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We study the performance of distance-three surface code layouts under realistic multi-parameter
noise models. We first calculate their thresholds under depolarizing noise. We then compare a
Pauli-twirl approximation of amplitude and phase damping to amplitude and phase damping. We
find the approximate channel results in a pessimistic estimate of the logical error rate, indicating
the realistic threshold may be higher than previously estimated. From Monte-Carlo simulations, we
identify experimental parameters for which these layouts admit reliable computation. Due to its low
resource cost and superior performance, we conclude that the 17-qubit layout should be targeted in
early experimental implementations of the surface code. We find that architectures with gate times
in the 5–40 ns range and T1 times in the 1–2 µs range will exhibit improved logical error rates with
a 17-qubit surface code encoding.

I. INTRODUCTION

Topological quantum error-correcting codes are a lead-
ing approach to scalable fault-tolerant quantum compu-
tation [1, 2]. The most practical topological code to date
is the surface code, which calls for a 2-D planar qubit
layout with only nearest-neighbor interactions [3–6]. It
has been shown to allow error rates up to a threshold
of approximately 1% [1, 7–9]. Several quantum architec-
tures, including superconducting devices [10, 11] and ion
traps [12–15], are suitable for realizing the surface code.
Recent experiments on superconducting qubits have even
demonstrated error rates in the required range [16].

Until recently, the threshold for the surface code has
been primarily calculated for the depolarizing channel
[1, 7–9]. Simulation of the surface code and the depolar-
izing channel requires only Clifford operations and Pauli
measurements on stabilizer states, allowing efficient sim-
ulation on a classical computer under the Gottesman-
Knill theorem [17, 18].

It has been shown that realistic quantum noise such as
decoherence can be sufficiently approximated by a depo-
larizing noise model parametrized by a method such as
Pauli twirling [19, 20], enabling efficient simulation. Sim-
ulations of the surface code with noise based on Pauli-
twirl approximations have been performed for several
superconductor architectures [21]. Other studies have
achieved efficient classical simulation of realistic noise
models by using Clifford gates to approximate arbitrary
gates [22, 23] and amplitude damping [24].

More recently, it has been shown that the surface
code threshold is significantly degraded in the presence of
qubit leakage in conjunction with depolarizing noise [25].
It has also been shown to achieve arbitrary reliabil-
ity given modest additional qubit resources under local
many-qubit errors and non-local two-qubit errors [26].
A recent study has determined a threshold for the sur-
face code considering correlated errors and the coupling
between qubits and the environment by formulating the
problem as an Ising model [27].

In all cases, the thresholds have been calculated for
a standard surface code layout. Variations of the sur-
face code layout have been proposed [28, 29] that reduce
the qubit and gate resources necessary for implementa-
tion. To the best of our knowledge, the thresholds for
these modified surface code layouts have not been ana-
lyzed. In addition, studies of the threshold under real-
istic (non-Clifford) noise models have been limited due
to the exponential cost of simulation. With device er-
ror rates rapidly approaching the surface code threshold,
it is timely to investigate the performance and require-
ments of low-distance surface code layouts for near-term
experimental implementation.

In this work, we determine the threshold for distance-
three surface code layouts under depolarizing and real-
istic noise models. We study the layouts under an am-
plitude and phase damping channel and an approxima-
tion of the channel using Pauli twirling [21]. Our studies
demand simulation of non-Clifford operations, which re-
quires memory exponential in the number of qubits. We
use the LIQUi|〉 [30] software architecture for our simu-
lations. We also outline parameter regimes that enable
reliable quantum error correction for low-distance surface
codes and present a decoder based on a small lookup ta-
ble optimized for distance-three layouts and limited clas-
sical computation.

Our paper is organized as follows. Section II briefly re-
views the surface code and three layouts for the distance-
three code. We introduce our decoding method, based on
a small lookup table, in Section III. Section IV describes
the realistic noise models and their approximations. Our
experimental methodology is introduced in Section V. In
Section VI, we present our surface code simulation re-
sults. Finally, we conclude in Section VII.

II. LOW-DISTANCE SURFACE CODES

The surface code is a stabilizer code arranged on a 2-D
lattice with nearest-neighbor interactions [3]. It encodes
a single logical qubit in a number of physical qubits that
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(a) Surface-25 (b) Surface-17 (c) Surface-13

FIG. 1. Distance-three surface code layouts with (a) 25, (b)
17, and (c) 13 qubits. White circles represent data qubits;
black circles represent syndrome qubits. Dark square and tri-
angle patches represent X stabilizers; light patches represent
Z stabilizers. The layered patches on Surface-13 indicate use
of the syndrome qubit first to measure a four-qubit stabilizer
and then to measure a two-qubit stabilizer.

is determined by the code distance d and desired layout
(described below). Through repeated measurement of
its stabilizer generators, the surface code in conjunction
with a classical decoding algorithm can detect errors and
subsequently correct up to b(d − 1)/2c physical errors.
The distance d dictates the length of the shortest unde-
tectable error chain and in turn is also the length of the
shortest logical operator. For an excellent review of the
surface code, we refer the reader to [1].

A. 25-qubit Layout

We study three different distance d = 3 layouts, shown
in Figure 1. We begin by discussing the standard layout,
referred to as Surface-25, shown in Figure 1(a). It uses a
(2d − 1) × (2d − 1) square grid of qubits with a smooth
and rough boundary [4]. For d = 3, the grid contains
25 qubits of which 13 data qubits (large white circles)
are used to encode the logical qubit and 12 syndrome
qubits (small black circles) are used to extract the error
syndromes by way of stabilizer measurements.

