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Abstract 
In a Web database that dynamically provides 
information in response to user queries, there are two 
distinguishing schemas, interface schema and result 
schema, presented to users. Each of them partially 
reflect schema of the backend database. Most previous 
works merely studied the problem of schema matching 
across query interfaces of Web databases. In this 
paper, we propose a novel schema model that, in 
particular, distinguishes the interface schema (the 
schema users can query) and the result schema (the 
schema users can browse) of a Web database in a 
specific domain. In this model, we address two 
significant schema matching problems for Web 
databases, intra-site schema matching and inter-site 
schema matching. The first problem is crucial in 
automatically extracting data from Web databases, 
while the second problem plays a significant role in 
meta-retrieving and integrating data from different 
Web databases. We also investigate the feasibility of a 
unified solution to the two problems based on query 
probing and instance-based schema matching 
techniques. Benefiting form the model, a cross 
validation technique is also proposed to improve the 
accuracy of various schema matchings. Our 
experiments on real Web databases demonstrate that 
the two problems can be solved at the same time with 
high precision and recall. 

1. Introduction 
The Web is a huge information repository and is growing 
at a prodigious rate. Besides web pages accessible or 
crawlable by specific URLs, the Web also contains a vast 
amount of non-crawlable content. This hidden part of the 
Web, referred to as the deep Web [5] or the hidden Web 
[14], is comprised of a large number of online Web 

databases. An online Web database consists of a 
searchable interface (usually an HTML form) and a 
backend database, which dynamically provides 
information in response to user queries. As compared to 
the static surface Web, Web databases contain a much 
larger amount of high-quality (often structured) 
information [8]. 

In the deep Web, it is usually difficult or even 
impossible to directly obtain the schemas of the websites’ 
backend databases without cooperation from the sites. 
Instead, the sites present two other distinguishing schemas, 
interface schema and result schema, to users (e.g., the 
website in Figure 1). The interface schema is the schema 
of the query interface of a deep website, which exposes 
attributes that can be queried in the backend database. The 
result schema is the schema of the query results, which 
exposes attributes that are shown to users. The interface 
schema is useful for applications, such as a mediator that 
queries multiple Web databases, since the mediator needs 
complete knowledge about the search interface of each 
database. The result schema is critical for applications, 
such as data extraction, where instances in the query 
results are extracted. In addition to the importance of the 
interface schema and result schema themselves, attribute 
matching1 across different schemas is also important. First, 
matching between different interface schemas and 
matching between different results schemas (inter-site 
schema matching) is critical for meta-searching and data-
integration among related Web databases. Second, 
matching between the interface schema and the result 
schema of a single Web database (intra-site schema 
matching) enables automatic data annotation and database 
content crawling. Therefore, in this paper we focus on 
automatically discovering both the interface schemas and 
the result schemas of Web databases and matching 
semantically-related attributes between them. Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 

Proceedings of the 30th VLDB Conference, 
Toronto, Canada, 2004 

Previous approaches ([16], [17], [21]) to matching the 
schemas of Web databases primarily focus on matching 
query interfaces (i.e., on inter-site interface schema 

                                                           
1 Attribute matching is the process of determining the semantic 

correspondences among the attributes of two schemas. 
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matching). The basic idea is to identify attribute labels 
from the descriptive text surrounding interface elements 
and then find synonym relationships between the 
identified labels. The performance of these approaches 
may be affected when no attribute description can be 
identified or the identified description is not informative 
(e.g., “Search” in the homepage of Amozon.com). In 
contrast, in this paper we propose, a novel instance-based 
schema matching approach motivated by the necessity to 
identify the result schemas of Web databases that often 
lack available attribute names or labels, and the goal of 
simultaneously solving inter-site and intra-site schema 
matching.  

Our approach is mainly based on three observations in 
Web databases. First, improper 2  queries often cause 
search failure or no returned results. Second, the 
keywords of proper queries that return a result web page, 
very likely reappear in the returned results’ corresponding 
attributes. Third, there is an underlying global schema3 for 
related Web databases in the same domain (proposed and 
verified in [16]). Accordingly, we introduce a query 
probing technique that first exhaustively sends query 
keywords residing in a domain-specific global schema, 
whose semantics are known in advance, then analyzes the 
re-occurrences of submitted query terms in the returned 
result data, and finally identifies the semantically 
corresponding attributes from both interface schema and 
result schema from the previous analysis.  

By introducing a domain-specific global schema, a 
combined schema model is presented in this paper to 
describe five kinds of schema matching for Web 
databases in the same domain: global-interface matching, 
global-result matching, interface-result matching, 
interface-interface matching, and result-result matching. 
This model not only describes the matching relationships 
among different schemas of Web databases in a specific 
domain, but, more importantly, also provides a global 
view about how to reinforce the matching accuracy by 
conducting multiple kinds of schema matching 
simultaneously. In this paper, we also present a cross 
validation technique to improve the accuracy of the 
schema matching results. 

The main contributions of this paper can be 
summarized as follows: 
• Introduction of a novel schema model of a single Web 

database, which as far as we know is the first model to 
distinguish what information users can query and what 
information users can browse in a Web database.  

                                                           

                                                          

2 “Proper” means that the semantics of query terms match the 
semantics of the input element. 

3 The global schema is a view capturing common attributes of 
data in the specific domain. 

• Introduction of a generative view that includes five 
kinds of schema matching for related Web databases 
in a specific domain. 

• Introduction of an instance-based method based on 
domain-specific query probing, along with mutual 
information and vector similarity analysis, to 
automatically match various schemas of Web 
databases (intra-site and inter-site). 

• Introduction, benefiting from the above generative 
view, of a cross validation technique based on an 
approximate solution of graph partitioning problem to 
improve the accuracy of different kinds of schema 
matching. 
The rest of this paper is organized as follows. In 

section 2, we present the model with five schema 
matching for Web databases. In section 3, the domain-
specific query probing technique is introduced. We 
propose, in section 4, an instance-based schema matching 
approach with a cross validation technique, to solve both 
the intra-site and inter-site schema matching problems at 
the same time. Section 5 presents the experimental results 
of testing our approaches on real Web databases. Section 
6 reviews existing work on the schema matching problem 
and how it correlates with our framework. Finally, we 
give our conclusion and future work in section 7. 

