function into a
circuit and instantiate one of the QECC classes (Steane7) which
transforms the circuit from the logical level to the physical level by
encoding each logical qubit in 7 physical qubits. Each logical gate
is also replaced with physical-level gates.

The Steane7 class is derived from the abstract QECC class. The
QECC class can be easily extended by the user to permit other codes
such as concatenated codes and topological codes like the surface
code. The circuit created (s7) contains many more qubits and gates
than the original logical-level teleport circuit. A high-level view
of (s7) is shown in Fig. 3. Here, the boxes represent parts of the
QEC routine, such as encoding, syndrome preparation, syndrome
extraction, and correction. Fig. 4 shows s7 at the level of physical
qubits and operations. The three logical qubits are encoded in 21
physical qubits. The other qubits shown are ancilla qubits used for
error syndrome extraction. In this example, we have chosen not to
apply error correction to idle circuit locations (identity gates).

Figures 3 and 4 show quantum error correction layered over the
quantum teleportation circuit at different levels of detail. LIQUi|〉
allows drawing circuits at different levels of abstraction, depending
on the needs of the user. For example, Fig. 3 is useful when ex-
amining qubit usage and parallelization, while Fig. 4 is useful for
verifying the circuit in its entirety. Both levels are of great use to
algorithm developers.

The challenge in simulating large quantum error-correcting
codes on a classical computer is that we quickly run out of qubits
since each logical qubit is encoded in a few to thousands of phys-
ical qubits depending on the code. There is a better solution. We
can switch from the Universal to the Stabilizer simulator. This is

Figure 4. Detailed view of teleport after QECC.

Anc0

Anc1

Anc2

Anc3

Anc4

Anc5

Q0 Src

Q0 Src

Q0 Src

Q0 Src

Q0 Src

Q0 Src

Q0 Src

Q1 |0〉

Q1 |0〉

Q1 |0〉

Q1 |0〉

Q1 |0〉

Q1 |0〉

Q1 |0〉

Q2 |0〉 Dest

Q2 |0〉 Dest

Q2 |0〉 Dest

Q2 |0〉 Dest

Q2 |0〉 Dest

Q2 |0〉 Dest

Q2 |0〉 Dest

S7 : Syn

S7 : Syn S7 : Syn S7 : Syn S7 : Syn S7 : Syn

S7 : Syn

S7 : Syn

S7 : Syn

S7 : Prep

CNOTT

HT MeasT

S7 : Prep S7 : Syn HT S7 : Syn

CNOTT

S7 : Syn S7 : Syn MeasT

S7 : Prep S7 : Syn S7 : Syn XT ZT MeasT

Figure 3. High-level view of teleport after the addition of quan-
tum error correction using the QECC class.

what the call above to Stabilizer() does. Say, for example, that
we are interested in modeling errors. We may first Inject depo-
larizing errors (X, Y, or Z gates) with a given probability to create
an error circuit (errC) and then create an instance of the Stabilizer
simulator to run. LIQUi|〉 can easily handle simulations of tens of
thousands of qubits in this way. The last three lines in the code
above convert (decode) physical qubits back to logical ones so we
can check if we teleported the proper message. The distances be-
tween the encoded logical qubits and the expected codewords are
also returned. More realistic noise models that involve non-unitary
operations (see [17] for examples) can be modeled using the Uni-
versal simulator.

6. Shor’s Algorithm in LIQUi|〉
Quantum algorithms find solutions to some problems exponentially
faster than the corresponding best-known classical algorithms. The
most famous example is Shor’s polynomial-time quantum algo-
rithm for prime factorization [24]. The algorithm uses an important
primitive called the quantum Fourier transform (QFT). It also re-
quires classical pre- and post-processing and quantum circuits for
modular arithmetic.

