Instance-based Schema Matching for Web Databases
by Domain-specific Query Probing

Abstract

In a Web database that dynamically provides
information in response to user queries, there are two
distinguishing schemas, interface schema and result
schema, presented to users. Each of them partially
reflect schema of the backend database. Most previous
works merely studied the problem of schema matching
across query interfaces of Web databases. In this
paper, we propose a novel schema model that, in
particular, distinguishes the interface schema (the
schema users can query) and the result schema (the
schema users can browse) of a Web database in a
specific domain. In this model, we address two
significant schema matching problems for Web
databases, intra-site schema matching and inter-site
schema matching. The first problem is crucial in
automatically extracting data from Web databases,
while the second problem plays a significant role in
meta-retrieving and integrating data from different
Web databases. We also investigate the feasibility of a
unified solution to the two problems based on query
probing and instance-based schema matching
techniques. Benefiting form the model, a cross
validation technique is also proposed to improve the
accuracy of various schema matchings. Our
experiments on real Web databases demonstrate that
the two problems can be solved at the same time with
high precision and recall.

1. Introduction

The Web is a huge information repository and is growing
at a prodigious rate. Besides web pages accessible or
crawlable by specific URLS, the Web also contains a vast
amount of non-crawlable content. This hidden part of the
Web, referred to as the deep Web [5] or the hidden Web
[14], is comprised of a large number of online Web
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databases. An online Web database consists of a
searchable interface (usually an HTML form) and a
backend database, which dynamically provides
information in response to user queries. As compared to
the static surface Web, Web databases contain a much
larger amount of high-quality (often structured)
information [8].

In the deep Web, it is usually difficult or even
impossible to directly obtain the schemas of the websites’
backend databases without cooperation from the sites.
Instead, the sites present two other distinguishing schemas,
interface schema and result schema, to users (e.g., the
website in Figure 1). The interface schema is the schema
of the query interface of a deep website, which exposes
attributes that can be queried in the backend database. The
result schema is the schema of the query results, which
exposes attributes that are shown to users. The interface
schema is useful for applications, such as a mediator that
queries multiple Web databases, since the mediator needs
complete knowledge about the search interface of each
database. The result schema is critical for applications,
such as data extraction, where instances in the query
results are extracted. In addition to the importance of the
interface schema and result schema themselves, attribute
matching® across different schemas is also important. First,
matching between different interface schemas and
matching between different results schemas (inter-site
schema matching) is critical for meta-searching and data-
integration among related Web databases. Second,
matching between the interface schema and the result
schema of a single Web database (intra-site schema
matching) enables automatic data annotation and database
content crawling. Therefore, in this paper we focus on
automatically discovering both the interface schemas and
the result schemas of Web databases and matching
semantically-related attributes between them.

Previous approaches ([16], [17], [21]) to matching the
schemas of Web databases primarily focus on matching
query interfaces (i.e., on inter-site interface schema

! Attribute matching is the process of determining the semantic
correspondences among the attributes of two schemas.



matching). The basic idea is to identify attribute labels
from the descriptive text surrounding interface elements
and then find synonym relationships between the
identified labels. The performance of these approaches
may be affected when no attribute description can be
identified or the identified description is not informative
(e.g., “Search” in the homepage of Amozon.com). In
contrast, in this paper we propose, a novel instance-based
schema matching approach motivated by the necessity to
identify the result schemas of Web databases that often
lack available attribute names or labels, and the goal of
simultaneously solving inter-site and intra-site schema
matching.

Our approach is mainly based on three observations in
Web databases. First, improper? queries often cause
search failure or no returned results. Second, the
keywords of proper queries that return a result web page,
very likely reappear in the returned results’ corresponding
attributes. Third, there is an underlying global schema?® for
related Web databases in the same domain (proposed and
verified in [16]). Accordingly, we introduce a query
probing technique that first exhaustively sends query
keywords residing in a domain-specific global schema,
whose semantics are known in advance, then analyzes the
re-occurrences of submitted query terms in the returned
result data, and finally identifies the semantically
corresponding attributes from both interface schema and
result schema from the previous analysis.

By introducing a domain-specific global schema, a
combined schema model is presented in this paper to
describe five kinds of schema matching for Web
databases in the same domain: global-interface matching,
global-result  matching, interface-result  matching,
interface-interface matching, and result-result matching.
This model not only describes the matching relationships
among different schemas of Web databases in a specific
domain, but, more importantly, also provides a global
view about how to reinforce the matching accuracy by
conducting multiple kinds of schema matching
simultaneously. In this paper, we also present a cross
validation technique to improve the accuracy of the
schema matching results.

The main contributions of this paper
summarized as follows:

e Introduction of a novel schema model of a single Web
database, which as far as we know is the first model to
distinguish what information users can query and what
information users can browse in a Web database.

can be

2 “Proper” means that the semantics of query terms match the
semantics of the input element.

® The global schema is a view capturing common attributes of
data in the specific domain.

e Introduction of a generative view that includes five
kinds of schema matching for related Web databases
in a specific domain.

o Introduction of an instance-based method based on
domain-specific query probing, along with mutual
information and vector similarity analysis, to
automatically match various schemas of Web
databases (intra-site and inter-site).

e Introduction, benefiting from the above generative
view, of a cross validation technique based on an
approximate solution of graph partitioning problem to
improve the accuracy of different kinds of schema
matching.

The rest of this paper is organized as follows. In
section 2, we present the model with five schema
matching for Web databases. In section 3, the domain-
specific query probing technique is introduced. We
propose, in section 4, an instance-based schema matching
approach with a cross validation technique, to solve both
the intra-site and inter-site schema matching problems at
the same time. Section 5 presents the experimental results
of testing our approaches on real Web databases. Section
6 reviews existing work on the schema matching problem
and how it correlates with our framework. Finally, we
give our conclusion and future work in section 7.