2.  Combined Schema Model 
A Web database is often comprised of a query interface 
and a backend database. When a user query is submitted 
into the query interface, the site accesses its backend 
database for relevant data and returns the results to the 
user. Specifically, the interface of the Web database 
usually contains multiple input elements, each of which 
may be associated with an attribute of the schema of the 
backend database. Data objects that the Web database 
returns to users are usually semi-structured, as their 
attribute values are encoded into HTML tags. Therefore, 
both the interface and returned results of the Web 
database partially reflect the same schema of the backend 
database in different ways. 

For instance, Figure 1 shows an example of an online 
bookstore4. A possible schema of the backend database is 
shown in the middle, consisting of at least six5 attributes 
{Title, Author, Publisher, ISBN, Format, Publication Date}. 
The query interface, shown on the left, contains five input 
elements with surrounding text describing their semantics. 
When a keyword query “Harry Potter” is submitted into the 
“Title” element in the interface, a result page is returned 
by the web site containing its answer to the query. In 
Figure 1, a part of the result page is shown on the right 
and it contains three book instances with associated 
attribute values.  

 
4 http://www.mysimon.com/ 
5 The exact number is not known. 
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Figure 1. An example of a Web database with its search interface and result page.  

From this example, we can clearly see the difference 
between the attribute information contained in the query 
interface and that contained in the result pages. Although 
the site provides an element in the interface for users to 
search on a particular data attribute, data values of this 
attribute may not appear in a result page. Likewise, the 
returned results may have some attributes that users 
cannot query in the interface. For instance, the site 
provides search functionality in the interface over the 
“ISBN” attribute while no ISBN information is included in 
the result page. At the same time, there is some publisher 
information for each book instance in the result page, 
while the site does not provide search functionality over 
the “Publisher” attribute. Furthermore, three kinds of 
semantic correspondence are shown in Figure 1 
represented by different style lines (dotted, dashed and 
solid). They are respectively, the correspondence between 
data attributes of the primary schema and elements in the 
interface, the correspondence between the data attributes 
and instance values in the result pages, and the 
correspondence between elements in the interface and 
instance values in the result pages.  

To describe the various schemas of Web databases and 
the attribute matching among them, a combined 3-layer 
schema model is necessary. However, in the deep Web, 
the primary schema of a backend database is hard to 
obtain directly as it is hidden behind search interfaces. 
Instead, previous work [16] makes the significant 
observation that there exists an underlying generative 
global schema that can be discovered for related Web 
databases in a specific domain, by examining the query 
interfaces of Web databases. Thus, we introduce a global 
schema (i.e., a view capturing common attributes of data 
in the specific domain.) to substitute for the primary 
schema of the backend database and propose a combined 
model for matching schemas of Web databases. Besides 

its availability, another advantage of introducing a global 
schema is that it simplifies the process of matching 
schemas of different Web databases in the same domain 
as they share the same global schema. 

Formally, we define a schema as a set of attributes, 
each of which corresponds to some unique meaning. In 
our model, the Web databases can be categorized into a 
number of domains, where Web databases in the same 
domain provide information about the same type of 
product (e.g., Books or Used cars) or the same topic (e.g., 
Jobs). In each specific domain, there exists a unified 
global schema (GS) representing the common knowledge 
about the domain. In addition, each Web database in this 
model consists of two different schemas, the interface 
schema (IS) and the result schema (RS) (illustrated in 
Figure 2 as nodes). In particular, the global schema 
consists of the representative attributes of the data objects 
in this domain. The interface schema of an individual 
Web database consists of data attributes over which users 
can query, while the result schema consists of data 
attributes that users can browse in the Web database. The 
three schemas of a Web database all partially represent 
the data objects contained in the backend database, 
varying only on the number of attributes and attribute 
names. 

A matching between two schemas S1 and S2 
determines that certain attributes of schema S1 
semantically correspond to certain attributes of schema S2. 
For an individual Web database, there exist three kinds of 
intra-site schema matching, between GS and IS, between 
GS and RS, and between IS and RS (illustrated in Figure 
2 as edges between heterogeneous nodes of each single 
site). Furthermore, given multiple Web databases in the 
same domain, the interface schemas of different Web 
databases can also be pair-wise matched (between IS and 
IS), as can the result schemas of different Web databases 
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Figure 2. Global view of the Deep Web and combined schema model of Web databases. 

(between RS and RS). Such inter-site schema matching is 
illustrated in Figure 2 as dashed edges between 
homogenous nodes of different sites. 

The benefits of such a model are that it allows us to: 
• Automatically understand the semantics of schema 

attributes. In this model, if the attribute semantics of 
one particular schema are accurately identified or pre-
known, then the attribute semantics of other schemas 
in this model can also be discovered as long as they 
are correctly matched to an identified one. Even if the 
semantics of one particular schema is somehow 
wrongly identified in a matching with a particular 
schema, there is still opportunity for correction when 
it is matched to other homogeneous schemas in this 
model.  

• Automatically extract relevant content from Web 
databases. Crawling the massive information hidden 
behind search interfaces of Web databases is a major 
problem for the Web search community. Automatic 
understanding of interface schemas can make it 
possible for crawlers to intelligently submit 
“appropriate” queries into the right input elements. 
Furthermore, automatic understanding of result 
schemas can make it possible for crawlers to 
intelligently obtain valid query results according to 
their semantic (i.e., to automatically extract relevant 
Web database content). 

• Meta-search multiple Web databases. In this model, 
related Web databases are categorized by their 
domains. With a meta-search interface built for each 
domain, users can search multiple Web databases of 
the domain at one time. Given a user query, first some 
promising Web databases that may contain relevant 
information are picked, and then queries are sent to 

these Web databases according to the identified 
semantics of their search interfaces. Finally, their 
query results are integrated and displayed to users 
according to the match among their result schemas. 
In this paper, the first benefit is our focus and 

achieved by matching both interface schemas and result 
schemas of Web databases in the same domain to a 
domain-specific global schema, in order to discover their 
attribute semantics. We also introduce a cross validation 
technique to improve the accuracy of various matching.   