At a high level, Shor’s algorithm begins with classical pre-
processing of the n-bit number N to be factored. At the heart of
the algorithm is quantum order finding, which determines the least
positive integer r such that ar mod N is congruent to 1. It is
shown at a high level in Fig. 5 and executes as follows: a register of
quantum states is placed in superposition and a second register of
quantum states is initialized to |1〉. 2 Next a controlled application

2 The second register is initialized to |1〉 for simplicity since at the start
of the algorithm the order r is unknown making it impossible to pre-

of modular exponentiation is applied (modular N) between two
quantum registers, followed by an inverse QFT applied to the top
quantum register. Finally, classical post-processing is performed to
find the factors, or the algorithm is repeated if none are found.

|j〉

|0〉 H⊗t QFT †

|1〉 ajmodN

Figure 5. High-level circuit for order finding [17].

6.1 Code Example: Order Finding
Quantum order finding requires a quantum oracle to perform modu-
lar exponentiation and a quantum Fourier transform (we follow the
circuit given in [17]). Here, we present circuit examples for these
routines and the corresponding LIQUi|〉 code.

Quantum Fourier Transform. The QFT is an important prim-
itive that can be performed using only O(n2) quantum operations,
in contrast to Θ(n2n) classical operations for a discrete Fourier
transform. It may also be used, for example, within quantum phase
estimation and quantum arithmetic functions.

The LIQUi|〉 code for the inverse QFT (QFT’) on an arbitrary
number of qubits is given by:

l e t QFT’ (qs : Q u b i t s) =
l e t n = qs . Length / / Get number o f q u b i t s
f o r a Idx i n 0 . . n−1 do / / P r o c e s s each q u b i t

l e t a = qs . [a Idx] / / Get t h e c u r r e n t q u b i t
f o r k i n a Idx + 1 . .−1 . . 2 do / / Walk each c o n t r o l q u b i t

l e t c = qs . [aIdx−(k−1)] / / E x t r a c t t h e c o n t r o l
CR’ k [c ; a] / / Apply t h e c o n t r o l l e d r o t a t i o n

H [a] / / Hadamard each when done

The corresponding diagram generated by the LIQUi|〉 source code
applied to 5 qubits is shown in Fig. 6. Note the use of controlled ad-
joint rotations (CR’) which uses the Cgate, Adj, and R definitions
described earlier.

Modular Addition. Modular exponentiation, that is the op-
eration ar mod (N) referred to above, can be performed using
repeated multiplication, which in turn requires modular addition.
Here, we program a modular adder based on addition using the
quantum Fourier transform [5, 8]. In this design, both QFT and QFT’
are required. Throughout, the ’ indicates inverse. The circuit re-
quires subcircuits (not shown here, see [5]) for addition controlled
by two qubits (CCAdd), addition controlled by one qubit (CAddA),
and addition without controls (AddA).

pare the eigenstates of powers of ar mod N . However, conveniently
1√
r

∑r−1
s=0 |us〉 = |1〉.

|b0〉 H

|b1〉 R2† H

|b2〉 R3† R2† H

|b3〉 R4† R3† R2† H

|b4〉 R5† R4† R3† R2† H

Figure 6. LIQUi|〉 circuit diagram for QFT’ on 5 qubits.

CCAdd a cbs / / Per fo rm t h e i n i t i a l Add
AddA’ N bs / / I n v e r t t h e add
QFT’ bs / / Conve r t o u t o f F o u r i e r s p a c e
CNOT [bMx ; anc] / / Remember t h e o v e r f l o w b i t
QFT bs / / Re tu rn t o F o u r i e r s p a c e
CAddA N (anc : : bs) / / Do t h e add based on o v e r f l o w
CCAdd’ a cbs / / Undo t h e add
QFT’ bs / / Get o u t o f F o u r i e r s p a c e
X [bMx] / / Use t h e t o p b i t a s a f l a g
CNOT [bMx ; anc] / / Clean up t h e A n c i l l a
X [bMx] / / Revere use o f t h e t o p b i t
QFT bs / / Re tu rn t o F o u r i e r s p a c e
CCAdd a cbs / / Do t h e f i n a l v e r s i o n o f t h e add

Part of the circuit diagram for quantum modular addition is shown
in Fig. 7.

