Domino: Understanding Wide-Area, Asynchronous
Event Causality in Web Applications

Ding Li*
University of Southern California
dingli@usc.edu

Abstract

In a modern web application, a single high-level action like
a mouse click triggers a flurry of asynchronous events on
the client browser and remote web servers. We introduce
Domino, a new tool which automatically captures and ana-
lyzes end-to-end, asynchronous causal relationship of events
that span clients and servers. Using Domino, we found un-
characteristically long event chains in Bing Maps, discov-
ered data races in the WinJS implementation of promises,
and developed a new server-side scheduling algorithm for
reducing the tail latency of server responses.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—distributed debugging,
testing tools

General Terms Algorithms, Performance, Measurement

Keywords JavaScript, Causality Tracking, Performance de-
bugging, Web application

1. Introduction

A modern web application spans multiple clients and servers.
A single, high-level request from a user triggers a flurry
of asynchronous events on her client browser as well as
on remote servers. Understanding the causal relationships
between those events is crucial for diagnosing bugs and
optimizing performance.

A rich literature exists on causality analysis for dis-
tributed systems, but prior work fails to capture the complex,
wide area event causalities that characterize modern web
applications. For example, systems like X-Trace [12] and
Pinpoint [4] track a client’s request ids across multiple low-
level events; however, X-Trace focuses on server-side event

*Work done while authors were at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SoCC ’15, August 27 - 29, 2015, Kohala Coast, HI, USA.

Copyright © 2015 ACM 978-1-4503-3651-2/15/08. .. $15.00.

DOI: http://dx.doi.org/10.1145/2806777.2806940

James Mickens*

Harvard University
mickens@seas.harvard.edu

Suman Nath, and Lenin
Ravindranath

Microsoft Research
{suman.nath, lenin}@microsoft.com

causalities, ignoring the client-side JavaScript events that are
often the source of application bugs [15]. ApplInsight [18]
and Timecard [19] do track fine-grained client-side events
of .Net applications, but they lack fine-grained knowledge
of server-side events. Thus, these systems cannot optimize
server-side scheduling using knowledge of the "wide-area"
event stream that spans both clients and servers (§3).

In this paper, we introduce Domino, a tool that captures
and analyzes end-to-end event causalities in web applica-
tions. Domino automatically rewrites client-side JavaScript
code, interposing on the event registration interfaces to de-
tect when a new event fires, and how that event causes addi-
tional events. To track event dependencies across the wide-
area, Domino leverages the fact that the JavaScript runtime is
not only used on client browsers, but also on the server-side
via Node.js [14]. Thus, Domino can use a single rewriting
engine to generate event logs on both clients and servers; by
propagating request ids across RPCs, Domino tracks causal
relationships that span the wide area. This tracking also
works for mobile application frameworks like WinJS [16]
and PhoneGap [1] that use client-side JavaScript runtimes.

Using Domino, we analyzed event causalities in Bing
Maps, finding an unusually long chain of events that we op-
timized to reduce network latency. When applied to WinJS
apps, Domino discovered potential race conditions that
arise from developer misunderstanding about how WinJS
implements asynchronous callbacks. Domino’s end-to-end
causality information is also leveraged by a new server-side
scheduling framework for Node applications—compared
to shortest-job-first scheduling, our new scheduler reduces
client-perceived tail latencies by up to 37%, with at worst
6% increase in average latencies.

2. Design

Domino defines a causal tree as a series of asynchronous
events that are triggered by an initial, high-level application
activity such as a page load or a mouse click. More for-
mally, in a causal tree, (a) each node represents a callback,
(b) the execution of a child callback is caused by a parent
callback, and (c) the execution of the root callback is caused
by an initial, high-level application activity. Domino’s causal

Web req. Database Processing
Serven handler callback callback
(Node.js) \A \A
Ri
Web request Sholes
Client Click GPS esponse Ul
(Js) handler callback andler update

@User click

Figure 1. A causal tree from a location-aware web page.
Solid horizontal bars represent the execution of asyn-
chronous callbacks, and red arrows represent the causal re-
lationships between callbacks.

Time

trees are similar to transactions in Applnsight [18]', but
Domino’s trees can span clients and servers. Figure 1 shows
a simple causal tree in a location-aware web application.
When a user clicks a button, the client-side of the applica-
tion gathers GPS data, and then sends that data to a cloud
server. In response, the server queries its database for nearby
restaurants and returns the results to the client. Finally, the
client processes the results and displays them to the user. The
end-to-end causal tree consists of the callbacks and causal re-
lationships shown in Figure 1. In the real world, causal trees
are often more complex [2, 8, 18].