3.  Domain-specific Query Probing 
Database schema matching is the task of finding 
mappings between attributes of two schemas that 
semantically correspond to each other [3].  Previous 
approaches to schema matching can be categorized into 
two classes; label-based and instance-based, according to 
the different information they rely on (see [22] for a 
survey). Label-based methods only consider the similarity 
between schema definitions or attribute labels of two 
databases. Instance-based methods ([13] and [19]) depend 
on the content overlap or statistical properties, such as 
data range and pattern, to determine the similarity of two 
attributes.  

Recent works ([16], [17], and [21]) on matching query 
interfaces of Web databases fall into the first category, 
based on identifying the attribute labels by examining the 
descriptive text surrounding interface elements and 
finding synonym relationships between the labels. Such 
methods are not stable and robust in the Web context as 
no description may exist, or the identified description may 
not be informative. On the other hand, instance-based 
schema matching was seldom employed in the deep Web 
scenario because of the difficulty of automatically 
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acquiring database contents hidden behind search 
interfaces. Paradoxically, a key prerequisite for automatic 
data acquisition from the deep Web is to understand the 
semantics of search elements. 

Different from the previous work, our goal is to 
understand and match not only interface schemas but also 
result schemas of Web databases. Consequently, the label-
based matching approach is insufficient and even 
inapplicable due to the frequent lack of explicit attribute 
labels and descriptions in result pages. Therefore, we 
propose an instance-based solution to this problem. We 
first submit semantically pre-identified query terms 
through search interfaces (section 3.2). After obtaining 
returned result data, we then analyze the results to 
understand the semantics of both the query interfaces and 
data attributes, as well as to match the homogeneous 
schemas of different Web databases (section 4). 

3.1 Observation 
During the interaction with Web databases, we observe 
two interesting phenomena. 

On the one hand, when an improper query is 
submitted to a Web database there are often few results or 
even no results returned. Improperness here means the 
query keywords submitted into a particular element are 
not applicable values of the database attribute to which 
the element is associated. Taking the Web database shown 
in Figure 1 as an example, the site reports only 4 matches 
for the query “Harry Potter” when submitted into the 
“Author” element, while it reports 228 matches for the 
same query when submitted into the “Title” element. On 
the other hand, we observe that when a proper query that 
returns a result web page is submitted into the input 
elements of a Web database, then the query keywords 
very likely reappear in the returned result’s corresponding 
attributes. For example, in Figure 1, when we submit 
query “Harry Potter” into the “Title” element, the three 
returned book instances all contain the query keywords 
(i.e., Harry Potter) in their “Title” attribute.  

Generally, how many times the keywords for a query 
re-appear in the result pages and where they appear tell us 
important information about both the interface schema 
and the result schema. Specifically, if we employ the 
keywords or values belonging to some semantically pre-
identified data attributes as queries to submit into a Web 
database, we can accomplish two tasks. First, the re-
occurrence of the query keywords in the returned results 
can be used as an indicator of which query submission is 
appropriate (i.e., the data values are submitted into the 
semantically associated elements in order to discover the 
query interface schema). Second, the position or location 
of the submitted query keywords in the result pages can 
be used to identify the semantically associated attributes 
(i.e., to discover the result schema). 

3.2 Query Probing 
Given some target Web databases in a specific domain, 
our query probing process aims to send domain-specific 
queries to these target Web databases and collect their 
returned results for later analysis.  

To accomplish the task, we make two assumptions 
about the query probing process. First, a global schema 
for the specific domain is pre-defined or pre-generated. 
Second, a number of sample data objects under the 
domain global schema are also available. In fact, global 
schema generation over information sources to 
conceptualize the underlying domain is an interesting 
problem. Proposed approaches rely on either the names of 
the schema elements and the structure of the schema ([7] 
and [16]) or formal ontologies ([4] and [15]). We consider 
this problem as a separate research direction, and do not 
deal with it in this paper. In our experiments, we manually 
define the global schema and collect sample instances. In 
future work, we plan to implement one of the previously 
proposed approaches to automatically generate a global 
schema over a sample set of Web databases and then map 
new Web databases to the generated global schema. 
3.2.1 Workflow 
We show in Figure 3 the workflow of an automatic 
probing process. Given the Web database with its search 
interface, an element identification component first 
locates qualified input elements in the search interface. 
Equipped with instances under a global schema, a query 
submission component then exhaustively submits the 
attribute values of pre-known instances into those 
identified input elements. After collecting the returned 
results for all submitted queries, a wrapper induction 
component induces a regular-expression wrapper 
composed of HTML-tags. Next, a data extraction 
component employs the induced wrapper to extract 
structured data objects from query result pages and 
arrange them into a data table. Finally, the re-occurrences 
of submitted queries in the columns of this table are 
counted and stored into a query occurrence cube, which 
will be introduced in the next subsection. 

Given a Web database, the first task is to identify 
input elements in its search interface and it can be done by 
searching for the input-related tags 6  in a HTML 
searchable form. In the HTTP protocol, a query 
submission is done by sending a query request to the 
server containing the names of input elements and their 
corresponding query terms. In this work, we consider to 
submitting one value to one element each time while 
keeping the default values of other elements. For each 
TEXTBOX element in HTML forms, as we do not know 
its value domain, we exhaustively try all the attribute 
values from the given sample instances. For each SELECT 
element, its domain values are limited to its OPTION 
                                                           
6 Please refer to the HTML specification [24]. 
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elements (i.e., we can only choose one or more of its 
OPTIONs as the query terms). Thus, for each attribute 
value of the given instances, we try to find and submit an 
option “similar”7 to the value. For other elements like 
CHECKBOX and RADIOBOX, the process is similar. As a 
consequence, the maximum submission time will be the 
product of the number of attributes in the global schema, 
the number of provided sample instances and the number 
of interface elements considered. 

