Enterprise
JavaBeans

Dan Harkey

Director

Client/Server and Distributed Objects Program
San Jose State University
dharkey@email.sjsu.edu
www.corbajava.engr.sjsu.edu

Copyright 1999, Dan Harkey. All rights reserved.

Agenda

v/ Enterprise JavaBeans (EJB) Overview
v/ Your first EJB code examples
v/ EJB Vendors: Meet the players

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans (EJB) Overview

Object Transaction Monitor (OTM)
Declarative
JAR Transactlons um i otate I
i {GTEIJTE‘} n .ﬂﬂﬂgﬂm&l’l
.= Container
Deployment Metadata
Descriptor
ome/Remote
FPackaging Interfaces E ﬁ
EJB ﬁ B
(ORB 9 T EJD o
CMF
Session | Stateless J_ENtitY
Sesslon

Framework
(EJE Server
or Container)

Server-side
Componente

Copyright 1999, Dan Harkey. All rights reserved.

EJB and Java 2 Enterprise Edition

App[ﬁt Contalner

Web Container

ST
IANI
J0II/IWE

Jdar

Java
Mail

JAF

—_
b
o
m

SWIr
IANT
WA

Jdar

A0I/TWE

Application
Client Container

JZ5SE

EJB Container

SWIr

Java
Mail

IANT
YL
40NN

JAF

Jdar

JZSE

ﬁppllﬁatlﬂn
Client

ST
IAN
d0I/IWA
Jaar

J25

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JNDI

v/ Java Naming and Directory Service (JNDI)
® Java API layer built on top of existing Naming or

Directory Service
H COS Naming

m LDAP

o efc

@ Provides a look-up mechanism for EJB clients

® Used to provide deployment information to EJBs
B Home Interface look-up
H Environment properties
B Resource locations

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JTA/JTS

v/ Java Transaction API (JTA)

® Provides transaction interfaces for applications,
application servers, and resource managers

® Consists of three parts
B High-level application interface that provides begin,
commit, rollback semantics
B Java Mapping of X/Open XA protocol
B Transaction Manager interface for an application server to
control transactions

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JTA/JTS (cont.)

v/ Java Transaction Service (JTS)

® Specifies the implementation of a transaction
manager using the JTA interfaces

® Uses the Java mapping of the CORBA Object
Transaction Service (OTS) version 1.1 for the
implementation

EJB Related Technologies: RMI/110P

v/ Remote Method Invocation (RMI)/Internet
Inter-ORB Protocol (110P)

® EJBs and their clients use RMI programming

APls
® |IOP is used as the transport protocol for
interoperability and to provide transaction and

security contexts

EJB Interoperability

Enterprise —
JavabBeans op | Enterprise Enterprise
Client JavaBeans JavaBeans

Java IDL
Client

EJB lI0P EJB
Server Server

Copyright 1999, Dan Harkey. All rights reserved.

EJB Transactions

v/ Container-managed transactions
® Six types of declarative transactions:
NotSupported, Required, Supports, RequiresNew,
Mandatory, Never
® Transaction types declared in deployment
descriptor for bean methods

v/ Session beans can manage transactions using
begin, commit, and rollback methods of the
UserTransaction interface

v/ Clients can also use the UserTransaction
interface to manage transactions

EJB Transactions: Transaction Context Propagation

O lloP lIOP

Client

Oracle DB2
DBMS DBMS

EJB Server 1 EJB Server 2

Copyright 1999, Dan Harkey. All rights reserved.

EJB Transactions: Client Demarcated Transactions

Oracle
DBMS

DB2
DBMS

EJB Server 1

EJB Server 2

Copyright 1999, Dan Harkey. All rights reserved.

EJB Declarative Transactions

RequiresNew Supporte Mandatory

0T .

Client Transaction T1

Copyright 1999, Dan Harkey. All rights reserved.

EJB Declarative Transactions (cont.)

Supports RequiresNew

D

Supporte

Client

Transaction T2

Supporte
Transaction T1

Copyright 1999, Dan Harkey. All rights reserved.