2. Combined Schema Model

A Web database is often comprised of a query interface
and a backend database. When a user query is submitted
into the query interface, the site accesses its backend
database for relevant data and returns the results to the
user. Specifically, the interface of the Web database
usually contains multiple input elements, each of which
may be associated with an attribute of the schema of the
backend database. Data objects that the Web database
returns to users are usually semi-structured, as their
attribute values are encoded into HTML tags. Therefore,
both the interface and returned results of the Web
database partially reflect the same schema of the backend
database in different ways.

For instance, Figure 1 shows an example of an online
bookstore®. A possible schema of the backend database is
shown in the middle, consisting of at least six® attributes
{Title, Author, Publisher, ISBN, Format, Publication Date}.
The query interface, shown on the left, contains five input
elements with surrounding text describing their semantics.
When a keyword query “Harry Potter” is submitted into the
“Title” element in the interface, a result page is returned
by the web site containing its answer to the query. In
Figure 1, a part of the result page is shown on the right
and it contains three book instances with associated
attribute values.

* http:/Awww.mysimon.com/
® The exact number is not known.
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Figure 1. An example of a Web database with its search interface and result page.

From this example, we can clearly see the difference
between the attribute information contained in the query
interface and that contained in the result pages. Although
the site provides an element in the interface for users to
search on a particular data attribute, data values of this
attribute may not appear in a result page. Likewise, the
returned results may have some attributes that users
cannot query in the interface. For instance, the site
provides search functionality in the interface over the
“ISBN” attribute while no ISBN information is included in
the result page. At the same time, there is some publisher
information for each book instance in the result page,
while the site does not provide search functionality over
the “Publisher” attribute. Furthermore, three kinds of
semantic correspondence are shown in Figure 1
represented by different style lines (dotted, dashed and
solid). They are respectively, the correspondence between
data attributes of the primary schema and elements in the
interface, the correspondence between the data attributes
and instance values in the result pages, and the
correspondence between elements in the interface and
instance values in the result pages.

To describe the various schemas of Web databases and
the attribute matching among them, a combined 3-layer
schema model is necessary. However, in the deep Web,
the primary schema of a backend database is hard to
obtain directly as it is hidden behind search interfaces.
Instead, previous work [16] makes the significant
observation that there exists an underlying generative
global schema that can be discovered for related Web
databases in a specific domain, by examining the query
interfaces of Web databases. Thus, we introduce a global
schema (i.e., a view capturing common attributes of data
in the specific domain.) to substitute for the primary
schema of the backend database and propose a combined
model for matching schemas of Web databases. Besides

its availability, another advantage of introducing a global
schema is that it simplifies the process of matching
schemas of different Web databases in the same domain
as they share the same global schema.

Formally, we define a schema as a set of attributes,
each of which corresponds to some unique meaning. In
our model, the Web databases can be categorized into a
number of domains, where Web databases in the same
domain provide information about the same type of
product (e.g., Books or Used cars) or the same topic (e.g.,
Jobs). In each specific domain, there exists a unified
global schema (GS) representing the common knowledge
about the domain. In addition, each Web database in this
model consists of two different schemas, the interface
schema (IS) and the result schema (RS) (illustrated in
Figure 2 as nodes). In particular, the global schema
consists of the representative attributes of the data objects
in this domain. The interface schema of an individual
Web database consists of data attributes over which users
can query, while the result schema consists of data
attributes that users can browse in the Web database. The
three schemas of a Web database all partially represent
the data objects contained in the backend database,
varying only on the number of attributes and attribute
names.

A matching between two schemas S; and S,
determines that certain attributes of schema S;
semantically correspond to certain attributes of schema S,.
For an individual Web database, there exist three kinds of
intra-site schema matching, between GS and 1S, between
GS and RS, and between IS and RS (illustrated in Figure
2 as edges between heterogeneous nodes of each single
site). Furthermore, given multiple Web databases in the
same domain, the interface schemas of different Web
databases can also be pair-wise matched (between IS and
IS), as can the result schemas of different Web databases
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Figure 2. Global view of the Deep Web and combined schema model of Web databases.

(between RS and RS). Such inter-site schema matching is
illustrated in Figure 2 as dashed edges between
homogenous nodes of different sites.

The benefits of such a model are that it allows us to:

e Automatically understand the semantics of schema
attributes. In this model, if the attribute semantics of
one particular schema are accurately identified or pre-
known, then the attribute semantics of other schemas
in this model can also be discovered as long as they
are correctly matched to an identified one. Even if the
semantics of one particular schema is somehow
wrongly identified in a matching with a particular
schema, there is still opportunity for correction when
it is matched to other homogeneous schemas in this
model.

e Automatically extract relevant content from Web
databases. Crawling the massive information hidden
behind search interfaces of Web databases is a major
problem for the Web search community. Automatic
understanding of interface schemas can make it
possible for crawlers to intelligently submit
“appropriate” queries into the right input elements.
Furthermore, automatic understanding of result
schemas can make it possible for crawlers to
intelligently obtain valid query results according to
their semantic (i.e., to automatically extract relevant
Web database content).

e Meta-search multiple Web databases. In this model,
related Web databases are categorized by their
domains. With a meta-search interface built for each
domain, users can search multiple Web databases of
the domain at one time. Given a user query, first some
promising Web databases that may contain relevant
information are picked, and then queries are sent to

these Web databases according to the identified
semantics of their search interfaces. Finally, their
query results are integrated and displayed to users
according to the match among their result schemas.

In this paper, the first benefit is our focus and
achieved by matching both interface schemas and result
schemas of Web databases in the same domain to a
domain-specific global schema, in order to discover their
attribute semantics. We also introduce a cross validation
technique to improve the accuracy of various matching.

3. Domain-specific Query Probing

Database schema matching is the task of finding
mappings between attributes of two schemas that
semantically correspond to each other [3]. Previous
approaches to schema matching can be categorized into
two classes; label-based and instance-based, according to
the different information they rely on (see [22] for a
survey). Label-based methods only consider the similarity
between schema definitions or attribute labels of two
databases. Instance-based methods ([13] and [19]) depend
on the content overlap or statistical properties, such as
data range and pattern, to determine the similarity of two
attributes.