 
After sending queries to the identified input elements 

and collecting returned result pages from the Web 
database, the next task is to extract structured data from 
the pages. While dealing with hundreds or possibly 
thousands of Web databases in one domain, each of which 
encloses its data in the result pages according to some 
specific HTML-tag structures, how to automatically 
extract data objects from the pages is a very challenging 
problem and it has attracted increasing research interest. 
Recently, attempts were made to develop fully automatic 
approaches for inducing wrappers to extract embedded 
semi-structured data content from dynamic template-
generated HTML pages ([1], [9], [10] and [23]). 
Discussion of these approaches is beyond the scope of this 

                                                                                                                     
7 The attribute value and the option value (two text strings) are 

similar as long as they contain at least one common keyword. 

paper and interested readers are referred to the above 
papers for further information. 

In this paper, we choose our previous work [23] to 
induce a regular-expression wrapper based on nested 
repeated-pattern discovery in HTML pages. We also 
employ the data extraction module of [23] to extract the 
enclosed data objects into a table so that each column of 
the result table corresponds to one attribute of the returned 
result. That is, each column of the result table is one 
observed attribute of the result schema. 
3.2.2 Query Occurrence Cub 
After counting the re-appearance of each submitted value 
in the query results, a Query Occurrence Cube (QOCube) 
is constructed for the target Web database, as shown in 
Figure 3. The cube height represents the number of 
attributes in the pre-known global schema. The cube 
width represents the number of interface elements 
considered (i.e., attributes of interface schema). The cube 
depth is the number of columns in the result table (i.e., 
attributes of result schema). Moreover, each cell in this 
cube stores an occurrence count associated with the three 
dimensions. For example, in Figure 3, cell<1, 2, 0> equal 
to 55 means that when the values for the 1st attribute of 
GS are submitted to the 2nd element of IS the query terms 
re-appear 55 times in the 0th column of RS.  

Conveniently, the constructed QOCube provides a 
unified solution to match the 3 pairs of Web database 
schemas. The 3-dimensional cube can be easily projected 
onto three Query Occurrence Matrices (front, top and 
left), which exactly reflect the relationship between pairs 
of the three schemas (i.e., IS with GS, IS with RS, and GS 
with RS). Suppose the number of attributes in the global 
schema is N, the number of elements in the interface 
schema is M, and the number of columns in the result 
table is L. Once a project function is selected, say sum, the 
3-dimensional cube QOCN×M×L can be projected into three 
2-dimensional occurrence matrices, OMIG

M×N for IS and 
GS, OMatRG

L×N for GS and RS, and OMIR
M×L for IS and 

RS. The main research issue now becomes how to find the 
correspondence between a pair of schemas in the 
projection matrices. 

Figure 3. Flow of the query probing process and 
the query re-occurrence cube. 

4. Instance-based Schema Matching 

4.1 Intra-site Schema Matching 
In this section, we focus on how to match the attributes 
between IS and GS, RS and GS, and IS and RS based on 
the obtained matrices: OMIG

M×N, OMRG
L×N, and OMIR

M×L . 
An example8 of OMIG

5×4 is shown in Example 1 with 
the correct matching in the gray rectangles, when GS = 
{TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS = 
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}. 

 
8  All examples in this section are obtained from real Web 

databases in our experiments. 
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EXAMPLE 1:  

45258000

275143248120

246818462

0501345451

053449893

×
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

TitleIS

TitleGS AuthorGS

AuthorIS

PublisherIS

PublisherGS ISBNGS

KeywordIS

ISBNIS
 

In fact, there are some properties of the occurrence 
matrix to consider when searching for the correspondence 
or correlation between the rows and columns of the matrix 
representing the attributes of the two schemas. First, an 
absolute high occurrence may not represent a correct 
matching. For example, the matrix element for AuthorIS 
and PublisherGS (534) is the highest value in the matrix 
while AuthorIS and PublisherGS do not semantically 
correspond to each other.  Second, given a particular 
matrix element mij, its relative magnitude among all 
elements for its row i and column j is more important than 
its absolute value. For example, for KeywordIS, which is in 
fact not a real attribute for Book objects, its similar 
performance on all columns indicates that it may not be a 
good match for any one of the columns. The element of 
PublisherIS and PublisherGS (468) is not the highest one 
among the elements for PublisherGS. However, it is 
relatively larger than the other elements that for PublisherIS 
and the other attributes of GS. 

Interestingly, we can regard the problem as follows. 
By sending sample queries, a part of the database content 
relevant to the queries is fetched from the primary 
backend database. For any two schemas, S1 and S2, of the 
Web database, the obtained database content can be 
partitioned according to the attributes of S1 and S2, 
respectively. Suppose the partitions by the attributes of S1 
are , , … and the partitions by the attributes of S1A 2A nA 2 

are , , … . The element m1B 2B mB ij in the occurrence 
matrix for S1 and S2 actually indicates the content overlap 
between partitions and with respect to the 

occurrences of submitted query values in the partitions. 
The schema matching problem now becomes finding the 
pair of partitions that belong to two schemas (e.g., IS and 
GS) such that their overlap with each other is more than 
their overlap with other partitions belonging to the 
opposite schema. 

iA jB

To solve this problem, a mutual information concept, 
also known as cross-entropy and information gain in 
Information Entropy theory, can be introduced as it 
interprets the overlap between two partitions X and Y of a 
random event set as the “information about X contained in 
Y” or the “information about B contained in X” ([20]).  
DEFINITION 1: Suppose X and Y are two partitions over 
a collection of events, and xi and yj are partition elements 
of X and Y with joint probability p(xi, yj) and respective 

marginal probability p(xi) and p(yj). The mutual 
information of the partition A and B is 

∑∑=
i j ji

ji
ji ))p(yp(x

),yp(x
),yp(xYXI log);(  

Accordingly, we can estimate the mutual information 
between a pair of attributes from two schemas using the 
following definition. 
DEFINITION 2: Given a query occurrence matrix 

of two schemas SJI
SSOM ×21 1 and S2, the estimated mutual 

information (EMI) between the ith attribute of S1 (say ) 
and the j

iA
th attribute of S2 (say ) is jB

M
jm

M
im

M
ijm

M
ijm

BAEMI ji
+∗+

= log),(  

with M being ∑
ji

ijm
,

, mi+ being and m∑
i

ijm +j being ∑
j

ijm . 