To capture causal trees, Domino instruments the JavaScript
execution contexts that exist on clients and servers. For ex-
ample, a web browser defines two kinds of contexts: frames
and Web Workers [27]. Each execution context is single-
threaded and event-driven. Thus, after a context runs its ini-
tialization code, the context only executes additional code
in response to events like timer expirations and user-driven
GUI interactions. To listen for events, a context registers
event handlers with the JavaScript runtime; the runtime will
fire those handlers when the associated events occur.

As shown in Figure 3, Domino’s rewriter injects the
Domino JavaScript library into each execution context. The
library allows Domino to interpose on the callback registra-
tion interfaces within each execution context. Using this in-
terpositioning, Domino can detect the creation of new causal
trees, and track causal tree ids across asynchronous events
which may span machines.

2.1 Handling Client-side Events

Timers: Interfaces like setTimeout(cb, delayMs) and
setInterval(cb, periodMs) allow an application to pro-
vide a callback that the JavaScript runtime will invoke at a
preset time in the future. As shown in Figure 2, Domino in-
terposes on timer registration functions using JavaScript’s
powerful reflection mechanisms. In JavaScript, many of the

!'Similar to Applnsight’s transactions, Domino’s causal trees do not capture
data dependencies. For example, Domino does not capture the causal de-
pendency between callbacks C| and C, when C; changes a shared state and
the change triggers execution of C,.

var __setTimeout = setTimeout;
setTimeout = function(cb, delayMs){
var parentContext = contextStack.top();
var wrappedCb = function(){
var childContext = getNewContextId();
log(childContext, parentContext);
contextStack.push(childContext);
cb.apply(this, arguments);
contextStack.pop();
b5
return __setTimeout (wrappedCb, delayMs);

Figure 2. The Domino JavaScript library interposes on
timer registration interfaces like setTimeout ().

Node

Domino
Callback stack]

][ﬁ rans. IﬁCalIback Parent

Server
Node

Domino
JS library

Domino
Callback stack]

][E rans. ID|Callback| Parent

Frame

JS library

Frame

[Domino

Client

Figure 3. Domino’s architecture. The Domino rewriter in-
jects the Domino JavaScript library into the client-side and
server-side of an application. The library logs event data and
tracks causal relationships between those events. For WinJS
applications, the rewriter also instruments code which gener-
ates promises (§2.1).

built-in runtime interfaces are mutable; this means that a
JavaScript library which runs before the rest of the appli-
cation can interpose on runtime interfaces [15], similar to
how LD_PRELOAD interpositioning works with Linux bina-
ries [6, 7, 28].

Figure 2 shows how Domino uses a callback stack to
trace causality across multiple events on the same machine.
Domino assigns a unique integer id to each top-level event
handler ;. When A; creates a new event handler /;, Domino
logs the parent-child relationship between i and j (see Line
6 in Figure 2). As discussed in Section 2.3, h; and /; may re-
side on different machines, so Domino’s logging statements
must identify the host which executed a particular handler.

XMLHttpRequest: Using the XMLHttpRequest object,
applications can send HTTP requests to remote servers. To
send such a request, an application executes code like the
following:

var xhr = new XMLHttpRequest();

xhr.open("GET", "http://foo.com");
xhr.onreadystatechange = function(){

//Callback for the arrival of
//network data.
iﬂr.send();
The Domino JavaScript library redefines the XMLHt tpRequest
constructor so that the method returns a wrapper object for
the newly constructed XMLHt tpRequest instance. The wrap-
per allows Domino to interpose on callback registrations for
the onreadystatechange event; as with setTimeout(),
Domino uses a stack to associate each XMLHttpRequest
callback with its parent callback in the causal tree.
XMLHttpRequests are typically used for asynchronous

network requests, but XMLHt tpRequests also define a syn-
chronous interface. With the latter execution model, appli-
cations do not define onreadystatechange callbacks, and
send () blocks until the network data has arrived. When an
XMLHttpRequest object is used in synchronous mode, its
wrapper does not push entries onto Domino’s callback stack.