Recent works ([16], [17], and [21]) on matching query
interfaces of Web databases fall into the first category,
based on identifying the attribute labels by examining the
descriptive text surrounding interface elements and
finding synonym relationships between the labels. Such
methods are not stable and robust in the Web context as
no description may exist, or the identified description may
not be informative. On the other hand, instance-based
schema matching was seldom employed in the deep Web
scenario because of the difficulty of automatically



acquiring database contents hidden behind search
interfaces. Paradoxically, a key prerequisite for automatic
data acquisition from the deep Web is to understand the
semantics of search elements.

Different from the previous work, our goal is to
understand and match not only interface schemas but also
result schemas of Web databases. Consequently, the label-
based matching approach is insufficient and even
inapplicable due to the frequent lack of explicit attribute
labels and descriptions in result pages. Therefore, we
propose an instance-based solution to this problem. We
first submit semantically pre-identified query terms
through search interfaces (section 3.2). After obtaining
returned result data, we then analyze the results to
understand the semantics of both the query interfaces and
data attributes, as well as to match the homogeneous
schemas of different Web databases (section 4).

3.1 Observation

During the interaction with Web databases, we observe
two interesting phenomena.

On the one hand, when an improper query is
submitted to a Web database there are often few results or
even no results returned. Improperness here means the
query keywords submitted into a particular element are
not applicable values of the database attribute to which
the element is associated. Taking the Web database shown
in Figure 1 as an example, the site reports only 4 matches
for the query “Harry Potter” when submitted into the
“Author” element, while it reports 228 matches for the
same query when submitted into the “Title” element. On
the other hand, we observe that when a proper query that
returns a result web page is submitted into the input
elements of a Web database, then the query keywords
very likely reappear in the returned result’s corresponding
attributes. For example, in Figure 1, when we submit
query “Harry Potter” into the “Title” element, the three
returned book instances all contain the query keywords
(i.e., Harry Potter) in their “Title” attribute.

Generally, how many times the keywords for a query
re-appear in the result pages and where they appear tell us
important information about both the interface schema
and the result schema. Specifically, if we employ the
keywords or values belonging to some semantically pre-
identified data attributes as queries to submit into a Web
database, we can accomplish two tasks. First, the re-
occurrence of the query keywords in the returned results
can be used as an indicator of which query submission is
appropriate (i.e., the data values are submitted into the
semantically associated elements in order to discover the
query interface schema). Second, the position or location
of the submitted query keywords in the result pages can
be used to identify the semantically associated attributes
(i.e., to discover the result schema).

3.2 Query Probing

Given some target Web databases in a specific domain,
our query probing process aims to send domain-specific
queries to these target Web databases and collect their
returned results for later analysis.

To accomplish the task, we make two assumptions
about the query probing process. First, a global schema
for the specific domain is pre-defined or pre-generated.
Second, a number of sample data objects under the
domain global schema are also available. In fact, global
schema generation over information sources to
conceptualize the underlying domain is an interesting
problem. Proposed approaches rely on either the names of
the schema elements and the structure of the schema ([7]
and [16]) or formal ontologies ([4] and [15]). We consider
this problem as a separate research direction, and do not
deal with it in this paper. In our experiments, we manually
define the global schema and collect sample instances. In
future work, we plan to implement one of the previously
proposed approaches to automatically generate a global
schema over a sample set of Web databases and then map
new Web databases to the generated global schema.

3.2.1  Workflow

We show in Figure 3 the workflow of an automatic
probing process. Given the Web database with its search
interface, an element identification component first
locates qualified input elements in the search interface.
Equipped with instances under a global schema, a query
submission component then exhaustively submits the
attribute values of pre-known instances into those
identified input elements. After collecting the returned
results for all submitted queries, a wrapper induction
component induces a regular-expression wrapper
composed of HTML-tags. Next, a data extraction
component employs the induced wrapper to extract
structured data objects from query result pages and
arrange them into a data table. Finally, the re-occurrences
of submitted queries in the columns of this table are
counted and stored into a query occurrence cube, which
will be introduced in the next subsection.

Given a Web database, the first task is to identify
input elements in its search interface and it can be done by
searching for the input-related tags® in a HTML
searchable form. In the HTTP protocol, a query
submission is done by sending a query request to the
server containing the names of input elements and their
corresponding query terms. In this work, we consider to
submitting one value to one element each time while
keeping the default values of other elements. For each
TEXTBOX element in HTML forms, as we do not know
its value domain, we exhaustively try all the attribute
values from the given sample instances. For each SELECT
element, its domain values are limited to its OPTION

® Please refer to the HTML specification [24].



elements (i.e., we can only choose one or more of its
OPTIONs as the query terms). Thus, for each attribute
value of the given instances, we try to find and submit an
option “similar’” to the value. For other elements like
CHECKBOX and RADIOBOX, the process is similar. As a
consequence, the maximum submission time will be the
product of the number of attributes in the global schema,
the number of provided sample instances and the number
of interface elements considered.
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Figure 3. Flow of the query probing process and
the auerv re-occurrence cube.

After sending queries to the identified input elements
and collecting returned result pages from the Web
database, the next task is to extract structured data from
the pages. While dealing with hundreds or possibly
thousands of Web databases in one domain, each of which
encloses its data in the result pages according to some
specific HTML-tag structures, how to automatically
extract data objects from the pages is a very challenging
problem and it has attracted increasing research interest.
Recently, attempts were made to develop fully automatic
approaches for inducing wrappers to extract embedded
semi-structured data content from dynamic template-
generated HTML pages ([1], [9], [10] and [23]).
Discussion of these approaches is beyond the scope of this

" The attribute value and the option value (two text strings) are
similar as long as they contain at least one common keyword.

paper and interested readers are referred to the above
papers for further information.