6.2 Simulation
To run the circuit for Shor’s algorithm (Ua) in LIQUi|〉 on inputs N
and a, we can write:
l e t c i r c U a = CompileUa N a qs / / Compile 1 Shor s t e p
l e t c o u n t = c i r c U a . GateCount ()∗ n∗2
l e t h i t s , m i s s e s = / / Get t o t a l g a t e c o u n t

Gate . C a c h e S t a t s () / / Get g a t e c a c h i n g s t a t s
l e t gp = GrowPars (3 0 , 2 , f a l s e) / / Params f o r growing
l e t c i r c U a = c i r c U a . GrowGates (k , gp) / / Grow t h e c i r c u i t
c i r c U a . Dump () / / Dump c i r c u i t t o f i l e
ShorRun c i r c U a r s l t n a qs / / Run Shor
l e t m = Array . mapi / / Accumulate a l l t h e

(fun i b i t −> b i t <<< i) r s l t / / . . phase e s t i m a t i o n b i t s
|> Array . sum / / . . m = quantum r e s u l t

l e t permG , permS , permN = k . Perms / / Get p e r m u t a t i o n s t a t s

Here, N is the number to be factored and the quantum circuit
circUa computes the order of a modulo N. The input value a is
randomly chosen to be between 1 and N-1. The order rslt is then
used during classical post-processing (last 4 lines of the code) to
either output a valid non-trivial factor of N or to output failure. Full
statistics on the number of different quantum and classical gates
may be obtained by running the command GateCount.

Several rounds of Shor’s algorithm may be required to find the
factors of a number due to the algorithm’s probabilistic nature. As
an example, say we want to factor the number 65. We can type:
> Liquid __Shor(65,true)

65 = N = Number to factor
0.002676 = mins for compile

43610 = cnt of gates
0.019366 = mins for growing gates

1708 = cnt of gates
0.242003 = mins for running

10675 = m = quantum result
83.3984 = c =~ 10675/128

64 = 128/2 = exponent
62 = 32^64 + 1 mod 65
60 = 32^64 - 1 mod 65

GOT: 65 = 5x 13; n=7; mins=0.26; SUCCESS!!

In this circuit implementation (based on Beauregard’s circuit [5] for
Shors algorithm), factoring 65 requires 17 qubits. We compiled the
circuit of 44,045 gates, compressed that down to 1,885 gates (by
“growing” unitaries together), ran the result, and then performed
the necessary classical post-processing. All of this was done in a
highly parallel fashion taking less than a minute.

The largest number we have factored is a 14-bit number (8193)
which required 31 qubits in 50GB of memory, 28 rounds with half
a million gates per round (reduced to 18,000 using gate growing),
and ran for 43384 minutes (30.1 days). The answer was 8193 =
3 × 2731. The simulation output is provided in Appendix B. This
represents the largest number fully factored in a quantum computer
simulator.3 Factoring a 14-bit number is of course still within the
range of instant solution in the classical realm; exponential scaling
becomes important in the range at and beyond 1024-2048 bits,
which represent current and future RSA key sizes.

These numbers are generated from a simulation (on a classi-
cal computer) of the quantum operations. A real quantum com-
puter could factor this size instance in negligible time. The goal in
LIQUi|〉 is to simulate all operations that would be performed on
the quantum machine to enable algorithm development, optimiza-
tion, and verification of correctness. Previous simulations have not
factored numbers beyond 15 and 21, equivalent to 13 qubits and
70K gates (to the best of our knowledge). Our simulations, due to
extensive optimization, can target simulations using up to around
30 qubits using only 32 GB RAM. The number 8193 required 31
qubits and 7M gates.