DOM? events: JavaScript code uses the Document Object
Model (DOM) to collect GUI events [26]. The DOM tree
reflects a page’s HTML tree into the JavaScript runtime; for
each HTML tag, there is a corresponding JavaScript object
in the DOM tree. An application attaches event callbacks
to DOM objects in order to receive notifications of GUI
activity.

The DOM specifies two interfaces by which applications
can register callbacks. DOM2 callbacks are registered by in-
voking the addEventListener (evtName, cb) methodon
the relevant DOM node. For example, to listen for mouse
clicks on a <button> HTML tag, an application might exe-
cute code like the following:

var button = document.getElementById("someId");
button.addEventListener("click", cb);

To interpose on DOM2 callback registration, the Domino

JavaScript library defines a wrapper for addEventListener().

Understanding how Domino interposes on that method re-
quires an introduction to JavaScript’s class system. JavaScript
implements classes using prototypes [24] instead of tradi-
tional, statically-declared class definitions. In JavaScript,
each instance of the class C has a special property called
__proto__; that property points to the "exemplar" or proto-
type object for instances of C. The methods and properties
of the prototype object define the default methods and prop-
erties for each instance of C. To create an inheritance tree,
developers set the __proto__ field of a prototype object
reference the prototype object of the parent class.

In a web browser, the DOM elements which export the
addEventListener () interface are derived from a small
number of classes like Node. The Domino JavaScript library

wraps methods like Node . prototype.addEventListener(),

allowing Domino to manage the callback stack and record
when callbacks fire.

DOMO events: The DOM defines another mechanism for
event registration. In the DOMO model, the callbacks for a

DOM element are directly specified in the HTML for that
element. Here is an example of such a callback:

<button onclick="alert(’hi’)">Click me</button>

In that example, the callback is an anonymous function
whose code is alert ("hi’).

DOMO registration bypasses the addEventListener ()
interface, and thus bypasses Domino’s interpositioning logic
for DOM2 event handlers. To detect DOMO registrations,
Domino could rewrite HTML, wrapping DOMO callback
declarations in logging code. However, applications can also
declare DOMO callbacks using JavaScript code. For exam-
ple:

var button = document.getElementById("someId");
button.onclick = function() {alert("hi");};

HTML rewriting would not allow Domino to capture these
kinds of DOMO registrations, and browser idiosyncrasies
make it difficult for Domino to reliably interpose on DOMO
object properties like Node . prototype.onclick [15]. Thus,
Domino uses a different approach.

In a JavaScript runtime, the window object is the log-
ical root of the DOM tree; the browser passes each new
DOM event to window before handing the event to the
rest of the tree. For each DOMO event type (e.g., onclick,
onkeypress), Domino’s JavaScript library registers a window-
level callback. Using these handlers, Domino can check
whether an event will trigger any DOMO handlers before
the event actually hits those handlers. For example, consider
this simple HTML.:

<html>
<body>
<button onclick="cb()">
Click me.
</button>

</body>
</html>

When the user clicks the button, the browser creates a new
click event. The browser passes the event to window, and
then to each DOM node along the path from the <html>
tag to the tag that generated the event (in this case, the
path will be <html> to <body> to <button>). When the
window object receives the event, Domino’s callback fires.
That callback inspects the downstream event path and checks
whether any of the tags have DOMO event handlers. If so,
the window callback wraps those handlers in logging code
before allowing the event to propagate downstream.’

The careful reader might wonder why Domino cannot
use window-level handlers to dynamically wrap DOM2 call-

2When an event reaches a DOM node, the browser executes the node’s
DOM?2 handlers before executing any DOMO handlers. Since Domino’s
JavaScript library runs before any application-defined code, Domino is guar-
anteed to register its DOM2 handlers before any application-defined han-
dlers are registered. Thus, Domino cannot miss the registration of window-
level DOMO handlers that the application defines.

backs. The reason is that DOM2 callbacks are not enumer-
able, i.e., given a particular DOM node, Domino cannot re-
trieve a list of the node’s DOM2 handlers. Thus, Domino
must interpose on addEventListener (), as we described
earlier in this section.

postMessage(): A single web page may contain multiple
frames or Web Workers [27]. Each frame or Web Worker
is a separate JavaScript runtime with a unique window ob-
ject. Different runtimes communicate with each other us-
ing postMessage (); the recipient defines a callback for the
onmessage event, and the sender generates a new message
by invoking recipientWindow.postMessage(data).
Domino’s rewriter injects the Domino JavaScript library
into each frame and Web Worker in an application. The li-
brary wraps postMessage() in code which silently tags
each outbound message with a unique integer id. The library
also defines its own onmessage handler; this handler, which
runs before any application-defined handler, logs the mes-
sage id and the sending frame of a message before passing it
to subsequent onmessage handlers in the recipient frame.