In this paper, we choose our previous work [23] to
induce a regular-expression wrapper based on nested
repeated-pattern discovery in HTML pages. We also
employ the data extraction module of [23] to extract the
enclosed data objects into a table so that each column of
the result table corresponds to one attribute of the returned
result. That is, each column of the result table is one
observed attribute of the result schema.

3.2.2  Query Occurrence Cub

After counting the re-appearance of each submitted value
in the query results, a Query Occurrence Cube (QOCube)
is constructed for the target Web database, as shown in
Figure 3. The cube height represents the number of
attributes in the pre-known global schema. The cube
width represents the number of interface elements
considered (i.e., attributes of interface schema). The cube
depth is the number of columns in the result table (i.e.,
attributes of result schema). Moreover, each cell in this
cube stores an occurrence count associated with the three
dimensions. For example, in Figure 3, cell<1, 2, 0> equal
to 55 means that when the values for the 1% attribute of
GS are submitted to the 2™ element of IS the query terms
re-appear 55 times in the 0™ column of RS.

Conveniently, the constructed QOCube provides a
unified solution to match the 3 pairs of Web database
schemas. The 3-dimensional cube can be easily projected
onto three Query Occurrence Matrices (front, top and
left), which exactly reflect the relationship between pairs
of the three schemas (i.e., IS with GS, IS with RS, and GS
with RS). Suppose the number of attributes in the global
schema is N, the number of elements in the interface
schema is M, and the number of columns in the result
table is L. Once a project function is selected, say sum, the
3-dimensional cube QOCyxuxL can be projected into three
2-dimensional occurrence matrices, OM'Cy,.y for IS and
GS, OMat®® «y for GS and RS, and OM"®y. for IS and
RS. The main research issue now becomes how to find the
correspondence between a pair of schemas in the
projection matrices.

4. Instance-based Schema Matching

4.1 Intra-site Schema Matching

In this section, we focus on how to match the attributes
between IS and GS, RS and GS, and IS and RS based on
the obtained matrices: OM'®.n, OMRC v, and OM Ry .

An example® of OM';,., is shown in Example 1 with
the correct matching in the gray rectangles, when GS
{Tit|eG3, Authorgs, Publishergs, |SBNG3} and IS
{Authors, Titles, Publishers, Keyword;s, ISBN;s}.

8 All examples in this section are obtained from real Web
databases in our experiments.



EXAMPLE 1:

Titlegs Authorgg Publishergg ISBNgs
Authors | 93 498| 534 0

Title,s 345 501 0
Publisher;s | 62 184 468 2
Keywordis (120 248 143  [275

ISBN;s 0 0 0 258 5x4

In fact, there are some properties of the occurrence
matrix to consider when searching for the correspondence
or correlation between the rows and columns of the matrix
representing the attributes of the two schemas. First, an
absolute high occurrence may not represent a correct
matching. For example, the matrix element for Authors
and Publishergs (534) is the highest value in the matrix
while Authoris and Publishergs do not semantically
correspond to each other. Second, given a particular
matrix element m;, its relative magnitude among all
elements for its row i and column j is more important than
its absolute value. For example, for Keyword,s, which is in
fact not a real attribute for Book objects, its similar
performance on all columns indicates that it may not be a
good match for any one of the columns. The element of
Publishers and Publisherss (468) is not the highest one
among the elements for Publisheres. However, it is
relatively larger than the other elements that for Publisher,s
and the other attributes of GS.

Interestingly, we can regard the problem as follows.
By sending sample queries, a part of the database content
relevant to the queries is fetched from the primary
backend database. For any two schemas, S; and S,, of the
Web database, the obtained database content can be
partitioned according to the attributes of S; and S,,
respectively. Suppose the partitions by the attributes of S;
are A, A,, ... A and the partitions by the attributes of S,

are B, B,, B,, - The element m; in the occurrence

matrix for S; and S, actually indicates the content overlap
between partitions A and B, with respect to the

occurrences of submitted query values in the partitions.
The schema matching problem now becomes finding the
pair of partitions that belong to two schemas (e.g., IS and
GS) such that their overlap with each other is more than
their overlap with other partitions belonging to the
opposite schema.

To solve this problem, a mutual information concept,
also known as cross-entropy and information gain in
Information Entropy theory, can be introduced as it
interprets the overlap between two partitions X and Y of a
random event set as the “information about X contained in
Y” or the “information about B contained in X ([20]).

DEFINITION 1: Suppose X and Y are two partitions over
a collection of events, and x; and y; are partition elements
of X and Y with joint probability p(x; y;) and respective

marginal probability p(x) and p(y;). The mutual
information of the partition A and B is
POGY;)
1(X;Y Xis lo
(X;Y) = ZZP( Yi) g()(y)

Accordingly, we can estimate the mutual information
between a pair of attributes from two schemas using the
following definition.

DEFINITION 2: Given a query occurrence matrix

OM 3152 5 of two schemas S; and S,, the estimated mutual
information (EMI) between the i" attribute of S; (say A)

and the j" attribute of S, (say B |)is

m.. U
EMI(Aﬁ,Bj):Vulog%
i+, *1

M M
with M being Zmu , Mi. being Zm” and m.; being Zmu
ij
Thus, the occurrence matrix in Example 1 can mduce
the EMI matrix shown in Example 2, with each matrix
element being the estimated mutual information value for
the corresponding schema attributes.

EXAMPLE 2:

Titlegs Authorgg Publishergs ISBNgg
Authorg [-0.04 0.11 0.06 0.00

Titles |[0.09]  -0.03  -001 000
Publisher,s |-0.03 -002 [014  -0.01
Keywords |-001 001  -007 017

ISBNis | 0.00 0.00 0.00

5x4

To find a 1-1 attribute matching of the two schemas is
easy in the EMI matrix. If one matrix element is larger
than the other elements in the same row and also larger
than the other elements in the same column, its
represented attributes will have a larger overlap between
each other than their overlap with other attributes of the
opposite schema, as shown by the gray rectangles. For
example, EMI(Author;s, Authorgs) = 0.11 is the largest one
in both its row and its column, and it is a correct match.
Therefore, we propose the following definition to quantify
the intra-site schema matching.