Fig. 8 plots the LIQUi|〉 simulation time of Shor’s algorithm for
a range of bits. The blue diamonds represent an early implemen-
tation with optimized linear algebra and simulation of each gate
sequentially. The red squares are after adding gate growing (mas-
sively reducing the number of gates). The green triangles are after a
full rewrite of the complex math package with optimized memory
usage and tighter inner loops. The significant improvements be-
tween the blue and green markers (from 3 years to 4 days for 13-bit
simulation) highlights the importance of optimized simulation en-
vironments and domain-specific languages and tools for quantum
computing.

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

4 5 6 7 8 9 10 11 12 13 14

Minutes to factor

1 day

3 years

3 hours

4 months

9 mins

bits to factor

4 days

minute

hour

day

week

month

year

Figure 8. Plot of number of bits vs. simulation time (in minutes)
for simulation of Shor’s algorithm on varying number of qubits.

7. Conclusions and Future Work
LIQUi|〉 is a fully architected (Fig. 2) quantum software platform
that allows for efficient simulation of complex quantum circuits in

3 Authors of Ref. [21] have shown the classical requirements for pieces of
quantum factorization of a 15-bit number on a supercomputer. We have
fully factored a 14-bit number on a single desktop, simulating an end-to-
end circuit implementation of Shor’s algorithm.

|x0〉

|x1〉

|b0〉 H R1 R1† H H

|b1〉 H R2 R1 R2 R2† R1† R2† H H R2 R1 R2

|b2〉 H R2 R3 R1 R2 R3 R3† R2† R1† R3† R2† H H R2 R3 R1 R2 R3

|b3〉 H R2 R3 R4 R1 R2 R3 R4 R4† R3† R2† R1† R4† R3† R2† H H R2 R3 R4 R1 R2 R3 R4

|b4〉 H R2 R3 R4 R5 R2 R3 R4 R5 R5† R4† R3† R2† R5† R4† R3† R2† H H R2 R3 R4 R5 R2 R3 R4 R5

|anc0〉

R1 R1† H H R1 H

R2† R1† R2† H H R2 R1 R2 R2† H

R3† R2† R1† R3† R2† H H R2 R3 R1 R2 R3 R3† R2† H

R4† R3† R2† R1† R4† R3† R2† H H R2 R3 R4 R1 R2 R3 R4 R4† R3† R2† H

R5† R4† R3† R2† R5† R4† R3† R2† H X X H R2 R3 R4 R5 R2 R3 R4 R5 R5† R4† R3† R2† H

Figure 7. Part of the quantum circuit for modular addition generated by LIQUi|〉.

a variety of different environments. It is designed as a modular sys-
tem which makes it flexible and extensible by the user. A large
number of gates are already provided, all of which may be overrid-
den or extended. Three different classes of simulators are available
as well as three different run times. Circuits may be defined and
manipulated in many ways and may even be exported for running
on various back-ends (both classical and quantum).

In future versions of LIQUi|〉 we plan to extend the software
architecture to include layout of qubits, improved simulation of re-
alistic noise models, gate timing constraints, and additional quan-
tum error correction support. We also plan to more closely inte-
grate classical and quantum instructions and incorporate the abil-
ity to manipulate large sub-circuits, such as taking the adjoint of a
circuit consisting of both classical and quantum pieces. A key ex-
tension will be the ability to specify architectural constraints such
as timing, communication latency, and qubit proximity. Quantum
algorithms with classical components may then be mapped to spe-
cific hardware implementations in the laboratory. Soon, this will
provide researchers with invaluable information for experimenting
with future designs of quantum computers.

References
[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer

circuits. Phys. Rev. A, 70:052328, 2004.
[2] T. Altenkirch and A. Green. The quantum IO monad. In S. Gay

and I. McKie, editors, Semantic Techniques in Quantum Computation,
pages 173–205. Cambridge University Press.

[3] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon.
Simulated quantum computation of molecular energies. Science, 309
(5741):1704–1707, 2005.