Surface-25 is simultaneously stabilized by the group of
stabilizer generators listed in Table II. In Fig. 1, the Z
stabilizers are represented by light (yellow) patches and
the X stabilizers are represented by dark (green) patches,
where each patch represents a tensor product of Z (or X)
operators on the data qubits surrounding the patch.

A logical X operator XL is defined as a chain of phys-
ical X operations between two data qubits on opposite
smooth boundaries (top and bottom edges). The chain
is allowed to cross any Z stabilizer patch and follow any
edge of an X stabilizer patch. A logical Z operator ZL is
defined analogously as a chain of physical Z operations
between two data qubits on opposite rough boundaries
(left and right edges). Table II lists one possible logical
X and Z operator. There are 2G equivalent logical oper-
ators for each logical Pauli operator (X and Z), where G
is the number of stabilizer generators for the given sur-
face code. Since XL and ZL commute with all of the
stabilizers and cannot be written as a product of them,
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FIG. 2. Standard quantum circuits to measure stabilizers (a)
XaXbXcXd and (b) ZaZbZcZd.

TABLE I. Number of operations in one round of the surface
code for distance-three layouts.

Code CNOT I H Meas. Prep. Depth

Surface-13 24 99 8 8 8 14
Surface-17 24 56 8 8 8 8
Surface-25 40 72 12 12 12 8

logical errors, which come in the form of logical opera-
tors, cannot be detected by the code.

The surface code detects errors through the eigenval-
ues of the stabilizers. A bit-flip (phase-flip) on a data
qubit will change the eigenvalue of adjacent Z (X) sta-
bilizers. To extract an eigenvalue, also referred to as
an error syndrome, a given stabilizer is measured. Fig-
ure 2 shows the standard quantum circuit for measuring
the stabilizers [1, 9], where data qubit b corresponds to
the top (north) qubit and c corresponds to the bottom
(south) qubit of each diamond patch in Fig. 1(a).

The circuit begins with CNOT gates that propagate
error information from the data qubits a,b,c,d to the syn-
drome qubit (black circle). CNOT gates are performed
in the order: top (b); left (a); right (d); bottom (c).
Cyclic orders, such as a clockwise or counter-clockwise,
i.e., bdca, fail to maintain commutation of nearby sta-
bilizers, which in turn can cause random measurement
outcomes [1]. Thus the order of CNOT gates is required
to follow an “S” or “Z” shape.

The syndrome qubit is then measured to extract the
eigenvalue of the stabilizer. These error syndromes are
input to a classical decoding algorithm to determine an
appropriate correction operator. Details of our decoding
algorithm are given in Section III. The total number of
operations in a given round of stabilizer measurements
for the surface code is given in Table I.



3

TABLE II. List of X and Z stabilizers and logical XL and ZL

operators for Surface-13, 17, and 25.

Surface-25 Surface-13, Surface-17

X Stabilizers Z Stabilizers X Stabilizers Z Stabilizers
X0X1X3 Z0Z3Z5 X0X1X3X4 Z0Z3

X1X2X4 Z1Z3Z4Z6 X1X2 Z1Z2Z4Z5

X3X5X6X8 Z2Z4Z7 X4X5X7X8 Z3Z4Z6Z7

X4X6X7X9 Z5Z8Z10 X6X7 Z5Z8

X8X10X11 Z6Z8Z9Z11

X9X11X12 Z7Z9Z12

Logical X Logical Z Logical X Logical Z
X0X5X10 Z0Z1Z2 X2X4X6 Z0Z4Z8
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FIG. 3. Quantum circuits for measuring X0X1X3X4 and
Z0Z3 in (a) Surface-17 and (b) Surface-13.

B. 13- and 17-qubit Layouts

The number of qubits in Surface-25 can be reduced
while maintaining the same code distance by rotating it
clockwise by 45 degrees and removing the four corner
data qubits [28, 29], shown in Fig. 1(b). The number of
data qubits is reduced from 13 to 9 and the number of
syndrome qubits is reduced to 8 for a total of 17 qubits.
We call this layout Surface-17. The stabilizer generators
contain weight-4 and weight-2 stabilizers (Table II). Fig-
ure 3(a) shows the circuit for a simultaneous weight-4 X
and weight-2 Z stabilizer measurement.

A further reduction in qubits can be obtained by
reusing the syndrome qubits [29]. Surface-13 uses only 4
syndrome qubits as shown in Fig. 1(c). Each syndrome
qubit is used twice, once for X stabilizer measurement
and once for Z stabilizer measurement. Figure 3(b) con-
tains the corresponding circuit for measuring a weight-4
X stabilizer followed by a weight-2 Z stabilizer. Surface-
13 reduces the number of qubits but increases the depth
of a round by 4 time steps. The depth and number of
operations required for one round of the surface code for
Surface-17 and 13 are given in Table I. The stabilizers
and logical operations for these two layouts are listed in
Table II.

Despite having fewer stabilizers, Surface-17 and
Surface-13 still remain distance-three surface codes [28,
29]. Due to their reduction in resources by 32–48%, these
layouts are promising candidates for early experimental
implementation. In Section VI, we determine which lay-
out is most promising based on its threshold and resource
costs.

III. DECODING METHOD

A standard method for mapping error syndromes to
the most probable error chain is the minimum weight
perfect matching algorithm [7, 31, 32]. It requires time
O(n) for n detection events if executed serially, and O(1)
time if executed in parallel [33]. The algorithm indepen-
dently corrects X and Z errors by identifying the most
likely error chain for each type such that the total chain
weight is minimal. Corrections are then applied along
this chain. If after correction a chain of errors connecting
two smooth (rough) boundaries remains, then a logical
error has occurred. If errors are assumed to be indepen-
dent, then long chains will be exponentially unlikely.