EJB Security

v/ Roles and method permissions defined in
deployment descriptor

v/ APls defined for EJBs to get Principal and test
if caller is defined in a role

v/ Authentication, encryption, auditing, ete. is
outside of the EJB spec definition and is left to
the EJB Server vendor

EJB Packaging

v/ EJBs are stored in JAR files

v/ Multiple EJBs used to assemble an application

v/ Application is deployed to an EJB server

v/ XML used to describe bean, application, and
deployment information

EJB Contracts

Client’ &
View Enterprise Bean
Contract
(c"""t} > Container
Contract
Container
EJB Server

ejb-jar file I

Copyright 1999, Dan Harkey. All rights reserved.

EJB Session Beans

v/ Implement business logic that tuns on an EJB
server

v/ Are not shared between clients--logical
extension of a single client

v/" Do not maintain persistent state

v/ Two types

® Stateless--no client specific state is maintained
between client method calls
@ Stateful--can maintain conversational state

Copyright 1999, Dan Harkey. All rights reserved.

Client View of Session Bean

<<lInterface>> <<Interface>>
Remote EJBMetaData
(from rmi) (from ejb)
| ®getEIBHome()
®getHomelnterfaceClass()
®getPrimaryKeyClass()
®getRemotelnterfaceClass()
®isSession()
<<Interface>> <<lInterface>>
EérBor?ZJgCt E(\f]rsnljgjrtge <<Interface>>
Serializable
— (from io)
‘getEJBHome() ®getEJBMetaData()
getHandle() ®getHomeHandle()
®getPrimaryKey() ®Fremove() A
Sisldentical() ®remove()
Sremove() <<Interface>>
A Handle
A | (from gjb)
} |
<<Interface>> <<Interface>> ®getE JBObject
YourRemotelnterface YourHome hterface) e
SbusinessMethod() Screate()

Copyright 1999, Dan Harkey. All rights reserved.

Session Bean Classes

<<Interface>>
Serializable
(from io)

L

<<Interface>>
EnterpriseBean
(from ejb)

b

<<Interface>>

SessionBean
(from ejb)

®ejbActivate()
®ejbPassivate()
®ejbRemove()
®setSessionContext()

<<Interface>>

EJBContext
(from ejb)

<<Interface>>
SessionSynchronization
(from ejb)

®afterBegin()
®afterCompletion()
®heforeCompletion()

®getCallerldentity()
®getCallerPrincipal()

®getEJBHome()
®getEnvironment()
®getRollbackOnly()
®getUserTransaction()
SisCallerinRole()
SisCallerinRole()
®setRollbackOnly()

Z
/
/

J

_~ “Optional

| _
YourSessionBean

b

<<Interface>>

SessionContext
(from ejb)

®g etE JBObject()

Copyright 1999, Dan Harkey. All rights reserved.

EJB Entity Beans

v/ An object-oriented view of an "entity" in
persistent storage

v/ Can be accessed by multiple clients concurrently

v/~ Container manages state synchronization
between bean and persistent storage

+/ Entity bean identity established using a key
value

Client View of an Entity Bean

<<Interface >> <<Interface>>
Remote EJBMetaData
(from rmi) (from ejb)
| ®getEIJBHome()
®getHomelnterfaceClass()
®getPrimaryKeyClass()
®getRemotelnterfaceClass()
®isSession()
<<Interface>> <<Interface>>
EJBODbject EJBHome <<Interface>>
(from ej b) (from er) Serializable
- (from io)
getEJBHome() ®getEIBMetaData()
FgetHandle() ®getHomeHandle()
“‘_getPnr_naryKey() Fremove() A
®isldentical() ®remove()
Fremove() <<Interface>>
Handle
@ T (from ejb)
‘ <<Interface>> :
<<Interface>> YourHomelnterface ®getE JBObject()
YourRemotelinterface
<
®businessMethod() iﬁ Lecg(t;())(0 YourKey

Copyright 1999, Dan Harkey. All rights reserved.

Entity Bean Classes

<<Interface>>
Serializable
(from o)

[
<<Interface >>
EnterpriseBean
(from ejb)

<<Interface >>
E ntityB ean
(from ejb)

e jb Activate ()
®ejbLoad()
®ejbPassivate()
®ejbRemove ()
®ejbStore ()

®¥se tEntity C onte xt()
" unse tEntity C onte xt()

YourEntityBean

<<Interface>>
E JBC o ntext
(from ejb)

®getCalleridentity()
"®getCallerPrincipal()
®¥g etE JIBHome()

"®¥g etE nvironment()
®getRollbackOnly()
®getUserTransaction()
®isCallernRole()
®isCallerinRole()
"®¥setRollbackOnly()

YourKey

<<Interface>>

E ntityC o ntext
(from ejb)

®¥getEJBObject()
®getPrimaryKey()

Copyright 1999, Dan Harkey. All rights reserved.