[4] J. Backus, R. Beeber, S. Best, R. Goldberg, H. Herrick, R. Hughes,
L. Mitchell, R. Nelson, R. Nutt, D. Sayre, P. Sheridan, H. Stern, and
I. Ziller. The FORTRAN automatic coding system for the IBM 704
EDPM: Programmer’s reference manual. 1956.

[5] S. Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. 2002.
[6] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for

quantum programming. European Physics D, 25(2):181–200, 2003.
[7] D. Deutsch. Quantum theory, the Church-Turing principle, and the

universal quantum computer. Proc. R. Soc. Lond. A, 400(97), 1985.
[8] T. G. Draper. Addition on a quantum computer. 2000.
[9] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum compu-

tation by adiabatic evolution. 2000.
[10] H. J. Garcia and I. L. Markov. Quipu: High-performance simulation

of quantum circuits using stabilizer frames. In Intl. Conf. Computer
Design, ICCD, pages 404–410, 2013.

[11] A. Green, P. L. Lumsdaine, N. Ross, P. Selinger, and B. Valiron.
Quipper: A scalable quantum programming language. In Proceedings
of PLDI ’13, 2013.

[12] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for
solving linear systems of equations. Phys. Rev. Lett., 15(3):150502,
2009.

[13] S. Jordan. Quantum algorithm zoo.
http://math.nist.gov/quantum/zoo/.

[14] E. Knill. Conventions for quantum pseudocode. Technical Report
LAUR-96-2724, LANL, 1996.

[15] B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Bar-
bieri, A. Aspuru-Guzik, and A. G. White. Towards quantum chemistry
on a quantum computer. Nature Chemistry, 2:106–111, 2009.

[16] J. Miszczak. Models of quantum computation and quantum program-
ming languages. Bull. Pol. Acad. Sci.-Tech. Sci., 59(3):305–324, 2011.

[17] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000. ISBN 0521635039.

[18] B. Ömer. A procedural formalism for quantum computing. Master’s
thesis, Theoretical University of Vienna, 1998.

[19] B. Ömer. Quantum programming in QCL. Master’s thesis, Technical
University of Vienna, 2000.

[20] B. Ömer. Structured Quantum Programming. PhD thesis, Theoretical
University of Vienna, 2003.

[21] K. D. Raedt, K. Michielsenb, H. D. Raedt, B. Trieuc, G. Arnold,
M. Richter, T. Lippert, H. Watanabe, and N. Ito. Massively parallel
quantum computer simulator. Comp. Phys. Comm., 176:121–136,
2007.

[22] P. Selinger and B. Valiron. A lambda calculus for quantum compu-
tation with classical control. Mathematical Structures in Computer
Science, 16(3):527–552, 2006.

[23] P. Selinger and B. Valiron. Quantum lambda calculus. pages 135–172.
Cambridge University Press, 2009.

[24] P. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal of Computing,
26:1484–1509, 1997.

[25] K. M. Svore, A. V. Aho, A. Cross, I. Chuang, and I. Markov. A layered
software architecture for quantum computing design tools. Computer,
39(1):74–83, 2006.

[26] A. van Tonder. A lambda calculus for quantum computation. SIAM
Journal of Computation, 33(5):1109–1135, 2004.

[27] G. Viamontes, I. Markov, and J. Hayes. Graph-based simulation of
quantum computation in the state-vector and density-matrix represen-
tation. Quantum Information and Computation, 5(2):113–130, 2005.

[28] A. Yao. Quantum circuit complexity. In Proc. of the 34th IEEE
Symposium on Foundations of Computer Science, pages 352–360.
IEEE Press, 1993.

APPENDIX
A. Quantum Gates
Standard gates are presented in Figure 9.

B. Large Shor Simulation Run
This is the raw log from factoring the number 8193 (14 bits, 31
qubits) in 30.1 days. This includes 28 applications of a Shor round
(each defined with 515,032 gates). The section starting with “Wrap
circuit pieces” is the gate growing (reducing down to 18,200 gates
to simulate, some of which were matrices that spanned 30 qubits
(230×230). Each of the 28 rounds is shown with the single bit result
(m=) for that round. At the end is the classical post-processing that
generates the factors (3 x 2731).