A. Lookup Table Decoder

In this work we target first-generation implementations
of a single qubit protected by a small surface code. While
the classical time and space requirements of the minimum
weight perfect matching algorithm are modest, we further
reduce the classical computational overhead by designing
a lookup table based on the algorithm that can be im-
plemented on a small classical device. Our lookup table
is designed to find the most probable low-weight error
chain from a history of error syndromes.

Consider the set of error syndromes that indicate an
error after one full (noisy) round of the surface code, that
is, those indicating a −1 eigenvalue. Based on the error
syndrome locations, the decoder determines the proba-
ble data-qubit error locations. For example, consider a
Z error on qubit 4 in Surface-17 (Fig. 1(b)). Given that
no other errors occur, after one round of the surface code
syndrome qubits 11 and 14 will indicate an error. The de-
coder will determine the shortest error chain connecting
these two syndromes includes data qubit 4. To correct
the error chain, Z4 will be applied.

As another example, consider an X error on qubit 6.
It will cause syndrome 13 to indicate an error. Since
syndromes 10 and 12 do not indicate errors, the decoder
will infer an error on either data qubit 6 or 7. In this case,
the decoder can correct either X6 or X7 since X6X7 is a
stabilizer.

An error syndrome may also occur due to a measure-
ment error. However, the decoder may interpret it as a
data-qubit error. For example, consider a measurement
error on qubit 11. The decoder will either apply Z0 or



4

Z3 to “correct” the error, thereby adding an error to a
clean data qubit.

To improve identification of actual data-qubit errors,
inference is performed based on several rounds of stabi-
lizer measurements [7]. Consider performing r rounds of
the surface code consecutively. Instead of storing the syn-
dromes for each round, we store the locations in time and
space of the syndromes whose values change, or “flip”,
between the current and previous round.

For r rounds, this requires storing a 3-D space-time
array containing at most s × r values, where s is the
maximum number of syndrome changes in a round. We
refer to this 3-D array as the syndrome volume, where
dimension r represents time. The goal is to determine a
correction operator (a product of X and/or Z operators)
based on the syndrome volume such that the number of
errors remaining after correction is minimized, in turn
reducing the chance of forming a logical error chain.

Our lookup table is based on the fact that short error
chains are more likely than long chains. Assuming a syn-
drome volume contains r rounds, we construct a lookup
table based on the following rules (Figure 4 shows the
rules visually):

1. If the same syndrome flips twice in two consecutive
rounds, the pair (in time) of syndromes is ignored
since it most likely indicates a measurement error.

2. If a pair (in space) of neighboring syndromes flips
in the same round, a correction on the data qubit
between the pair is applied.

3. If a syndrome flips in round r−1 and its neighboring
syndrome flips in round r, a correction on the data
qubit between the pair (in time) is applied.

4. If a syndrome flips only once and in a round other
than the last, a correction is applied to a data qubit
on the boundary such that the data qubit is not
between two stabilizers that did not indicate a syn-
drome.

5. If a single syndrome flips only once and in the last
round, the information is kept until the next round
of error correction. No correction based on this
syndrome is applied. In this case the location of
the error, if any, is inconclusive without another
round of syndrome measurements.

We decode by checking the above rules in order and
determining the set of data-qubit error locations. We
then switch the order of rules 2 and 3 and determine
another set of possible error locations. We correct based
on the set with fewer error locations, since fewer errors
are more likely. Here we assume that r = 3.

These rules are equivalent to the minimum weight
perfect matching algorithm applied to only neighboring-
syndrome pairs, with uniform weight for the same dis-
tance. Since our surface codes are small, performance of
the code does not improve when decoding considers more
distant pairs.

We encode these rules into a lookup table. The lookup
table maps the syndrome volume of measurement flips

1

3

2

4

5

time

FIG. 4. Lookup table decoding rules. Each circle represents
a syndrome measurement. Red circles indicate “flips”. Five
types of flips are shown: (1) measurement error, (2,3) paired
flips indicating single-qubit error on data qubit, (4) single flip
indicating one data-qubit error, and (5) undetermined flip.
These numbers correspond to the rules in Section III.

to a set of probable errors on the data qubits. The ta-
ble requires constant time and 2n space, where n is the
number of data qubits.

B. Improved Stabilizer Measurement Circuits

In our simulations of Surface-13 and 17 under noise, we
find that using the same CNOT ordering for both X- and
Z-type stabilizer measurements could result in a single
error on a syndrome qubit, leading to a logical X or Z
error (details on noise are given in Sec. IV). Figure 5(a)
shows an example. A Z error on a Z-stabilizer syndrome
qubit after the first two CNOT gates propagates onto
two horizontally aligned data qubits. Since our surface
codes require only three data qubits to complete a logical
error chain, the next round of syndrome measurements
will incorrectly diagnose a Z error on the third qubit,
leading to a logical Z error chain.

To prevent the creation of a logical error, we propose
to measure X- and Z-type stabilizers in different orders.
The sequence for X stabilizers is the same as in Figure
2. We modify the order of CNOTs in Z stabilizers as:
top right (b); bottom right (d); top left (a); bottom left
(c) (Figure 5(b)). This order maintains the alignment
of qubits a and c such that they are perpendicular to
the direction of the corresponding logical chain. It also
preserves the commutation relations as well as the circuit
depth and size. Fig. 5 shows an example where two Z
errors map to a single Z error with the new order, versus
a logical error with the old order. We use this new order
for all simulations in this paper.
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FIG. 5. (a) Stabilizer measurement circuit showing the prop-
agation of a Z error to two Z errors. (b) Reordered stabilizer
measurement circuit.