WinJS: WinlS [16] exposes the Windows Runtime via
JavaScript bindings. For example, using WinJS, JavaScript
code can access the local file system, and leverage native
interfaces for touch-based GUI interaction. WinJS allows
developers to write standalone (i.e., non-browser hosted)
applications which use HTML, CSS, and JavaScript.

Many of the WinJS APIs are asynchronous and promise-
based. A promise p is an object that represents a potentially
uncompleted asynchronous operation. Applications invoke
p.then(cb) to register a callback which WinJS will fire
when the operation completes. For example, WinJS exports
a promise-based version of the standard XMLHt tpRequest
interface:

var p = WinJS.xhr({url:"http://foo.com"});
p.then(function(result){
alert(result.responseXML);
3
To track causality across promise callbacks, Domino inter-
poses on callback registration via then(), wrapping call-
backs in code which maintains the callback stack. Logi-
cally speaking, this is similar to how Domino interposes on
setTimeout (). However, then() is implemented by the
WinJS runtime, not the JavaScript engine, and WinJS pre-
vents JavaScript code from replacing then() with wrapper
code. So, Domino’s rewriter is forced to manually instru-
ment each WinJS call that returns a promise:
var p = wrapPromise(WinJS.xhr ({url:"http://
foo.com"}));
The wrapPromise() allows Domino to define a proxied
promise object which maintains the callback stack.

2.2 Handling Server-side Events

Node.js provides a JavaScript environment to the server-side
of a web application. Since the server-facing portion of the

application lacks a GUI, Node does not expose DOMO or
DOM?2 events. However, Node does support timers and Web
Worker-like execution contexts called processes. Domino
tracks causality across these components using the strategies
that are described in Section 2.1.

Node defines a variety of 10 mechanisms that are not
supported by web browsers. For example, Node allows
JavaScript to access databases, open network sockets, and
read and write the local file system. To generate such IOs,
developers must first use the require() statement to in-
clude the relevant IO interfaces:

var fs = require("fs");
fs.readFile("/etc/hosts", "utf8", cb);
//Invoke cb() when file data
//is ready.

Domino’s server-side JavaScript library interposes on the
require () statement, wrapping the returned objects in code
which maintains the callback stack.

2.3 Tracking Wide-Area Trees

Sections 2.1 and 2.2 describe how Domino manages call-
back stacks on the client-side and the server-side. To track
wide-area causal trees, Domino must link the two stacks.
Domino does this by propagating event handler ids across
XMLHttpRequests. On the client-side, Domino’s wrapper
for XMLHt tpRequest.send() silently injects a new HTTP
header which contains the id for the handler which invoked
send (). On the server-side, Domino wraps the Node meth-
ods that accept incoming HTTP requests; the wrapped meth-
ods extract the handler id in the HTTP header, and push that
id onto the server’s callback stack.

3. Case Studies

In this section, we describe three case studies which demon-
strate how Domino can help developers to find bugs and im-
prove performance.

Bing Maps: Domino’s causal trees can span both clients
and servers, but in some situations, Domino may lack in-
sight into server-side events. For example, the server-side
code might not run atop a JavaScript engine, or the developer
may be unable to modify the server-side code to pass through
Domino’s rewriting engine. In these scenarios, Domino can
still uncover interesting behavior in the client-side portion of
the spplication. To demonstrate this, we used the Fiddler web
proxy [23] to inject Domino.js into the client-side of Bing
Maps. Domino discovered several causal trees that were sur-
prisingly deep. Figure 4(bottom) depicts such a tree. The
tree corresponds to Bing Maps asynchronously (but sequen-
tially!) downloading eight JavaScript libraries; as shown in
the figure, one event handler is fired after each download
completes.

Such deep trees often leave network bandwidth under-
utilized, lengthening page load time [25]. We contacted the

Parallel downloads

- Sequential
= downloads -
-/).1-/)
_—
0 40 80 120
Time (ms)

postWriteCB ()
I

a 3
S outputStreamCB ()
© 2
2
S openFileCB ()
0 2 4 6
Time (ms)

Figure 4. A long, sequential AJAX chain in Bing Maps
(bottom), and an optimized, parallel version (top).