DEFINITION 3: Assume two schemas S; and S, with the
corresponding EMI matrix [e;]. The i" attribute of S,
matches with the j" attribute of S, if eij e [k = jand

eij _ekj |k¢|.

4.2 Inter-site Schema Matching

In this section, we focus on how to find the corresponding
attributes for homogeneous schemas of different Web
databases, namely, IS and IS, and RS and RS.

We propose an approach to match interface/result
schemas of different Web databases from scratch by
computing vector similarity “borrowed” from the Vector



Space Model in Information Retrieval [2]. In vector space
model, documents are represented as vectors in a multi-
dimensional space. In the space, each dimension
represents a term or concept found in a document and the
values are the corresponding frequencies of the terms in
the document. Similarity between two vectors is measured
by the cosine of the angle between their two vectors,
which is computed as the inner product of the two vectors,
normalized by the products of the vector lengths.

Inspired by the above idea, if we consider each
attribute of an individual interface/result schema as a
“document” and each attribute of the global schema as a
“concept”; then each row in the occurrence matrix
represents a corresponding document vector in the space.
Therefore, we can calculate the similarity (i.e., semantic
correspondence) between attributes from  different
schemas by measuring their vector similarity. We give the
following definition to quantify the inter-site schema
matching between two Web databases.

DEFINITION 4: Given two query occurrence matrices
of two Web databases’ interface/result schemas

OM*® =[aj ]pm and OM 2 = [bj; ]jm With respect to

the same global schema, the estimated vector similarity
(EVS) between the i attribute of S; (say A) and the j"
attribute of S, (say B j ) is
%aikbjk
EVS(A.B)) - ——
ik

[Sa? « [>b2
k k

Te A Pc s

EXAMPLE 3:
T Ac Pg g
A;[93 498 534 0

T, |451 345 501 0 T 166 177 118 0
P, |62 184 468 2 Ax(P) | 39 331 406 0
Ky [120 248 143 275 2 [0 0 0 18J3,

{0 o o0 258,

Occurrence
Matrix Of S,

Occurrence
Matrix of Sy

T, AxP) I,
A; [0.84 0
i 084 0
p, |0.71 095 0.01
K, |0.72 067 066
0 0 5><3

Vector Similarity
Matrix

I

To find a 1-1 attribute matching of two schemas in the
EVS matrix is the same as in the EMI matrix (Definition
3). A matrix element that is the largest both in its row and
column represents a matching. For instance, Example 4
shows two occurrence matrices of two interface schemas
with respect to a global schema GS = {Title, Author,
Publisher, ISBN}, where 1S; = {Author;, Title;, Publisher;,
Keyword;, ISBN1}, 1S, = {Title;, Authory, ISBN2}. Grey
rectangles depict the chosen largest similarity values
among rows and columns, which also show the correct

matching. Interestingly, although the second attribute of
IS,, Author,, is somehow wrongly matched to Publisher;
of GS in the previous intra-site schema matching, the
method still can find the right mapping.

4.3 Cross Validation

Given multiple Web databases in the same domain, we
can employ the techniques proposed in sections 4.land
4.2 to identify the matching attributes belonging to
schemas of an individual Web database and the matching
attributes belonging to schemas of different Web
databases. As a consequence, we can employ the five
categories of matching results (i.e., GS-IS, GS-RS, IS-RS,
IS-IS and RS-RS) to cross validate each other (i.e., to
recognize which matching is correct and which is not). In
this section, we focus on how to cross validate different
matching results produced from both “inter-site” and
“intra-site” matching. Note that in this step, we do not
limit how the schemas are previously matched (i.e. we can
employ any applicable label-based or instance-based
method) as long as the matching results are provided.

Given all the attributes from the interface schemas (or
result schemas) of the Web databases, we can categorize
the IS (or RS) attributes into multiple clusters with respect
to GS attributes to which they have been matched. For
example, the attributes are previously matched to the
attribute Ag of the global schema is categorized into one
cluster while the attributes are previously matched to the
attribute T of the global schema is categorized into
another cluster. Recall that attributes are also matched to
each other in inter-site schema matching. In the perfect
case, an attribute in one cluster only matches with
attributes in the same cluster. When a mapping across
clusters does exist (i.e., two attributes in two different
clusters have a match) there must be a mismatch. The
possible reason for the mismatch could be either that one
of the two attributes was put into the wrong cluster or that
the matching between these two attributes is wrong.

Interestingly, if we consider the attributes as vertices
and matching between attributes as edges, we can convert
the problem of deciding which matchings are incorrect
into a graph partitioning problem: given a set of vertices
and edges, divide the vertices into N partitions such that
the edge-cut is minimized. The edge-cut is the sum of the
weights (1 in this case) of all the edges between the
partitions. This graph partitioning problem is known to
be NP-hard [11]. Therefore, we can only expect
approximate solutions in general.

In our case, where there is already an initial partition
of the vertices (according to the matching results with
respect to GS), a simple approximate approach is to move
vertices over partitions as long as the number of cuts
would decreases; a vertex v is moved to the partition in
which most of its “neighbours” reside. Since a vertex v
needs to be moved if many of its neighbours jump,



multiple passes are likely to be needed before the process
converges on a local optimum. When the process stops,
we resolve the cross cluster matching between attributes
A of site S; and BJ. of site S, contained in two clusters C;

and C, by discarding it and re-matching A to attribute
B, of site S, clustered into C, or vice versa.