IV. NOISE MODELS

In this section, we present the noise models considered
in our surface code simulations. We review two noise
models that can be simulated efficiently on a classical
computer (depolarizing and Pauli-twirl approximation)
and one noise model that requires exponential memory
to simulate (amplitude and phase damping).

A. Symmetric and Asymmetric Depolarizing
Channels

The depolarizing channel (D) is a standard quantum
noise model in which a qubit becomes depolarized with
a given probability p. This channel transforms a density
matrix of a single qubit as

ρ→ εD(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ, (1)

where pI = (1 − pX − pY − pZ). In this model, a qubit
suffers from discrete Pauli bit-flip (X), phase-flip (Z), or
bit-and-phase flip (Y ) errors with probabilities pX , pZ ,
and pY , respectively. When pX = pY = pZ , this chan-
nel is called a symmetric depolarizing channel. When
the probabilities are independent, the model is called an
asymmetric depolarizing channel.

B. Amplitude and Phase Damping Channel

The amplitude damping channel (AD) characterizes
the behavior of energy dissipation of the quantum sys-
tem, including spontaneous emission of a photon from a
qubit. This channel transforms the density matrix of a
single qubit as

ρ→ εAD(ρ) = EAD
1 ρEAD†

1 + EAD
2 ρEAD†

2 , (2)

|ψin〉 • |ψout〉

|0〉 Ry(θ) •

FIG. 6. Circuit representation of amplitude damping [20].

where

EAD
1 =

(
1 0
0
√

1− pAD

)
, EAD

2 =

(
0
√
pAD

0 0

)
, (3)

and pAD is the probability of a qubit emitting a single
photon.

Figure 6 expresses amplitude damping of a single qubit
in the form of a quantum circuit where an ancilla qubit
is used to represent the environment and sin2(θ/2) =
pAD [20]. The input is an arbitrary single-qubit state
|ψin〉 = a|0〉+ b|1〉 and the output state is given by

|ψout〉 =

{
Na|0〉+Nb sin(θ/2)|1〉 if measure 0
|0〉 if measure 1,

where N is a normalization constant. The probabilities of
measuring 0 and 1 are 1−b2pAD and b2pAD, respectively.

During simulation, we do not use an extra ancilla as
shown in the circuit in Figure 6. Instead, we calculate the
probability of measuring 0 and 1 given input state |ψin〉,
and simulate the measurement outcome with a random
number. When the simulated measurement is 0, we apply
the rotation Ry(θ) on |ψin〉. When it is 1, we apply
damping and the state becomes |0〉.

The phase damping channel (PD) is described simi-
larly as

ρ→ εPD(ρ) = EPD
1 ρEPD†

1 + EPD
2 ρEPD†

2 , (4)

where

EPD
1 =

(
1 0
0
√

1− pPD

)
, EPD

2 =

(
0 0
0
√
pPD

)
. (5)

Phase damping noise, also called pure dephasing, is
equivalent to the phase-flip channel. By unitary freedom
of operator-sum representation, we can derive a new set
of operation elements to express the channel in terms of
the probability of a phase-flip (Z) error,

E′PD
1 =

√
1− pZ

(
1 0
0 1

)
, E′PD

2 =
√
pZ

(
1 0
0 −1

)
, (6)

where pZ = 1−
√
1−pPD

2 .
We assume that amplitude and phase damping (APD)

are the main sources of decoherence. Using these two
channels together, decoherence on a single qubit trans-
forms the density matrix as

ρ→ εAPD(ρ) =

(
1− ρ11e−t/T1 ρ01e

−t/T2

ρ∗01e
−t/T2 ρ11e

−t/T1

)
, (7)
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where t is the execution time of the gate including iden-
tity, T1 and T2 are the single-qubit relaxation and de-
phasing times, respectively, and e−t/T1 = 1 − pAD and
e−t/T2 =

√
(1− pAD)(1− pPD) [20].

C. Approximate Amplitude and Phase Damping
Channel

Using a technique called Pauli twirling (PT ) [19], a
Pauli channel εT can be used to approximate the deco-
herence channel given in Eq 7 [21, 34], where

εPT (ρ) =
1

4

∑
A∈1−X,Y,Z

A†ε(AρA†)A. (8)

Twirling results in removal of the off-diagonal terms and
in turn allows expression of the channel as an asymmet-
ric depolarizing noise channel (given in Eq 1) with the
probabilities given by

pX = pY =
1− e−t/T1

4
, (9)

pZ =
1− e−t/T2

2
− 1− e−t/T1

4
, (10)

where the probabilities of failure are expressed in terms
of the execution time t of a gate, the qubit relaxation
time T1, and the qubit dephasing time T2 [21].

Assuming errors are independent, the probabilities of
two-qubit errors, for example when a CNOT gate fails,
are approximated as in [21] as

pI(XorY ) = p(XorY )I = pX(1− pX − pY − pZ),

p(XorY )(XorY ) = pXpX ,

pZ(XorY ) = p(XorY )Z = pXpZ ,

pIZ = pZI = pZ(1− pX − pY − pZ),

pZZ = pZpZ .

V. EXPERIMENTAL SETUP

We use the LIQUi|〉 software architecture [30] to
perform simulations of the surface code under noise.
LIQUi|〉 (Language-integrated Quantum Operations)
contains an embedded, domain-specific language for pro-
gramming quantum circuits as well as two circuit simula-
tion environments. The first environment allows efficient
simulation of Clifford circuits, based on the Gottesman-
Knill theorem, and is called Stabilizer simulation [17, 18].
The second environment, called Universal simulation, al-
lows full simulation of arbitrary quantum circuits.