Thus, the occurrence matrix in Example 1 can induce 
the EMI matrix shown in Example 2, with each matrix 
element being the estimated mutual information value for 
the corresponding schema attributes.  
EXAMPLE 2: 

4532.000.000.000.0

17.007.001.001.0

01.014.002.003.0

00.001.003.019.0

00.006.011.004.0

×
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−−

−

TitleGS AuthorGS PublisherGS ISBNGS

TitleIS

AuthorIS

PublisherIS

KeywordIS

ISBNIS  
To find a 1-1 attribute matching of the two schemas is 

easy in the EMI matrix. If one matrix element is larger 
than the other elements in the same row and also larger 
than the other elements in the same column, its 
represented attributes will have a larger overlap between 
each other than their overlap with other attributes of the 
opposite schema, as shown by the gray rectangles. For 
example, EMI(AuthorIS, AuthorGS) = 0.11 is the largest one 
in both its row and its column, and it is a correct match. 
Therefore, we propose the following definition to quantify 
the intra-site schema matching. 
DEFINITION 3: Assume two schemas S1 and S2 with the 
corresponding EMI matrix [eij]. The ith attribute of S1 
matches with the jth attribute of S2 if jkee ikij ≠≥ | and 

ikee kjij ≠≥ | . 

4.2 Inter-site Schema Matching 
In this section, we focus on how to find the corresponding 
attributes for homogeneous schemas of different Web 
databases, namely, IS and IS, and RS and RS.  

We propose an approach to match interface/result 
schemas of different Web databases from scratch by 
computing vector similarity “borrowed” from the Vector 
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Space Model in Information Retrieval [2]. In vector space 
model, documents are represented as vectors in a multi-
dimensional space. In the space, each dimension 
represents a term or concept found in a document and the 
values are the corresponding frequencies of the terms in 
the document. Similarity between two vectors is measured 
by the cosine of the angle between their two vectors, 
which is computed as the inner product of the two vectors, 
normalized by the products of the vector lengths.  

Inspired by the above idea, if we consider each 
attribute of an individual interface/result schema as a 
“document” and each attribute of the global schema as a 
“concept”; then each row in the occurrence matrix 
represents a corresponding document vector in the space. 
Therefore, we can calculate the similarity (i.e., semantic 
correspondence) between attributes from different 
schemas by measuring their vector similarity. We give the 
following definition to quantify the inter-site schema 
matching between two Web databases.  
DEFINITION 4: Given two query occurrence matrices 
of two Web databases’ interface/result schemas 

=  and =  with respect to 
the same global schema, the estimated vector similarity 
(EVS) between the i
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To find a 1-1 attribute matching of two schemas in the 

EVS matrix is the same as in the EMI matrix (Definition 
3). A matrix element that is the largest both in its row and 
column represents a matching. For instance, Example 4 
shows two occurrence matrices of two interface schemas 
with respect to a  global schema GS = {Title, Author, 
Publisher, ISBN}, where IS1 = {Author1, Title1, Publisher1, 
Keyword1, ISBN1}, IS2 = {Title2, Author2, ISBN2}. Grey 
rectangles depict the chosen largest similarity values 
among rows and columns, which also show the correct 

matching. Interestingly, although the second attribute of 
IS2, Author2, is somehow wrongly matched to Publisher2 
of GS in the previous intra-site schema matching, the 
method still can find the right mapping.  

4.3 Cross Validation 
Given multiple Web databases in the same domain, we 
can employ the techniques proposed in sections 4.1and 
4.2 to identify the matching attributes belonging to 
schemas of an individual Web database and the matching 
attributes belonging to schemas of different Web 
databases. As a consequence, we can employ the five 
categories of matching results (i.e., GS-IS, GS-RS, IS-RS, 
IS-IS and RS-RS) to cross validate each other (i.e., to 
recognize which matching is correct and which is not). In 
this section, we focus on how to cross validate different 
matching results produced from both “inter-site” and 
“intra-site” matching. Note that in this step, we do not 
limit how the schemas are previously matched (i.e. we can 
employ any applicable label-based or instance-based 
method) as long as the matching results are provided.  

Given all the attributes from the interface schemas (or 
result schemas) of the Web databases, we can categorize 
the IS (or RS) attributes into multiple clusters with respect 
to GS attributes to which they have been matched. For 
example, the attributes are previously matched to the 
attribute AG of the global schema is categorized into one 
cluster while the attributes are previously matched to the 
attribute TG of the global schema is categorized into 
another cluster. Recall that attributes are also matched to 
each other in inter-site schema matching. In the perfect 
case, an attribute in one cluster only matches with 
attributes in the same cluster. When a mapping across 
clusters does exist (i.e., two attributes in two different 
clusters have a match) there must be a mismatch. The 
possible reason for the mismatch could be either that one 
of the two attributes was put into the wrong cluster or that 
the matching between these two attributes is wrong.  

Interestingly, if we consider the attributes as vertices 
and matching between attributes as edges, we can convert 
the problem of deciding which matchings are incorrect 
into a graph partitioning problem: given a set of vertices 
and edges, divide the vertices into N partitions such that 
the edge-cut is minimized. The edge-cut is the sum of the 
weights (1 in this case) of all the edges between the 
partitions. This graph partitioning problem is known to 
be NP-hard [11]. Therefore, we can only expect 
approximate solutions in general.  

In our case, where there is already an initial partition 
of the vertices (according to the matching results with 
respect to GS), a simple approximate approach is to move 
vertices over partitions as long as the number of cuts 
would decreases; a vertex v is moved to the partition in 
which most of its “neighbours” reside. Since a vertex v 
needs to be moved if many of its neighbours jump, 
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multiple passes are likely to be needed before the process 
converges on a local optimum. When the process stops, 
we resolve the cross cluster matching between attributes 

of site SiA 1 and of site SjB 2 contained in two clusters C1 

and C2 by discarding it and re-matching to attribute 
of site S

iA

kB 2 clustered into C1 or vice versa. 