EXAMPLE 4:

"Publisher"
cluster

"Author"”
cluster

"Publisher"
cluster

"Author"
cluster

Example 4 illustrates one pass of such an approximate
approach. For simplicity, suppose that the global schema
only contains two attributes {Author, Publisher} and there
are five Web databases with the 1S attributes 1S, = { A, },

|32: {Ba, Bp}’ |S3: {Ca ’Cp}’ |S4: {Da, Dp} and |55
={E,., Ep}. The two ellipses in the left depict how the

attributes are primarily clustered according to which GS
attribute they are matched to (by intra-site schema
matching), and the edges between two attributes show
whether they are matched or not (by inter-site schema
matching). In the initial state, A, is wrongly matched to

the Publisher attribute of GS and also wrongly matched
to Bpwhile it has been correctly matched to three other

attributes in the Author cluster. Therefore, A is moved to

decrease the number of edges across clusters from 3 to 1,
as shown in Example 4. By such a “moving” process, we
correct the matching attribute of A, from the Publisher to

the Author attribute of GS. After the move, the edge
between A and Bpis replaced by a new edge between A,

and B, (the attribute of site 2 that is matched to the global
attribute Author).

Due to space limitations, we omit the detailed
algorithm for the above cross-validation technique and
only show the experimental results in the next section to
verify its effectiveness.

5. Experiments

We performed a comprehensive evaluation of the
proposed instance-based schema matching approaches on
thirty complex Web databases over two domains: Book
and Used Car. The main goal was to investigate the
feasibility of a unified and accurate solution to matching

schemas both in a single site and from different sites. We
first describe the Web databases employed for the testing.
Then we present the results for intra-site schema matching
and inter-site schema matching, and the improvement
achieved by cross validating the matching results.

5.1 Test Web Databases

For our evaluation, we used 20 Web databases for
purchasing books online and 10 Web databases for
searching for used cars online. The global schema for the
two domains are manually defined as Book = {Title,
Author, Publisher, ISBN} and UsedCar = {Make, Model,
PostalZip, State, Price, Mileage, Year}. We also manually
collected 20 book instances and 10 car instances (details
are shown in Table 5 and Table 6 in the Appendix) and
took their attribute values as sample queries to be used to
probe the test Web databases. After obtaining the query
result pages from each Web database, we employed the
previous work [23] on wrapper induction to automatically
extract the result records according to their specific
structures and re-arrange them into a result table.

Table 1. Characteristics of test Web databases.

#Interface #Result | #Extracted
Element | #TS | %SS | column Data
Book 4.2 343.3 | 32% 6.25 1322.9
UCar 6.0 123.1 | 72% 5 995.3

The columns #TS and %SS of Table 1 represent,
respectively, for the number of total submissions made to
the test Web databases and the corresponding success
rate’. The reason that the UsedCar domain has a lower
number of submissions and a higher success rate than the
Book domain is because, SELECT and TEXTBOX are
treated differently when submitting the queries. We
exhaustively tried all the attributes of the pre-known
instances for a TEXTBOX element, while we only submit
the OPTION values of a SELECT element if they are
found to be similar to one or more attribute values of the
pre-known instances (see section 3.2.1). In our
experiments, most of the Web databases in the Book
domain only contain TEXTBOX elements. Therefore, it
has a higher number of submission and lower success
rate.

5.2 Matching Results

5.2.1 Intra-site and inter-site

In this subsection, we report and discuss the experimental
results for both intra-site and inter-site schema matching
of the two domains. The intra-site schema matching
results are listed in Table 2. To verify the effectiveness of
our proposed instance-based matching approach (EMI)

® A query submission is successful if the induced wrapper can
extract at least one instance from the query result page.




derived from mutual information analysis, we
implemented a simple method as our baseline (MAX).
The baseline method works as follows: in the query value
occurrence matrix, the matrix element with the largest
value both among the elements in the same column and
among the elements in the same row is identified as an
attribute matching.

In our evaluation, precision and recall originating
from the information retrieval area are borrowed as the
metrics. Precision here is measured as the ratio of the
number of correctly identified matching attribute-pairs to
the total number of attribute-pairs identified by the
methods. Recall here is measured as the ratio of the
number of correctly identified matching attribute-pairs to
the total number of matching pairs in the two schemas.
Suppose the number of correctly identified matching
attribute-pairs is C, the number of wrongly identified
matching attribute-pairs is W and the number of correct
matching attribute-pairs but somehow missed in the
approach is M, then the precision of the approach

95%

ElPrecision
CRecall

75%

PRy

20

Figure 4. Result achieved by different number of sample
instances.

We show in Figure 4 how the achieved results vary
when the number of sample instances is increased.
Columns in Figure 4 are achieved average precision and
recall of the intra-site schema matching results of the
Book domain, when the number of instances is set to 5,
10, 15 and 20. From the figure, we can see that the
achieved results generally increase when the number of
sample instances increase. However, more sample
instances mean more query submissions to the Web

is c and its recall is ¢ server. Since we do not want to overburden the target
C+W C+M Web databases, an interesting future research direction
Table 2. Intra-site schema matching results. might be to find a trade-off between the number of
IS—GS RS_GS IS—RS submission and the achieved results.
P R P R P R Table 3. Inter-site schema matching results.
Book | MAX | 68% | 50% | 91% | 81% 90% | 84% EVS Label-based
EMI 80% | 71% | 95% | 88% 93% | 87% P R P R
Car MAX | 97% | 63% | 96% | 57% | 100% | 67% Book IS—1S 80% | 71% 90% 87%
EMI 97% | 64% | 93% | 63% | 100% | 73% RS — RS 94% | 86% 95% 14%
In Table 2, we can see that our EMI-based method Car IS 1S 92% | 72% | 89% 88%
RS — RS 89% | 66% 98% 25%