While some of our noise models allow Stabilizer sim-
ulation, we have chosen for consistency to perform all
simulations within the Universal simulation environment.
LIQUi|〉 allows universal simulation of a number of qubits
that is limited by the main memory of the machine. We
ran simulations on a large HPC cluster containing sev-
eral hundred nodes with 32GB of RAM each, allowing
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FIG. 7. Insertion of identity gates during simulation of the cir-
cuit of Fig. 3(a). Four different identity gates are used based
on the other location type in the given timestep: prepare (P),
single-qubit gate (H), two-qubit gate (C), and measurement
(M).

simulation of up to roughly 30 qubits on each node. Our
simulations required thousands of hours of compute time.

A. Monte-Carlo Simulation

We restrict the operations in our circuits to the five
types given in Table I, which we refer to as location types:
I, H, CNOT, Prepare a |0〉 state, and Measure in the Z
basis. When no location type is specified on a qubit, the
identity gate I is applied to that qubit, where the dura-
tion of the identity is set by the location type occurring
on other qubits in the time step. When a qubit is idle
for a duration of t time steps (while gates are being ap-
plied on other qubits), we apply t identity gates to it to
simplify the simulations. Figure 7 shows the circuit of
Figure 3(a) with identity gates inserted. Further circuit
optimization can be performed, for example by delaying
qubit preparation and measuring a qubit as soon as gate
operations complete. Such optimization will result in im-
proved thresholds. For simplicity, we choose to maintain
gate alignment between stabilizers.

We perform Monte-Carlo simulation of the surface
code layouts to compute the logical error rates. At each
time step of the circuit, each qubit undergoes a location
type followed by the given noise model. For depolarizing
noise and approximate damping noise, we replace each
location type except measurement by the location type
followed by an X, Y , or Z gate (“error”) with probabil-
ity pX , pY , and pZ , respectively. In the case of measure-
ments, X, Y , or Z errors are placed before the measure-
ment location.

For amplitude and phase damping and the Pauli-twirl
approximation, we apply the noise model after every lo-
cation given the duration of the current time step t. The
duration values we consider are given in Table III of Sec-
tion V C.
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syndrome measurements

error corrections

time

FIG. 8. Illustration of the syndrome volume. Each window
consists of three rounds of the surface code. Corrections are
applied to the state after the final round in the window. The
state is then checked for a logical error. An example window
consists of the top three blue layers, where one layer overlaps
with the previous window.

B. Logical Error Rate Calculation

We calculate the logical error rate of a given layout
by simulating it under the various noise models. At the
start of each simulation, we initialize all data qubits to
|0〉 (if preparing |0L〉) or |+〉 (if preparing |1L〉) and run
a noise-free cycle of syndrome measurements to project
into an initial stabilizer state of the code. We refer to
this state as the quiescent state [1]. Note that for a code
with s stabilizers, there are 2s possible quiescent states,
since each stabilizer measurement can randomly project
to either a ±1 eigenstate. In the absence of noise, the qui-
escent state will be maintained during subsequent rounds
of the surface code.

After initialization of the quiescent state, the simula-
tion proceeds as follows:

1. Execute two rounds of the surface code with noise
(execute three if this is the first execution of the
loop). Record the list of syndrome flips between
contiguous rounds in the syndrome volume. For
the first round, compare to the quiescent state.

2. Apply the decoder (Section III) to the three-layer
syndrome volume to determine the most probable
set of error locations.

3. Apply noise-free corrections to the state. In prac-
tice, corrections can be tracked directly in software.

4. Check for a logical error by calculating the distance
of the state to the possible logical states. If the clos-
est logical state is incorrect, count a logical error.

5. Repeat from Step 1 until m logical errors are de-
tected.

After each logical error check (Step 4) the syndrome
volume contains a list of unpaired syndrome flips due
to the last two rules of our decoder. Each syndrome
volume, as shown in Fig. 8, thus contains three layers:
the final layer from the previous volume and two layers
from two additional rounds of the surface code. We refer
to the number of rounds in the volume as the window
size. We experimented with various window sizes and

found three was optimal for distance-three layouts. In
our simulations, m varies between 10 and 200 depending
on the size of the physical error rates.

We calculate the logical error rate per window since in
an experiment, the logical qubit will be measured after
completion of a window to ensure optimal decoding and
correction. For a window containing r rounds, the logical
error rate Pr is given by

Pr = m/R, (11)

where R represents the number of windows executed to
observe m logical errors. When r = 1, Eq 11 represents
the logical error rate per round of the surface code.

Since we only calculate Pr for distance d = 3, we es-
timate the pseudothreshold [35, 36], denoted as P th

r as
opposed to the asymptotic threshold as d → ∞. The
pseudothreshold can be defined by the crossing point be-
tween the line x = y and the plot p vs. Pr. If the error
rate p of each physical location type falls below the pseu-
dothreshold P th

r , then the code is guaranteed to lower
the logical error rate below p.

The logical error rate per window Pr and the logical
error rate per round P1 are related by

Pr ≈ rP1(P1)r−1 + (r − 2)P 3
1 (1− P1)r−3. (12)

For depolarizing noise, we calculate P1 (to compare
with previous work) and P3. For amplitude and phase
damping and the Pauli-twirl approximation, we calculate
P3.