EXAMPLE 4: 
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Example 4 illustrates one pass of such an approximate 

approach. For simplicity, suppose that the global schema 
only contains two attributes {Author, Publisher} and there 
are five Web databases with the IS attributes IS1 = { }, 
IS

aA

2 = { , }, ISaB pB 3 = { , }, ISaC pC 4 = { , } and ISaD pD 5 

= { , }. The two ellipses in the left depict how the 

attributes are primarily clustered according to which GS 
attribute they are matched to (by intra-site schema 
matching), and the edges between two attributes show 
whether they are matched or not (by inter-site schema 
matching). In the initial state,  is wrongly matched to 
the Publisher attribute of GS and also wrongly matched 
to while it has been correctly matched to three other 

attributes in the Author cluster. Therefore,  is moved to 
decrease the number of edges across clusters from 3 to 1, 
as shown in Example 4. By such a “moving” process, we 
correct the matching attribute of  from the Publisher to 
the Author attribute of GS. After the move, the edge 
between and is replaced by a new edge between  

and (the attribute of site 2 that is matched to the global 
attribute Author). 

aE pE

aA

pB

aA

aA

aA pB aA

aB

Due to space limitations, we omit the detailed 
algorithm for the above cross-validation technique and 
only show the experimental results in the next section to 
verify its effectiveness. 

5.  Experiments 
We performed a comprehensive evaluation of the 
proposed instance-based schema matching approaches on 
thirty complex Web databases over two domains: Book 
and Used Car. The main goal was to investigate the 
feasibility of a unified and accurate solution to matching 

schemas both in a single site and from different sites. We 
first describe the Web databases employed for the testing. 
Then we present the results for intra-site schema matching 
and inter-site schema matching, and the improvement 
achieved by cross validating the matching results.  

5.1 Test Web Databases 

For our evaluation, we used 20 Web databases for 
purchasing books online and 10 Web databases for 
searching for used cars online. The global schema for the 
two domains are manually defined as Book = {Title, 
Author, Publisher, ISBN} and UsedCar = {Make, Model, 
PostalZip, State, Price, Mileage, Year}. We also manually 
collected 20 book instances and 10 car instances (details 
are shown in Table 5 and Table 6 in the Appendix) and 
took their attribute values as sample queries to be used to 
probe the test Web databases. After obtaining the query 
result pages from each Web database, we employed the 
previous work [23] on wrapper induction to automatically 
extract the result records according to their specific 
structures and re-arrange them into a result table. 

Table 1.  Characteristics of test Web databases. 

 #Interface 
Element #TS %SS 

#Result 
Column

#Extracted 
Data 

Book 4.2 343.3 32% 6.25 1322.9 
UCar 6.0 123.1 72% 5 995.3 

 

The columns #TS and %SS of Table 1 represent, 
respectively, for the number of total submissions made to 
the test Web databases and the corresponding success 
rate9. The reason that the UsedCar domain has a lower 
number of submissions and a higher success rate than the 
Book domain is because, SELECT and TEXTBOX are 
treated differently when submitting the queries. We 
exhaustively tried all the attributes of the pre-known 
instances for a TEXTBOX element, while we only submit 
the OPTION values of a SELECT element if they are 
found to be similar to one or more attribute values of the 
pre-known instances (see section 3.2.1). In our 
experiments, most of the Web databases in the Book 
domain only contain TEXTBOX elements. Therefore, it 
has a higher number of submission and lower success 
rate. 

5.2 Matching Results  

5.2.1 Intra-site and inter-site 
In this subsection, we report and discuss the experimental 
results for both intra-site and inter-site schema matching 
of the two domains. The intra-site schema matching 
results are listed in Table 2. To verify the effectiveness of 
our proposed instance-based matching approach (EMI) 

                                                           
9 A query submission is successful if the induced wrapper can 

extract at least one instance from the query result page. 
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derived from mutual information analysis, we 
implemented a simple method as our baseline (MAX). 
The baseline method works as follows: in the query value 
occurrence matrix, the matrix element with the largest 
value both among the elements in the same column and 
among the elements in the same row is identified as an 
attribute matching.  

In our evaluation, precision and recall originating 
from the information retrieval area are borrowed as the 
metrics. Precision here is measured as the ratio of the 
number of correctly identified matching attribute-pairs to 
the total number of attribute-pairs identified by the 
methods. Recall here is measured as the ratio of the 
number of correctly identified matching attribute-pairs to 
the total number of matching pairs in the two schemas. 
Suppose the number of correctly identified matching 
attribute-pairs is C, the number of wrongly identified 
matching attribute-pairs is W and the number of correct 
matching attribute-pairs but somehow missed in the 
approach is M, then the precision of the approach 

is
WC

C
+

 and its recall is
MC

C
+

. 

Table 2. Intra-site schema matching results. 

IS — GS RS — GS IS — RS  
P R P R P R 

MAX 68% 50% 91% 81% 90% 84% Book 
EMI 80% 71% 95% 88% 93% 87% 
MAX 97% 63% 96% 57% 100% 67% Car 
EMI 97% 64% 93% 63% 100% 73% 

 

In Table 2, we can see that our EMI-based method 
significantly outperforms the baseline method, especially 
for global-interface schema matching. In the Book 
domain, both the EMI-based and Max-based methods 
produce the worst results on IS-GS schema matching. The 
reason is that Web databases of this domain tend to 
include a Keyword input element in the interface schema 
for the convenience of end-users who may want to use 
keyword search. Using the Keyword element often returns 
results for any query no matter to which global attribute 
the query belongs. Since there is not a noisy keyword 
attribute in the global schemas and the result schemas, our 
matching approach can achieve a higher accuracy in GS-
RS matching. In the UsedCar domain, both MAX-based 
and EMI-based methods have a relatively low recall. The 
reason is that our matching techniques are based on 
counting the re-appearances of submitted queries in the 
result data, which is more suitable for database attributes 
accepting the “equal” select operator. When handling 
numeric-field attributes that accept “less than” or “greater 
than” select operators, such as Price and Mileage, the 
returned results sometimes may not include the exact 
query term, such as “$10,000”. 

 

65%

70%

75%

80%

85%

90%

95%

5 10 15 20 

Precision

Recall

 
Figure 4. Result achieved by different number of sample 

instances. 