0:0000.0/=============== Logging to: Liquid.log opened ================

0:0000.0/======== Doing Shor Round =========

0:0000.0/ 8193 = N = Number to factor

0:0000.0/ 1024 = a = coPrime of N

0:0000.0/ 14 = n = number of bits for N

0:0000.0/ 16384 = 2^n

0:0000.0/ 31 = total qubits

0:0000.0/ 23 = starting memory (MB)

0:0000.0/ - Compiling circuit

0:0000.0/Qubits: M at 0

0:0000.0/Qubits: X from 1 to 13

0:0000.0/Qubits: B from 14 to 28

0:0000.0/Qubits: Anc at 30

0:0000.0/0.004982 = mins for compile

0:0000.0/ 515032 = cnt of gates

0:0000.0/ 58253 = cache hits

0:0000.0/ 275 = cache misses

0:0000.0/ 31 = compiled memory (MB)

0:0000.0/ - Wrapping circuit pieces

0:0000.0/ 8 wires, possibles: 2935 (did= 0 big= 0)

0:0000.0/ 9 wires, possibles: 2527 (did= 408 big= 116)

0:0000.1/ 10 wires, possibles: 1870 (did= 1065 big= 232)

0:0000.1/ 11 wires, possibles: 1534 (did= 1401 big= 348)

0:0000.1/ 12 wires, possibles: 1310 (did= 1625 big= 494)

0:0000.1/ 13 wires, possibles: 1216 (did= 1719 big= 726)

0:0000.1/ 14 wires, possibles: 979 (did= 1956 big= 958)

0:0000.2/ 15 wires, possibles: 732 (did= 2203 big= 1192)

0:0000.2/ 16 wires, possibles: 696 (did= 2239 big= 1568)

0:0000.3/ 17 wires, possibles: 677 (did= 2258 big= 2069)

0:0000.3/ 18 wires, possibles: 650 (did= 2285 big= 2573)

0:0000.3/ 19 wires, possibles: 650 (did= 2285 big= 3178)

0:0000.3/ 20 wires, possibles: 650 (did= 2285 big= 3805)

0:0000.3/ 21 wires, possibles: 650 (did= 2285 big= 4441)

0:0000.3/ 22 wires, possibles: 650 (did= 2285 big= 5080)

0:0000.3/ 23 wires, possibles: 650 (did= 2285 big= 5721)

0:0000.3/ 24 wires, possibles: 650 (did= 2285 big= 6363)

0:0000.3/ 25 wires, possibles: 650 (did= 2285 big= 7006)

0:0000.3/ 26 wires, possibles: 650 (did= 2285 big= 7650)

0:0000.3/ 27 wires, possibles: 650 (did= 2285 big= 8294)

0:0000.3/ 28 wires, possibles: 650 (did= 2285 big= 8938)

0:0000.3/ 29 wires, possibles: 650 (did= 2285 big= 9584)

0:0000.3/ 30 wires, possibles: 650 (did= 2285 big= 10230)

0:0000.3/ 31 = Ran out of wires

0:0000.3/ MM: g: 2285 b: 10876 17=27 16=19 15=36 14=247 13=237

0:0000.3/0.291275 = mins for growing gates

0:0000.3/ 18200 = cnt of gates

0:0000.3/ 1184 = grown memory (MB)

0:0000.3/ - Running circuit

0:0000.3/Qubits: M at 0

0:0000.3/Qubits: X from 1 to 13

0:0000.3/Qubits: B from 14 to 28

0:0000.3/Qubits: Anc at 30

0:0912.5/ 1 of 28 [MB:17857 m=1]

0:2520.8/ 2 of 28 [MB:17964 m=1]

0:4085.6/ 3 of 28 [MB:18034 m=1]

0:5647.8/ 4 of 28 [MB:18115 m=1]