Bing Maps team, who informed us that the sequential down-
loads were optimistic prefetches that were not on the criti-
cal path for the loading of Bing Map’s primary, foreground
content. Nevertheless, such long, serial chains may lead
to incomplete prefetching if a user visits and then quickly
navigates away from Bing Maps. Thus, we implemented a
new prefetching scheme which aggressively issues parallel
downloads if Domino detects that there are no outstanding
causal trees that involve network requests (the condition en-
sures that prefetching does not interfere with other network
requests). We omit the implementation and evaluation de-
tails due to space constraints, and merely note that the new
scheme is 59%-70% faster in a variety of network condi-
tions.

WinJS: According to the JavaScript language specifica-
tion [9], each JavaScript execution context (§2) is single-
threaded, i.e., at any given time, at most one call chain can be
active. This frees developers from worrying about race con-
ditions on JavaScript state. However, as new asynchronous
constructs are added to the JavaScript language, call chain
atomicity may be violated due to implementation errors or
developer confusion about how new constructs interact with
old ones. Domino can automatically detect these problems
by scanning causal trees and finding event handlers whose
executions overlap in time.

For example, JavaScript promises [5] are a new mecha-
nism for deferred computation—an application launches an
asynchronous method, passing an onFulfilled callback
which is invoked when the method completes. There are
two main specifications for promises: Promises/A [5] and
Promises/A+ [17]. Promises/A+ mandates that callbacks
must be executed asynchronously. However, Promises/A is
ambiguous about whether onFulfilled can be fired imme-
diately and synchronously, i.e., as soon as the application
launches the ostensibly asynchronous method. On a Promis-
es/A system, if (1) onFulfilled is invoked synchronously,
(2) it modifies state that is accessed by the rest of the call
chain, and (3) the developer interpreted Promises/A as disal-
lowing synchronous behavior, then race conditions can arise.

Many JavaScript runtimes implement Promises/A+, but
WinJS implements Promises/A, meaning that WinJS may

Figure 5. Overlapping events in the same causal tree indi-
cate a potential race condition.

synchronously invoke promise callbacks. As a result, Domino
found potential race conditions in several WinJS applica-
tions. For example, the Deluxe Mahjong app [11] contains
code that is similar to the following:

function openFileCb(£f){

f.openOutputStream() . then(outputStreamCb) ;
}
function outputStreamChb(s){
s.write(data).then(postWriteCh);
}
function postWriteCb(){
alert("Finished");

}
OpenFileAsync (fName) . then(openFileCb) ;

Figure 5 depicts timing information of callbacks of a
causal tree that Domino generated during a run of the appli-
cation. The callback executions overlapped because WinJS
executed the callbacks synchronously; for example, WinJS
invoked outputStreamCB at 2 ms, before openFileCB fin-
ished at 6 ms. Such behavior is compliant with the Promis-
es/A specification, but it can lead to subtle bugs if developers
assume the presence of traditional JavaScript concurrency se-
mantics.

Server-side scheduling: 1In our last case study, we high-
light the benefit of Domino’s wide-area causal trees. For web
applications, reducing the average response latency is obvi-
ously important. However, reducing fail latency is an increas-
ingly critical goal as datacenters strive to meet SLAs and
provide interactive services [30, 31]. Prior work has shown
that, for a heterogeneous workload, servers can use shortest-
job-first (SJF) scheduling to dramatically reduce average re-
sponse latencies over FIFO [10]. Unfortunately, SJF can re-
sult in high tail latencies since it ignores how much time a
request has already spent before arriving at the server.

To address this, we created a new server-side schedul-
ing policy, which we call longest-wait-time-first (LWTF). It
prioritizes jobs based on the sum of two values. The first
is the estimated processing time (PT) of the job (note that
SJF selects job with the smallest PT). The second is the
total waiting time (WT) of the job at the client, in the net-
work, and in the server queue. When the server needs to
choose a job to run, it picks the job with the largest value of

(PT+WT). In our implementation, PT (for both LWTF and
SJF) is estimated by offline profiling, while WT is extracted
from Domino’s causal trees.>

To evaluate the scheduling algorithms, we built a sim-
ple web application whose architecture was inspired by that
of Happy Pancake,* a popular dating website in Sweden. A
client-side webpage allows users to register, discover poten-
tial dates, and message them. On the server-side, a stateless
Node server acts as a front-end, directing user requests to
one of three storage back-ends: a MongoDB database which
stores user profiles, a RESTful blob store which contains
user messages, and an in-memory cache which serves re-
cently accessed messages.