C. Architectural Settings

For amplitude and phase damping and the Pauli-
twirl approximation, we consider several parameter set-
tings derived from superconductor and ion trap architec-
tures. These architectures are well-suited to 2-D, nearest-
neighbor operations required for the surface code. Table
III lists the different parameter settings considered for
each architecture. The time per round tr,{13,17,25} in-
dicates the time required to complete one round of the
surface code given the other parameters. These six archi-
tecture settings represent a range of round times between
165 ns to 602 × 103 ns for Surface-17 and Surface-25.
Note that the Surface-13 layout requires roughly twice
the amount of time of Surface-17.

Superconducting architectures have demonstrated fast
single- and two-qubit gate execution times in recent years
[16, 37, 38]. Current gate times are in the range of 10–
20 ns and 30–80 ns for single-qubit and two-qubit gates,
respectively, with experimental T1 times in the range of
0.06–1.2 µs [37, 38]. The DiVincenzo (SCD) [11] and
Helmer (SCH) [10] superconductor parameters are de-
rived from [21]. SCD requires longer CNOT gate times
than SCH . SCS and SCF represent parameters for slow
and fast gate times, respectively, based on recent experi-
ments [37, 38]. In particular, they account for µs prepa-
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TABLE III. Qubit relaxation, dephasing, and gate times assumed for different architectures. DiVincenzo and Helmer parameters
are taken from [21]. SC denotes superconductor; IT denotes ion trap architecture.

Parameter Description/Location SCS (Slow) SCF (Fast) SCD (DiVincenzo) SCH (Helmer) ITS (Slow) ITF (Fast)
T1 qubit relaxation time T1 T1 T1 T1 T1 T1

T2 qubit dephasing time T1 T1 2 T1 T1 0.1 T1 0.1 T1

tprep state preparation 5 µs 1 µs 40 ns 40 ns 100 µs 30 µs
t1 single-qubit rotation 100 ns 10 ns 5 ns 5 ns 1 µs 1 µs

tmeas measurement 5 µs 1 µs 35 ns 35 ns 100 µs 30 µs
tCNOT CNOT 1 µs 100 ns 80 ns 20 ns 100 µs 10 µs
tr,13 one round (S-13) 28.2 µs 4.82 µs 800 ns 320 ns 1202 µs 202 µs

tr,17&25 one round (S-17, S-25) 14.2 µs 2.42 µs 405 ns 165 ns 602 µs 102 µs

ration and measurement times, while SCD and SCH as-
sume ns times.

Ion traps are another promising architecture with
demonstrable quantum gates [12–15]. While trapped ion
devices tend to have longer gate execution times than
superconductor devices, they have been shown to have
much longer relaxation and dephasing times in the range
of 780–1800 ms [39, 40]. ITS accounts for gate times
observed in current experiments and longer preparation
and measurement times [39–41]. ITF accounts for gate,
preparation, and measurement times of a proposed scal-
able ion trap quantum computer model [13]. It assumes
that all gate operations are within one Elementary Logic
Unit (ELU) with 10–100 qubits arranged linearly. ELUs
are connected to each other using photonic quantum
channels to achieve modular scalability.

VI. EXPERIMENTAL RESULTS

In this section we analyze numerical Monte-Carlo sim-
ulations of the distance-three surface code layouts under
the multi-parameter noise models. We first determine
the distance-three layout that admits the highest pseu-
dothreshold under depolarizing noise. We then study the
performance of the preferred layout under several realis-
tic noise models. In particular, for the six architectural
settings we compare the accuracy of the approximate am-
plitude and phase damping channel, which can be ef-
ficiently simulated, to the amplitude and phase damp-
ing channel, which requires universal simulation. In each
plot, error bars indicate the upper bound statistical sig-
nificance using the standard deviation.

A. Depolarizing Noise

We begin by calculating the symmetric depolariz-
ing noise threshold for each distance-three layout. In
this model, each location fails with probability p. For
single-qubit locations, PI = 1 − p and PX = PY =
PZ = p/3. For two-qubit locations, PI,I = 1 − p and
P{I,X,Y,Z},{I,X,Y,Z} = p/15. Since the circuits and round
times differ, we expect the pseudothreshold to vary for
each layout.

TABLE IV. Comparison of thresholds and pseudothresholds
for the surface code under symmetric depolarizing noise.

Code Threshold P th
1,X P th

3,X

Surface-13 - 3.0× 10−4 1.2× 10−4

Surface-17 - 8.0× 10−4 2.0× 10−4

Surface-25 - 5.0× 10−4 1.4× 10−4

Wang (2011) [8] 1× 10−2 - -
Fowler (2012) [7] 9× 10−3 ∼ 2× 10−3 -

Figure 9 plots the location error rate p versus the log-
ical X error rate per round P1,X for Surface-13, 17, and
25, where each layout encodes a logical |1L〉 state and
we check for a logical bit-flip XL. Each point represents
between 10 and 200 independent simulation runs.

The corresponding pseudothresholds calculated per
round (P th

1,X) and per window (P th
3,X) are given in Table

IV. We find that Surface-13 exhibits slightly lower pseu-
dothresholds due to its higher circuit depth. Similarly,
Surface-25 requires more data qubits and syndrome mea-
surements, thus exhibiting a small decrease in its pseu-
dothreshold as compared to Surface-17.

Table IV also contains the pseudothreshold and thresh-
old calculated by Fowler et al. for Surface-25 [7]. Our
Surface-25 pseudothreshold is slightly lower than in [7]
due to the assumed window size. Our simulations use a
constant window size (Section V) while Fowler et al. op-
timize the window size for each value of p. They sweep
over a range of window sizes from 1 to 25780 and for
each p between 0.05 and 0.0001. We use a static, small
window in order to mimic future experimental implemen-
tations which are likely to be limited to a small number of
rounds. While it has been shown that a smaller window
can lead to some logical error patterns not present when
using a larger window [7, 42], we find that for windows of
size 2–3 , our per-round pseudothreshold closely matches
that in [7, 42].