significantly outperforms the baseline method, especially
for global-interface schema matching. In the Book
domain, both the EMI-based and Max-based methods
produce the worst results on I1S-GS schema matching. The
reason is that Web databases of this domain tend to
include a Keyword input element in the interface schema
for the convenience of end-users who may want to use
keyword search. Using the Keyword element often returns
results for any query no matter to which global attribute
the query belongs. Since there is not a noisy keyword
attribute in the global schemas and the result schemas, our
matching approach can achieve a higher accuracy in GS-
RS matching. In the UsedCar domain, both MAX-based
and EMI-based methods have a relatively low recall. The
reason is that our matching techniques are based on
counting the re-appearances of submitted queries in the
result data, which is more suitable for database attributes
accepting the “equal” select operator. When handling
numeric-field attributes that accept “less than” or “greater
than” select operators, such as Price and Mileage, the
returned results sometimes may not include the exact
query term, such as “$10,000”.
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In Table 3 we compare the inter-site schema matching
results achieved by our proposed approach (EVS) based
on vector similarity analysis with label-based approaches.
Label-based approaches are mainly based on finding the
synonym relationship between attribute labels. In
matching interface schemas, we employ previous
approaches on identifying the surrounding text of input
elements as their labels ([16], [17], and [21]). In matching
result schemas, we try to find either explicit author-
supplied column headers in the result pages or the text
strings commonly shared by all extracted instances as
their attribute labels. Table 3 shows that the performance
of the EVS-based method is close to that of label-based
methods in IS-IS matching, while it performs much better
in RS-RS matching when attribute labels are often
unavailable in result pages. In addition, our approach does
not require intelligent layout analysis to precisely identify
the right attribute labels.

5.2.2 Cross Validation

We present in Table 4 the effectiveness of the proposed
cross validation approach in improving the overall
accuracy. The approach is based on an approximate
solution of the graph partitioning problem.



Table 4. Effectiveness of cross validation.

Before CV After CV
P R P R
Book IS-GS | 80% | 71% | 96% | 83%
RS—-GS | 95% | 88% | 98% | 91%
IS-RS | 94% | 88% | 97% | 90%
IS—-1IS 91% | 70% | 94% | 74%
RS—RS | 94% | 86% | 99% | 87%
Car IS-GS | 97% | 64% | 97% | 72%
RS—-GS | 93% | 63% | 97% | 70%
IS-RS | 100% | 73% | 100% | 75%
IS—1IS 92% | 72% | 95% | 77%
RS—RS | 89% | 66% | 92% | 69%

Table 4 shows that the cross validation method does
improve the overall matching accuracy, especially in the
Book domain. It is notable that we cannot achieve a recall
as high as we can achieve the precision (over 90%). The
cause is not due to the ineffectiveness for the cross
validation but may be due to the probing-based approach
itself. In our experiments, we observe some issues that
need further considerations.

The performance of our instance-based matching
approaches to some extent depends on the selection of the
sample instances. More specifically, two properties of the
sample instances could influence the matching process,
the topics that the sample instances cover and the
attribute-distinguish capability of the sample instances.
Take the Book domain as an example. Some Web
databases may only contain books about computer
programming while others only have novels. Therefore, to
ensure that useful instances can be extracted from the
Web databases’ answers to the sample queries, various
topics are required to be covered in the sample instances.
At the same time, the attribute-distinguish capability of
the sample instances may also influence the matching
results. For example, the name of a famous person usually
frequently appears both in the Author attribute of the
books he/she wrote and the Title attribute of his/her
biographies, such as “Jane Austen” in our chosen sample
instances.

We also notice that, as Web databases vary in their
designs, some of them might generate result pages with
different formats for different queries. For example, when
answering a Title query, a Web database returns a list of
qualified book instances and each of the instances is
described by come text. However, when answering an
ISBN query, the same Web database returns only one
unique book instance with its detailed information shown
in the result page. It is obvious that these two kinds of
results are generated by two different templates. To deal
with this issue, an intelligent result analysis method is
needed to first extract results with different formats and
then combine them into one uniform result table.
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6. Related Work

Schema matching is a basic problem in database research
with numerous techniques proposed to address the
problem (see [12] and [22] for surveys). Existing work
that addresses the problem of automatic schema matching
for deep Web sources adopts the prior techniques on
matching schemas of traditional databases. [16] presented
a statistical approach to integrate the query interface
schemas of deep websites in the same domain. It
hypothesizes that given deep-web sources in the same
domain, the aggregate vocabulary describing the interface
input elements tends to have a relatively small size.
Furthermore, there exists a unified hidden schema
underlying these interfaces. A statistical probability model
is employed to find the hidden schema by the co-
appearance of attribute names. The schema matching
methods employed in this paper are label-based. WISE-
Integrator, a tool that performs automatic integration of
Web search interfaces is presented in [17]. WISE-
Integrator employs sophisticated techniques to identify
matching attributes from different search interfaces for
integration. This can also be classified as a label-based
method since it mainly relies on the approximate string
match between attribute names. [18] investigated
algorithms for generic schema matching, outside of any
particular data model or application. An algorithm called
Cupid was proposed to discover mappings between
schema elements based on their names, data types,
constraints, and schema structure. [19] used a classifier to
categorize attributes according to their field specifications
and data values, and then train a neural network to
recognize similar attributes. However, this method may
not be applicable for Web databases since both field
specifications and data values are incomplete in many
cases. [12] developed the COMA schema matching
system as a platform to combine multiple matchers in a
flexible way. While their approach may seem similar to
our cross validation method, it is fundamentally different
since the goal of our method is the reinforcement of
multiple matchers, not the straightforward combination of
the matchers. [21] presented HiWe, a prototype deep-web
crawler that can extract the labels of interface elements
and automatically submit queries through the elements. In
this work, interface elements with the same/similar labels
are matched in order to obtain each other’ s domain
values for automatic query submission.

The main difference between our work and previous
works is that we aim to provide a general framework for
schema matching of Web databases. To the best of our
knowledge, no previous work has presented such a
framework, especially the combined schema model for
deep websites. Moreover, the instance-based schema
matching method is seldom used for schema matching in
the deep Web context since it is hard to get instances from
hidden databases. Supplied with a set of sample instances,



our work proves that instance-based methods are very
effective for Web database schema matching.