In our scheduling experiments, we examined three types
of client requests: (1) user registration, where the front-end
stores profile information in MongoDB; (2) user search,
where the front-end queries MongoDB to find people match-
ing certain criteria; and (3) messaging, where the front-end
accesses the in-memory cache and the blob storage to read
or write messages. Message sizes were distributed according
to empirical observations of instant messaging traffic [29],
with an average message size of 52 bytes. Profile sizes were
distributed according to [13], with an average size of 10KB.

As shown in Figure 6, LWTF dramatically reduces tail
latencies compared to SJF, while only slightly increasing
average latencies. The reductions in tail latency are unlocked
by knowledge of Domino’s end-to-end causal trees.

4. Related Work

Applnsight [18] is a profiling tool for mobile applications.
Like Domino, Applnsight uses rewriting to interpose on
event handling interfaces; Applnsight uses binary rewriting
of .NET applications, whereas Domino uses source code
rewriting of JavaScript applications. Unlike Domino, Ap-
plInsight lacks fine-grained knowledge of server-side events.
Timecard [19], an extension of Applnsight, does track events
across the client/server boundary. However, Timecard as-
sumes that the server-side portion of a causal tree has a sin-
gle link. In contrast, Domino allows the server-side causal
graph to be a full tree. As a result, Domino can handle more
complicated scheduling decisions than Timecard.

Prior to Timecard, a variety of additional systems pro-
vided some notion of wide-area event tracing [3, 4, 12,
20-22]. The key difference between those systems and
Domino is that Domino tracks client-side events, not just
network messages and server-side component flows, be-
cause in modern, interactive web applications, client-side
events are just as important as server-side activity. Moreover,
Domino tracks only JavaScript events, while systems like
XTrace [12] and Pinpoint [4] can track low level network
events as well. Prior tracing frameworks like Dapper [22],

3 Clocks at client and server are synchronized using techniques from Time-
card [19].

4 http://www.happypancake.com/

9000

mSJF mLWTF

6000

, L Ml

(5,5,10) (10,10,20) (15,15,30) (20,20,40) (25,25,50) (30,30,60)
Workload

(a) LWTF has 17%-37% lower tail (99" percentile) latencies than SJF.
HSJF mLWTF

400
200 ‘\ ‘\ “ ||
0

(5,5,10) (10,10,20) (15,15,30) (20,20,40) (25,25,50) (30,30,60)

Workload

Response time (ms)

600

Response time (ms)

(b) LWTF’s average latencies are at worst 6% higher than those of SJF.

Figure 6. SJF scheduling vs LWTF scheduling using var-
ious workloads. Each workload is labeled (XX,YY,ZZ),
where XX, YY, and ZZ represent the number of simulta-
neous requests to MongoDB, HTTP blob, and in-memory
cache. Each result represents the average of 5 trials; error
bars depict standard deviations.

Pinpoint [4], XTrace [12], and Pip [20] may also require
developers to expend non-trivial effort to port applications
to the tracing framework. In contrast, Domino’s rewriting is
automatic. Magpie [3] uses detailed knowledge of applica-
tion semantics provided by the developer to extract causality
from system event logs. In contrast, Domino automatically
captures causality. WAPS [21] uses black-box techniques to
infer the causal relationship between network messages in a
wide-area application. In contrast, Domino can track more
fine grained causality.

5. Conclusion

Domino is a tool for analyzing the asynchronous causal trees
in modern web applications. Domino automatically rewrites
JavaScript code, interposing on the event registration inter-
faces and tracking causal relationships that may span clients
and servers. Domino has found performance and correctness
bugs in several real systems. We also used Domino to cre-
ate a new server-side scheduling algorithm for reducing tail
latencies.

http://www.happypancake.com/

References
[1] Adobe Systems. PhoneGap. http://phonegap.com/.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DTCP). ACM SIGCOMM computer communication
review, 41(4):63-74, 2011.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Online modelling and performance-aware systems. In HotOS,
pages 85-90, 2003.

[4] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem Determination in Large, Dynamic Internet
Services. In Proceedings of DSN, 2002.

[5S] Common]JS. Promises/A Promise Specification. http://
wiki.commonjs.org/wiki/Promises/A.

[6] J. Conrod. Tutorial: Function interposition in linux.
http://jayconrod.com/posts/23/tutorial-function-interposition-
in-linux, June 2009.