We also calculate the logical Z error rate PL,Z for each
layout by encoding a logical |+L〉 state and checking for
a logical phase flip ZL. Figure 10 plots the location error
rate p versus P1,{X,Z} for Surface-17. It is apparent from

the plot that the pseudothresholds P th
1,X and P th

1,Z are
comparable. We find similar results for Surface-13 and
Surface-25.

Based on these results, we conclude that Surface-17 is
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FIG. 9. Location error rate p versus logical error rate P1,X

for a logical |1L〉 state encoded in (a) Surface-13, (b) 17, and
(c) 25 under symmetric depolarizing noise.

the preferable layout. It requires roughly half the depth
of Surface-13 and significantly fewer qubits and gates
than Surface-25. In addition, Surface-17 exhibits slightly
higher pseudothresholds than the other layouts. For the
remaining experiments, we thus perform all simulations
based on the Surface-17 layout.
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FIG. 10. Surface-17 logical X error rate P1,X (red; qubit
encoded in |1L〉) and logical Z error rate P1,Z (green; qubit
encoded |+L〉) under depolarizing noise.

B. Amplitude and Phase Damping vs. Pauli
Twirling

In this section, we compare the accuracy of the ap-
proximate amplitude and phase damping channel using
Pauli twirling to the amplitude and phase damping chan-
nel. We first verify that our logical Z and X error rates
per round for the Pauli-twirl approximation on Surface-
17 align with those reported in [21]. For T1 = 10 µs,
we find PZ,1 = 4.27 × 10−3 and PX,1 = 4.41 × 10−3.
These results are very similar to [21]; small differences
are expected since Surface-25 is used in [21].

We then calculate the logical Z error rate per window,
P3,Z , for a qubit in the encoded |+L〉 state in Surface-17
for both channels for the Helmer setting (SCH). Figure
11(a) plots T1 versus P3,Z for approximate (solid red)
and amplitude and phase damping (dashed green). We
see that the approximate channel using Pauli twirling
results in a logical Z error rate that closely matches that
of the actual channel.

We also calculate the logical X error rate per window,
P3,Z , for a qubit in the encoded |1L〉 state in Surface-
17 for both channels under SCH , plotted in Fig. 11(b).
We find that the approximation channel results in much
higher logical X error rates, in particular as the qubit
relaxation time T1 increases. Pauli twirling results in a
pessimistic estimate of the error rate, indicating that the
threshold under decoherence may be significantly better
than previously calculated with this technique.

Since the Pauli-twirl approximation aligns well for
phase-flip errors, we further compare its performance on
bit-flip errors. Fig. 12 plots T1 time (µs) versus memory
duration (µs) versus the logical X failure rate P3,X of a
qubit encoded in |1L〉 in Surface-17 for the SCH setting
under (a) the Pauli-twirl approximation and (b) ampli-
tude and phase damping. On the left, the blue surface
represents the amplitude damping probability of an un-
encoded qubit in |1〉 for a given T1 time and memory
duration. Since the qubit is in |1〉, phase damping does
not apply. The yellow surface represents the logical error
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FIG. 11. Comparison of the logical error rate of a qubit
encoded in Surface-17 under amplitude and phase damping
(dashed green) and the Pauli-twirl approximation (solid red)
for the SCH setting. (a) Logical Z error rate P3,Z (on logical
|+L〉 state); (b) Logical X error rate P3,X (on logical |1L〉
state).

rate P3,X of an encoded qubit for a given T1 time and sur-
face code round time (see Table III). The orange surface
indicates the upper error bar of P3,X . For the yellow and
orange surfaces, the encoded qubit undergoes the surface
code three-round window time. For the blue surface, the
unencoded qubit undergoes the given memory duration.

The region where the blue surface lies above the orange
and yellow surfaces represents the regime where Surface-
17 encoding improves the logical error rate of the qubit
(similar to being below pseudothreshold). The region is
larger in Fig. 12 (b) than Fig. 12 (a), indicating that Pauli
twirling results in a pessimistic estimate of the logical
error rate.

The 2D plots on the right are a view from the +z-axis.
The blue and red regions indicate T1 times (x-axis) for
which encoding a qubit in |1L〉 in Surface-17 reduces or
increases, respectively, the logical error rate compared to
an unencoded |1〉 qubit in memory for a given duration
(y-axis). The purple region indicates the upper error bar
of P3,X where the orange and blue surfaces cross in the
3D plots. Surface-17 again demonstrates superior per-
formance under amplitude and phase damping compared
to Pauli twirling. For example, for T1 = 1 µs, memory

durations above 150 ns result in lower logical error rates
for an encoded qubit than an unencoded qubit, while
the Pauli-twirl approximation lowers error rates only for
memory durations longer than 350 ns.

C. Amplitude and Phase Damping

Figure 13 shows the same 2D plots for Surface-17 for
all six architecture settings under amplitude and phase
damping. For each architecture, the y-axis ranges from
1 µs to the time per surface code window. In all graphs,
we see that as T1 increases, encoding improves the logical
error rate for a larger range of memory durations. This
behavior is expected since the amplitude damping prob-
ability monotonically increases with memory duration.