We show in Figure 4 how the achieved results vary 
when the number of sample instances is increased. 
Columns in Figure 4 are achieved average precision and 
recall of the intra-site schema matching results of the 
Book domain, when the number of instances is set to 5, 
10, 15 and 20. From the figure, we can see that the 
achieved results generally increase when the number of 
sample instances increase. However, more sample 
instances mean more query submissions to the Web 
server. Since we do not want to overburden the target 
Web databases, an interesting future research direction 
might be to find a trade-off between the number of 
submission and the achieved results.  

Table 3. Inter-site schema matching results. 

EVS Label-based  
P R P R 

IS — IS 80% 71% 90% 87% Book 
RS — RS 94% 86% 95% 14% 
IS — IS 92% 72% 89% 88% Car 

RS — RS 89% 66% 98% 25% 
 

In Table 3 we compare the inter-site schema matching 
results achieved by our proposed approach (EVS) based 
on vector similarity analysis with label-based approaches. 
Label-based approaches are mainly based on finding the 
synonym relationship between attribute labels. In 
matching interface schemas, we employ previous 
approaches on identifying the surrounding text of input 
elements as their labels ([16], [17], and [21]). In matching 
result schemas, we try to find either explicit author-
supplied column headers in the result pages or the text 
strings commonly shared by all extracted instances as 
their attribute labels. Table 3 shows that the performance 
of the EVS-based method is close to that of label-based 
methods in IS-IS matching, while it performs much better 
in RS-RS matching when attribute labels are often 
unavailable in result pages. In addition, our approach does 
not require intelligent layout analysis to precisely identify 
the right attribute labels. 
5.2.2 Cross Validation 
We present in Table 4 the effectiveness of the proposed 
cross validation approach in improving the overall 
accuracy. The approach is based on an approximate 
solution of the graph partitioning problem.  
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Table 4. Effectiveness of cross validation. 

Before CV After CV 
 

 P R P R 
IS — GS 80% 71% 96% 83% 
RS — GS 95% 88% 98% 91% 
IS — RS 94% 88% 97% 90% 
IS — IS 91% 70% 94% 74% 

Book 

RS — RS 94% 86% 99% 87% 
IS — GS 97% 64% 97% 72% 
RS — GS 93% 63% 97% 70% 
IS — RS 100% 73% 100% 75% 
IS — IS 92% 72% 95% 77% 

Car 

RS — RS 89% 66% 92% 69% 
 

Table 4 shows that the cross validation method does 
improve the overall matching accuracy, especially in the 
Book domain. It is notable that we cannot achieve a recall 
as high as we can achieve the precision (over 90%). The 
cause is not due to the ineffectiveness for the cross 
validation but may be due to the probing-based approach 
itself. In our experiments, we observe some issues that 
need further considerations.  

The performance of our instance-based matching 
approaches to some extent depends on the selection of the 
sample instances. More specifically, two properties of the 
sample instances could influence the matching process, 
the topics that the sample instances cover and the 
attribute-distinguish capability of the sample instances. 
Take the Book domain as an example. Some Web 
databases may only contain books about computer 
programming while others only have novels. Therefore, to 
ensure that useful instances can be extracted from the 
Web databases’ answers to the sample queries, various 
topics are required to be covered in the sample instances. 
At the same time, the attribute-distinguish capability of 
the sample instances may also influence the matching 
results. For example, the name of a famous person usually 
frequently appears both in the Author attribute of the 
books he/she wrote and the Title attribute of his/her 
biographies, such as “Jane Austen” in our chosen sample 
instances.  

We also notice that, as Web databases vary in their 
designs, some of them might generate result pages with 
different formats for different queries. For example, when 
answering a Title query, a Web database returns a list of 
qualified book instances and each of the instances is 
described by come text. However, when answering an 
ISBN query, the same Web database returns only one 
unique book instance with its detailed information shown 
in the result page. It is obvious that these two kinds of 
results are generated by two different templates. To deal 
with this issue, an intelligent result analysis method is 
needed to first extract results with different formats and 
then combine them into one uniform result table.  

6.  Related Work 
Schema matching is a basic problem in database research 
with numerous techniques proposed to address the 
problem (see [12] and [22] for surveys). Existing work 
that addresses the problem of automatic schema matching 
for deep Web sources adopts the prior techniques on 
matching schemas of traditional databases. [16] presented 
a statistical approach to integrate the query interface 
schemas of deep websites in the same domain. It 
hypothesizes that given deep-web sources in the same 
domain, the aggregate vocabulary describing the interface 
input elements tends to have a relatively small size. 
Furthermore, there exists a unified hidden schema 
underlying these interfaces. A statistical probability model 
is employed to find the hidden schema by the co-
appearance of attribute names. The schema matching 
methods employed in this paper are label-based. WISE-
Integrator, a tool that performs automatic integration of 
Web search interfaces is presented in [17]. WISE-
Integrator employs sophisticated techniques to identify 
matching attributes from different search interfaces for 
integration. This can also be classified as a label-based 
method since it mainly relies on the approximate string 
match between attribute names. [18] investigated 
algorithms for generic schema matching, outside of any 
particular data model or application. An algorithm called 
Cupid was proposed to discover mappings between 
schema elements based on their names, data types, 
constraints, and schema structure. [19] used a classifier to 
categorize attributes according to their field specifications 
and data values, and then train a neural network to 
recognize similar attributes. However, this method may 
not be applicable for Web databases since both field 
specifications and data values are incomplete in many 
cases. [12] developed the COMA schema matching 
system as a platform to combine multiple matchers in a 
flexible way. While their approach may seem similar to 
our cross validation method, it is fundamentally different  
since the goal of our method is the reinforcement of 
multiple matchers, not the straightforward combination of 
the matchers. [21] presented HiWe, a prototype deep-web 
crawler that can extract the labels of interface elements 
and automatically submit queries through the elements. In 
this work, interface elements with the same/similar labels 
are matched in order to obtain each other’s domain 
values for automatic query submission. 