0:7221.3/ 5 of 28 [MB:18195 m=0]

0:8770.2/ 6 of 28 [MB:18276 m=0]

0:10329.0/ 7 of 28 [MB:18356 m=0]

0:11872.3/ 8 of 28 [MB:18436 m=0]

0:13426.4/ 9 of 28 [MB:18517 m=1]

0:14981.8/ 10 of 28 [MB:18614 m=0]

0:16576.0/ 11 of 28 [MB:18710 m=0]

0:18162.4/ 12 of 28 [MB:18806 m=0]

0:19703.0/ 13 of 28 [MB:18903 m=1]

0:21310.8/ 14 of 28 [MB:19007 m=1]

0:22889.2/ 15 of 28 [MB:19097 m=1]

0:24468.6/ 16 of 28 [MB:19199 m=0]

0:26071.0/ 17 of 28 [MB:19289 m=1]

0:27648.6/ 18 of 28 [MB:19386 m=0]

0:29218.8/ 19 of 28 [MB:19490 m=1]

0:30759.1/ 20 of 28 [MB:19595 m=0]

0:32339.7/ 21 of 28 [MB:19700 m=1]

0:33891.9/ 22 of 28 [MB:19804 m=1]

0:35479.4/ 23 of 28 [MB:19908 m=0]

0:37069.8/ 24 of 28 [MB:20019 m=0]

0:38627.6/ 25 of 28 [MB:20117 m=0]

0:40180.1/ 26 of 28 [MB:20222 m=1]

0:41767.6/ 27 of 28 [MB:20326 m=1]

0:43384.4/ 28 of 28 [MB:20430 m=1]

0:43384.4/43383.055681 = mins for running

0:43384.4/2.603e+06 = Elapsed time (seconds)

0:43384.4/ 31 = Max Entangled

0:43384.4/ 0 = Gates Permuted

0:43384.4/ 18199 = State Permuted

0:43384.4/ 115 = None Permuted

0:43384.4/238383375 = m = quantum result

0:43384.4/ 14549.8 = c =~ 238383375/16384

0:43384.4/ 8192 = 16384/2 = exponent

0:43384.4/ 8066 = 1024^8192 + 1 mod 8193

0:43384.4/ 8064 = 1024^8192 - 1 mod 8193

0:43384.4/GOT: 8193= 3x2731 co= 1024 n,q=14,31 mins=43383.35 SUCCESS!!

0:43384.4/=============== Logging to: Liquid.log closed ================

C. LIQUi|〉 Built-in Tests
Big() Try to run large entanglement tests (20 through 33 qubits)

Chem(n,t,b,o,c) Test n (try 99 for help) and then H2O params

Correct() Use 15 qubits and random circuits to test teleport in several ways

EIGS() Check eigevalues using ARPACK

Entangle1() Draw and run 24 qubit entanglement circuit

Entangles() Draw and run 100 instances of 16 qubit entanglement test

EntEnt() Entanglement entropy test

EPR() Draw EPR circuit (.svg files)

Ferro(false,true) Test ferro magnetic coupling with true=full, true=runonce

H2() Solve ground state for H2 molecule

H2O(t,b,o,c) Solve ground state for H2O (trotter=32,bits=20,order=1,2,coal=-1.0 or <=1.0)

Hubbard("pars") Hubbard model (basic test, use "INIT JOIN" for pars), see docs for more

MPS(bMn,bInc,bMx) Run an MPS simulation of a ferro chain typically between B=0.0 and 2.0

MPS1(h,B,bd,acc) Run an MPS simulation of a ferro chain (h=0,B=1.0 is the critical point)

Noise1(d,i,p) Noise on 1 qubit. depth,iters,probOfNoise

NoiseAmp() Amplitude damping (non-unitary) noise

NoiseTele(S,i,p) Noise on Teleport S=doSteane? i=iters p=prob

QECC() Test teleport with error injection in Steane7 code (output drawings)

QFTbench() Bench mark various execution modes for QFT (in Shor package)