In Fig. 13(a), at T1 = 1 µs we observe that for the SCS

parameters, encoding does not improve the logical error
rate for any plotted memory duration. However, with 10
times faster gates (SCF ), we see performance improve-
ment, as shown in Fig. 13(b). At T1 = 1 µs, encoding
provides a better logical error rate than an unencoded
qubit in memory for at least 8 µs.

The SCH setting accounts for 100 times faster prepa-
ration and measurement than SCF and roughly 10 times
faster gates. The faster times lead to significantly better
performance under encoding. For example, at T1 = 1 µs
in Fig. 13(d), the logical error rate decreases due to en-
coding for memory durations longer than 0.15 µs.

Comparing Fig. 13(c) and (d), we find CNOT time
strongly influences performance. A CNOT gate is four
times longer in SCD than SCH . The longer two-
qubit gate time is reflected in the poorer performance of
Surface-17 under SCD parameters. At T1 = 1 µs, SCD

only indicates logical error rate reduction due to encoding
at memory durations roughly 3 times longer than those
required for SCH .

Fig. 13(e) and (f) show similar results for the ion trap
settings. While ITF assumes 10 times faster CNOT
gates, both ITS and ITF yield lower logical error rate
upon encoding for a range of T1 times. ITS results in
improvements for memory durations longer than 300–400
µs, while ITF results in improvements for memory dura-
tions above around 15 µs.

In Figure 14, we plot qubit relaxation time T1 (µs) ver-
sus logical error rate P3,X (red) or amplitude damping
probability (blue) for the six architecture settings (anal-
ogous to Fig. 11(b)). All plots assume a three-round
memory duration. From the plots, the logical error rate
for each architecture for a given T1 time can be extracted.
As gate times and T1 times improve, the logical error rate
decreases. An order of magnitude improvement in logi-
cal error rate can be obtained, for example, in improving
gates time from those of SCF to those of SCH .

The plots also indicate that near-term experiments
may be able to detect improved logical error rates due
to encoding, providing experimental evidence of surface
code error correction. For example, for T1 = 1 µs, no
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(a) Pauli-twirl approximation

(b) Amplitude and phase damping

FIG. 12. (Left) 3D plots of T1 time (µs) vs. memory duration (ns) vs. P3,X for the SCH setting under (a) the Pauli-twirl
approximation and (b) amplitude and phase damping. The blue surface represents the amplitude damping probability at a
given T1 and memory duration (unencoded qubit). The yellow surface is the simulated logical error rate given T1 for a qubit
encoded in the |1L〉 state in Surface-17. The orange surface indicates the upper error bar on P3,X . (Right) 2D plots from
the +z-axis. The blue and red regions indicate a range of T1 times (x-axis) for which encoding a qubit in the |1L〉 state in
Surface-17 reduces or increases, respectively, the logical error rate compared to an unencoded |1〉 qubit in memory for a range
durations (y-axis).

difference in the logical error rate can be detected be-
tween an encoded and unencoded qubit given settings
SCS and SCF . However, both SCD and SCH settings
indicate significant difference in the logical error rate on
an encoded versus unencoded qubit. In the case of both
ion trap settings, a difference in logical error rate can be
detected starting at T1 = 10 µs.

We conclude that gate durations in the SCS setting
are too slow for Surface-17 to decrease the logical error
rate given realistic T1 times. However, given gate dura-
tions that fall between the SCF and SCH settings and
current T1 times, encoding a qubit in Surface-17 results
in improved error rates over an unencoded qubit. For
both superconductor and ion trap architectures, near-
term experimental implementations could demonstrate
surface code error correction of a single logical qubit, and

demonstrate improvements in the logical error rate. We
find that previous estimates of 2.6–2.8 µs T1 times [21]
to achieve improved logical error rates are too high, and
in fact at only 1 µs T1 time, the logical error rate can be
improved using Surface-17.

VII. CONCLUSION

We have analyzed three distance-three surface code
layouts under realistic noise models. Under symmetric
depolarizing noise, we find the pseudothreshold is slightly
lower for Surface-13 as compared to Surface-17 and 25.
We have compared the performance of Surface-17 simu-
lated under a Pauli-twirl approximation and amplitude
and phase damping. Our results show that Pauli twirling
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FIG. 13. Plots of T1 time (µs) versus memory duration (µs) for six architecture settings under amplitude and phase damping.
The blue and red regions indicate a range of T1 times (x-axis) for which encoding a qubit in |1L〉 in Surface-17 reduces or
increases, respectively, the logical error rate compared to an unencoded |1〉 qubit in memory for a range durations (y-axis).

pessimistically estimates the logical bit-flip rate. Thus
the surface code threshold under realistic noise may be
significantly better than previously calculated.

We have also simulated the 17-qubit surface code un-
der amplitude and phase damping for six architecture
settings. While gate durations in the SCS setting are
too slow, gate durations between SCF and SCH with
current T1 times show improved logical error rates for
a qubit encoded in Surface-17. For both superconduc-
tor and ion trap architectures, current state-of-the-art
experiments may be able to demonstrate surface code er-
ror correction. For example, with T1 = 1 µs and SCH

settings, logical error rates will improve by encoding in
Surface-17 and may be detected in experiment.

Methods of approximating decoherence using Clifford
gates have recently been shown to be more accurate than
Pauli twirling [22, 24]. However, studies have only been
conducted at the gate operation level as opposed to the
circuit level of a given code. A direction for future work
is to simulate these noise models on Surface-17 to com-
pare to amplitude and phase damping. Another direc-
tion is to determine the performance of Surface-17 under
leakage. Finally, development and simulation of realistic
noise models for specific architectures will be important
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the duration of three rounds of the surface code.

for guiding experimental surface code implementations.
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