The main difference between our work and previous 
works is that we aim to provide a general framework for 
schema matching of Web databases. To the best of our 
knowledge, no previous work has presented such a 
framework, especially the combined schema model for 
deep websites. Moreover, the instance-based schema 
matching method is seldom used for schema matching in 
the deep Web context since it is hard to get instances from 
hidden databases. Supplied with a set of sample instances, 
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our work proves that instance-based methods are very 
effective for Web database schema matching. 

7.  Conclusion 
In this paper, we investigate the problem of schema 
matching for Web databases. We propose a combined 
schema model to describe various schemas in a deep 
website and a generative view to include five kinds of 
schema matching of related Web databases in a specific 
domain.  

In the combined schema model, we address two 
significant schema matching problems for Web databases, 
intra-site schema matching and inter-site schema 
matching. The first problem is crucially important in 
automatically extracting data from Web databases, while 
the second problem is of significant importance in 
integrating data from different Web databases. In the 
generative view, we then investigate a unified solution to 
the two problems based on domain-specific query probing 
and attribute content overlap. Our instance-based 
approaches, specifically adopting the mutual information 
concept and vector similarity analysis, are quite powerful 
for precisely identifying the matching relationships 
among attributes for intra-site and inter-site matching. 
Benefiting from our general framework, a cross validation 
technique, converted to a graph partitioning problem, is 
introduced and shown to improve on the matching 
performance. 

As mentioned, in current stage our approach needs 
some human involvement to provide a precise global 
schema and instance samples. One direction to extend this 
work is to adopt automatic global schema generation 
techniques to make the whole system fully automatic. 
Another direction of improvement is to combine our 
works with previous label-based approaches to build a 
more robust matching system that can handle most 
attributes of Web databases.   
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APPENDIX 
 

Table 5. Test Web databases. 

Homepage URL 
#Interface 
elements #Submission 

#Successful  
submission 

Success 
rate 

#Result 
columns 

#Extracted 
instances 

www.bookstore.co.uk 3 240 55 23% 3 326
dogbert.abebooks.com 7 560 241 43% 8 4014

www.powells.com 6 480 156 33% 7 2941
www.randomhouse.com 5 400 133 33% 8 3162
www.hwg.org/bookstore 4 320 124 39% 6 778

www.booksandcollectibles.com.au 4 320 139 43% 8 1519
www.bestbookdeal.com 3 240 181 75% 4 1436

search.barnesandnoble.com 3 240 98 41% 7 394
www.mysimon.com 4 320 125 39% 4 3205

isbn.nu/advanced.html 5 400 65 16% 6 2715
www.a1books.com 5 400 63 16% 5 1034
www.booksinc.net 2 160 80 50% 5 1869

www.page1book.com 5 400 197 49% 12 1746
www.biggerbooks.com 4 320 174 54% 7 1498

www.bookcloseouts.com 3 240 58 24% 7 710
www.christianbook.com 5 400 82 21% 10 549
www.hamiltonbook.com 5 400 47 12% 5 189

www.textbookx.com 3 240 98 41% 6 1069
www.1bookstreet.com 6 480 104 22% 6 866

www.allbookstores.com 5 400 72 18% 6 1384 

Average 4.2 343.3 98.2 32% 6.25 1322.9 
(a) Book Domain. 

 

Homepage URL 
#Interface 
elements #Submission 

#Successful  
submission 

Success 
rate 

#Result 
columns 

#Extracted 
instances 

www.consumerreports.org 5 25 23 92% 2 213
www.bigbillybarrett.com 5 33 32 97% 4 355

www.carbuyer.com 2 21 20 95% 7 500
www.401carfinder.com 7 359 133 37% 4 1104

www.2buycars.net 14 381 230 60% 9 2334
auto.consumerguide.com 5 97 34 35% 5 501
www.fredbondesen.com 4 26 23 88% 5 231

midland.autochooser.com 9 169 167 99% 2 4355
www.mswebmasters.com 4 21 20 95% 5 203
toyota.traversemotors.com 5 99 25 25% 7 157

Average 6 123.1 70.7 72.4% 5 995.3 
(b) Used Car Domain. 
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Table 6. Instances for sample query probing. 

Title Author Publisher ISBN
Story of Art Gombrich Phaidon Press 0714832472

Winning Through Intimidation Ringer Fawcett Books 0449207862
New Joy of Cooking Irma Ruer Scribner 0684818701

Worst Case Scenario Survival Handbook Joshua Piven Chronicle Books 0811825558
Fight Cancer Win Fischer Agora Health 1891434012

Interpretation of Dreams Sigmund Freud Avon Books 0380010003
Sense and Sensibility Jane Austen Norton Company 039397751X

Guess How Much I Love You Sam McBratney Candlewick Press 076360013X
On the Shoulders of Giants Stephen Hawking Running Press 0762413484

Selfish Gene Richard Dawkins Oxford University Press 0192860925
Communion With God Walsch Berkley Pub Group 0399146709

NBA Alphabet Mayers Abrams Books 0810931435
Core Java Gary Cornell Prentice Hall 0130471771
Art of War Sun Tzu Delacorte Press 0385292163

Shining Stephen King Pocket Books 0743424425
Harry Potter Rowling Scholastic 0439139597

Lord of the Rings Tolkien Houghton Mifflin 0618260587
Programming Language Bjarne Stroustrup Addison Wesley 0201700735
Who Moved My Cheese Spencer Johnson Putnam Pub Group 0399144463

Making of the Microsoft Empire James Wallace HarperBusiness 0887306292
(a) Book Domain. 

Make Model Postal State Price Mileage Year 
Acura TL 10021 New York $1,000 10,000 1993 
Audi A4 20854 Maryland $2,000 20,000 1994 
Buick Century 22066 Virginia $3,000 30,000 1995 

Cadillac Escalade 33156 Florida $5,000 40,000 1996 
Chevrolet S-10 90001 California $7,000 50,000 1997 

Ford Explorer 58259 North Dakota $8,000 60,000 1998 
Juguar XJ 98112 Washington $10,000 70,000 1999 
Honda Accord 60611 Illinois $12,000 80,000 2000 
Lincoln LS 63463 Missouri $15,000 90,000 2001 
Volvo V70 31626 Georgia $20,000 100,000 2002 

(b) Used Car Domain. 
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