[7] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang,
G. A. Gibson, and R. E. Bryant. Parrot: A practical runtime
for deterministic, stable, and reliable threads. In SOSP, pages
388-405. ACM, 2013.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-
value Store. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 205-220. ACM, 2007.

ECMA International. ECMAScript 2015 Language Spec-
ification, 6th Edition, June 2015. http://www.ecma-
international.org/ecma-262/6.0/index.html.

[10] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A
method for transparent admission control and request schedul-
ing in e-commerce web sites. In Proceedings of WWW, pages
276-286. ACM, 2004.

[11] EnsenaSoft. Mahjong Deluxe Free Application.
http://apps.microsoft.com/windows/en-us/app/
mahjong-deluxe-free/abf22535-69ca-4511-9946-
e3a69016cdf3.

[12] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica.
X-trace: A Pervasive Network Tracing Framework. In Pro-
ceedings of NSDI, 2007.

[13] S. Ihm and V. S. Pai. Towards understanding modern web traf-
fic. In Proceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, pages 295-312. ACM,
2011.

[14] Joyent. Node.js. https://nodejs.org/.

[15] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In Proceed-
ings of NSDI, 2010.

[9

—

[16] Microsoft. WinJS: The Windows Library for JavaScript.
https://dev.windows.com/en-us/develop/winjs.

[17] Promises/A+ organization. Promises/A+ Promise Specifica-
tion. https://promisesaplus.com/.

[18] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, 1. Ober-
miller, and S. Shayandeh. Applnsight: Mobile App Perfor-
mance Monitoring in the Wild. In Proceedings of OSDI, 2012.

[19] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan.
Timecard: Controlling User-perceived Delays in Server-based
Mobile Applications. In Proceedings of SOSP, 2013.

[20] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in dis-
tributed systems. In NSDI, volume 6, pages 115-128, 2006.

[21] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat. Wap5: black-box performance debugging for wide-
area systems. In Proceedings of the 15th international confer-
ence on World Wide Web, pages 347-356. ACM, 2006.

[22] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. Google
research, 2010.

[23] Telerik. Fiddler Web Proxy. http://www.telerik.com/
fiddler.

[24] w3school.
types.asp.

[25] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying Page Load Performance with
WProf. In Proceedings of NSDI, pages 473485, 2013.

[26] World Wide Web Consortium (W3C). Document Object
Model (DOM), . http://www.w3.org/DOM/.

[27] World Wide Web Consortium (W3C). Web Workers, . http:
//www.w3.org/TR/workers/.

[28] Y. Wu, S. Sathyanarayan, R. H. Yap, and Z. Liang. Codejail:
Application-transparent Isolation of Libraries with Tight Pro-
gram Interactions. In Proceedings of ESORICS, pages 859—
876. Springer, 2012.

[29] Z. Xiao, L. Guo, and J. Tracey. Understanding instant messag-
ing traffic characteristics. In Distributed Computing Systems,
2007. ICDCS’07. 27th International Conference on, pages 51—
51.IEEE, 2007.

[30] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoid-
ing Long Tails in the Cloud. In Proceedings of NSDI, pages
329-341, 2013.

[31] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail:
Reducing The Flow Completion Time Tail in Datacenter Net-
works. ACM SIGCOMM Computer Communication Review,
42(4):139-150, 2012.

http://www.w3schools.com/js/js_object_proto-

http://phonegap.com/
http://wiki.commonjs.org/wiki/Promises/A
http://wiki.commonjs.org/wiki/Promises/A
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://apps.microsoft.com/windows/en-us/app/mahjong-deluxe-free/abf22535-69ca-4511-9946-e3a69016cdf3
http://apps.microsoft.com/windows/en-us/app/mahjong-deluxe-free/abf22535-69ca-4511-9946-e3a69016cdf3
http://apps.microsoft.com/windows/en-us/app/mahjong-deluxe-free/abf22535-69ca-4511-9946-e3a69016cdf3
https://nodejs.org/
https://dev.windows.com/en-us/develop/winjs
https://promisesaplus.com/
http://www.telerik.com/fiddler
http://www.telerik.com/fiddler
http://www.w3.org/DOM/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/

	Introduction
	Design
	Handling Client-side Events
	Handling Server-side Events
	Tracking Wide-Area Trees

	Case Studies
	Related Work
	Conclusion