QuAM() Quantum Associative Memory

QWalk(typ) Walk tiny,tree,graph or RMat file with graph information

Ramsey33() Try to find a Ramsey(3,3) solution

SG() Test spin glass model

Shor(15,true) Factor N using Shor’s algorithm false=direct true=optimized circuit

ShorT(true) Draw and test each of the sub-operations in Shor false=direct true=circuit

show(str) Test routine to echo str and then exit

Steane7() Test basic error injection in Steane7 code

Teleport() Draw and run original, circuit and grown versions

TSP(5) Try to find a Traveling Salesman soltion for 5 to 8 cities

Vbasis(eps) Test Vbasis generation with eps (1.e-20 typical)

D. Hamiltonian Simulation
A package for simulating Hamiltonians is included in LIQUi|〉 and
built on top of the universal modeling simulator. There are three
main ways to use this environment.

D.1 Adiabatic simulator
The first is with time-varying Hamiltonians that represent adiabatic
spin glass problems (4). This simulator has been used for applica-
tions from modeling the D-Wave machine (a hardware decoherence
model is available) to implementing Machine Learning algorithms
(e.g., Traveling Salesman).

H = Γ(t)
∑
i

∆iσ
x
i + Λ(t)

(∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j

)
(4)

The adiabatic approach starts in a known ground state in σx and
then moves continuously to the unknown ground state in σz (which
is the solution of our problem). By moving slowly enough we can
stay in the ground state of the entire system and reach the solution
to the problem specified by the hi and Jij values in the equation.

D.2 Fermionic simulator
The fermionic Hamiltonian (5) is a second quantized Hamilto-
nian that represents the interactions of electrons in a molecular
model. LIQUi|〉 provides gates that represent number, excitation,
Coulomb, exchange, number excitation and double excitation op-
erators. This simulator has been used to implement sophisticated
models including ones for H2 and H2O. Fig. 10 shows a com-
plete ground state model for water where the x axis varies the bond
length between the oxygen and the hydrogen atoms, while the y

Figure 9. Sampling of basic quantum gates available in LIQUi|〉 .

axis varies the angle between the hydrogen bonds. The z axis is the
energy predicted (units are Hartree).

H =
∑
p<q

hpqa
†
paq +

1

2

∑
p<q<r<s

hpqrsa
†
pa
†
qaras (5)

The first half of the equation represent the single electron terms
(Hpp Hpq) while the second half are the two electron terms (Hpqqp
Hpqqr Hpqrs).

 Figure 10. Results of H2O ground state modeling

D.3 Mixing simulators
The adiabatic and fermionic simulators can be mixed to allow
fermionic simulation of time-varying Hamiltonians. One example
of this is implemented as the Hubbard model (6) which is an effec-
tive Hamiltonian for modeling high temperature superconductors
(cuprates).

H = −
∑
<i,j>

∑
σ tij

(
c†i,σcj,σ + c†j,σci,σ

)
+

U
∑
i ηi,↑ηi,↓ +

∑
i εiηi (6)

ηi,σ = c†i,σci,σ = local spin density

ηi =
∑
σ ηi,σ = total local density

The model implemented is a 2d lattice (as shown in Fig. 11)
where we define plaquettes that will be evolved adiabatically sep-
arately into the ground state, merged, and then separated to deter-
mine if we are left in a superconducting state.

Figure 11. Hubbard lattice model with two plaquettes

The goal is to model different chemical compositions as spacing
between the copper oxide layers in a cuprate, which modify the
ratio of interaction to hopping U/t. After preparing 2 plaquettes
with 6 electrons we adiabatically separate them and measure the
probability of finding three electrons on each (Fig. 12). If electrons
are paired, the probability of having an odd number should be
suppressed, and we can thus see pairing as suppression of P33 in
the figure as the length of our annealing schedule is increased.

Figure 12. Probability of breaking superconducting pairs as func-
tion of annealing time for various interaction strengths.