7. Conclusion

In this paper, we investigate the problem of schema
matching for Web databases. We propose a combined
schema model to describe various schemas in a deep
website and a generative view to include five kinds of
schema matching of related Web databases in a specific
domain.

In the combined schema model, we address two
significant schema matching problems for Web databases,
intra-site  schema matching and inter-site schema
matching. The first problem is crucially important in
automatically extracting data from Web databases, while
the second problem is of significant importance in
integrating data from different Web databases. In the
generative view, we then investigate a unified solution to
the two problems based on domain-specific query probing
and attribute content overlap. Our instance-based
approaches, specifically adopting the mutual information
concept and vector similarity analysis, are quite powerful
for precisely identifying the matching relationships
among attributes for intra-site and inter-site matching.
Benefiting from our general framework, a cross validation
technique, converted to a graph partitioning problem, is
introduced and shown to improve on the matching
performance.

As mentioned, in current stage our approach needs
some human involvement to provide a precise global
schema and instance samples. One direction to extend this
work is to adopt automatic global schema generation
techniques to make the whole system fully automatic.
Another direction of improvement is to combine our
works with previous label-based approaches to build a
more robust matching system that can handle most
attributes of Web databases.
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APPENDIX

Table 5. Test Web databases.

#Interface #Successful Success #Result #Extracted
Homepage URL elements  #Submission  submission rate columns  instances
www.bookstore.co.uk 3 240 55 23% 3 326
dogbert.abebooks.com 7 560 241 43% 8 4014
www.powells.com 6 480 156 33% 7 2941
www.randomhouse.com 5 400 133 33% 8 3162
www.hwg.org/bookstore 4 320 124 39% 6 778
www.booksandcollectibles.com.au 4 320 139 43% 8 1519
www.bestbookdeal.com 3 240 181 75% 4 1436
search.barnesandnoble.com 3 240 98 41% 7 394
WWW.mysimon.com 4 320 125 39% 4 3205
isbn.nu/advanced.html 5 400 65 16% 6 2715
www.albooks.com 5 400 63 16% 5 1034
www.booksinc.net 2 160 80 50% 5 1869
www.pagelbook.com 5 400 197 49% 12 1746
www.biggerbooks.com 4 320 174 54% 7 1498
www.bookcloseouts.com 3 240 58 24% 7 710
www.christianbook.com 5 400 82 21% 10 549
www.hamiltonbook.com 5 400 47 12% 5 189
www.textbookx.com 3 240 98 41% 6 1069
www.1bookstreet.com 6 480 104 22% 6 866
www.allbookstores.com 5 400 72 18% 6 1384
Average 4.2 343.3 98.2 32% 6.25 1322.9
(a) Book Domain.
#interface #Successful  Success #Result #Extracted
Homepage URL elements  #Submission submission rate columns instances
WWW.consumerreports.org 5 25 23 92% 2 213
www.bigbillybarrett.com 5 33 32 97% 4 355
www.carbuyer.com 2 21 20 95% 7 500
www.401carfinder.com 7 359 133 37% 4 1104
www.2buycars.net 14 381 230 60% 9 2334
auto.consumerguide.com 5 97 34 35% 5 501
www.fredbondesen.com 4 26 23 88% 5 231
midland.autochooser.com 9 169 167 99% 2 4355
Www.mswebmasters.com 4 21 20 95% 5 203
toyota.traversemotors.com 5 99 25 25% 7 157
Average 6 123.1 70.7 72.4% 5 995.3

(b) Used Car Domain.
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Table 6. Instances for sample query probing.

Title Author Publisher ISBN
Story of Art Gombrich Phaidon Press 0714832472
Winning Through Intimidation Ringer Fawcett Books 0449207862
New Joy of Cooking Irma Ruer Scribner 0684818701
Worst Case Scenario Survival Handbook Joshua Piven Chronicle Books 0811825558
Fight Cancer Win Fischer Agora Health 1891434012
Interpretation of Dreams Sigmund Freud Avon Books 0380010003
Sense and Sensibility Jane Austen Norton Company 039397751X
Guess How Much | Love You Sam McBratney Candlewick Press 076360013X
On the Shoulders of Giants Stephen Hawking Running Press 0762413484
Selfish Gene Richard Dawkins | Oxford University Press | 0192860925
Communion With God Walsch Berkley Pub Group 0399146709
NBA Alphabet Mayers Abrams Books 0810931435
Core Java Gary Cornell Prentice Hall 0130471771
Art of War Sun Tzu Delacorte Press 0385292163
Shining Stephen King Pocket Books 0743424425
Harry Potter Rowling Scholastic 0439139597
Lord of the Rings Tolkien Houghton Mifflin 0618260587
Programming Language Bjarne Stroustrup Addison Wesley 0201700735
Who Moved My Cheese Spencer Johnson Putnam Pub Group 0399144463
Making of the Microsoft Empire James Wallace HarperBusiness 0887306292
(a) Book Domain.
Make Model Postal State Price [ Mileade | Year
Acura TL 10021 New York $1,000 [ 10,000 | 1993
Audi A4 20854 Maryland $2,000 | 20,000 | 1994
Buick Century 22066 Virginia $3,000 | 30,000 | 1995
Cadillac Escalade 33156 Florida $5,000 | 40,000 | 1996
Chevrolet S-10 90001 California $7,000 | 50,000 | 1997
Ford Explorer 58259 North Dakota $8,000 | 60,000 | 1998
Juguar XJ 98112 Washington | $10,000 [ 70,000 | 1999
Honda Accord 60611 Ilinois $12,000 | 80,000 | 2000
Lincoln LS 63463 Missouri $15,000 | 90,000 | 2001
Volvo V70 31626 Georgia $20,000 | 100,000 | 2002

(b) Used Car Domain.
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