EJB Development Process

rr
'

Intarface Classas

(class) (iclase)

Count Stateless Session Bean

<<Interface>>
EJBHome
(from ejb)

b

<<lInterface>>
CountHome
(from statelessSession)

CountClient
(from statelessSession)

create()

esum

®main()

<<Interface>>

EJBObject
(from ejb)

b

<<Interface>>

SessionBean
(from ejb)

CountBean
(from statelessSession)

<<Interface>>
Count
(from statelessSession)

"®CountBean()
®ejbCreate()
®ejbActivate()
®ejbPassivate()
®ejpRemove()
®setSessionContext()
®increment()

®increment()

Copyright 1999, Dan Harkey. All rights reserved.

Stateless Session Bean State Diagram

does n
exist
1. newinstance()

2. eetSessionContext(sc) ejpRemove()
D. ejpCreate(args)

pool

method() action initiated by client
ejpCreate() action initiated by container

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Home Interface

/1 Count Hone. j ava
package count. st at el essSessi on;

| nport | avax. ej b. EJBHone;
i nport java.rm . Renot eExcepti on;
| nport j avax. ej b. Creat eExcepti on;

public interface Count Hone extends EJBHone
{

public Count create() throws RenpteException,

}

Copyright 1999, Dan Harkey. All rights reserved.

Cr eat eExcepti on;

Count Stateless Session Bean: Remote Interface

/1 Count.java
package count. st at el essSessi on;

| nport javax. ej b. EJBOhj ect ;
| nport java.rm . Renot eExcepti on;

public interface Count extends EJBObject
{

public int increment(int sun) throws RenbteException;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: EJB Class

/| Count Bean. j ava
package count. st at el essSessi on;

| nport javax.ejb.*;
| nport java.rm . Renot eExcepti on;

public class Count Bean i npl enents Sessi onBean
{

/1 no arg contructor

publ i ¢ Count Bean() {}

public void ejbCreate() {}

public void ejbActivate() {}

public void ej bPassivate() {}

public void ej bRemove() {}

public void set Sessi onCont ext (Sessi onContext ctx) {}

public int increnment(int sum

{

return ++sum

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean:
Deployment Descriptor (1 of 2)

<?xm version="1.0" encodi ng="Cpl252" ?>

<ej b-jar>
<descri pti on>no descri ption</description>
<di spl ay- nane>Ej b1</ di spl ay- nane>
<ent erpri se-beans>
<sessi on>
<descri pti on>no descri ption</description>
<di spl ay- nanme>st at el essSessi on</ di spl ay- nane>
<ej b- nane>st at el essSessi on</ ej b- nane>
<honme>count . st at el essSessi on. Count Hone</ hone>
<r enot e>count . st at el essSessi on. Count </ r enot e>
<ej b- cl ass>count . st at el essSessi on. Count Bean</ e] b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
</ sessi on>
</ enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean:
Deployment Descriptor (2 of 2)

<assenbl y-descri pt or >
<cont ai ner-transacti ons>
<cont ai ner-transacti on>
<met hod>
<ej b- nane>st at el essSessi on</ ej b- nane>
<met hod-i ntf >count . st at el essSessi on. Count </ met hod-i1 ntf >
<met hod- nane>i ncr enent </ met hod- nane>
<net hod- par anei nt </ net hod- par an®
</ met hod>
<trans-attri but e>Not Supported</trans-attri bute>
</ cont al ner-transacti on>
</ cont ai ner-transacti ons>
</ assenbl y-descri ptor>
</ejb-jar>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (1 of 3)

/1l Countdient.java
package count. st at el essSessi on;

| mport count. st at el essSessi on. Count ; /1 Count EJB Renvpte
| nport count. st at el essSessi on. Count Hone; // Count EJB Hone

| mport java.rm.?*;
| nport java.util.*;
| nport java.io.?*;

| nport j avax.
| nport | avax.
| nport | avax.

public class

{

rm.*;
nam ng. *;
ej b. *;

Count d i ent

public static void main (String args[])

{

Int sum // current sum
Count Hone count Hone;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (2 of 3)

try
{
/] Get the initial JNDI context

Systemout.println("Getting initial context");
I nitial Context context = new Initial Context();

/!l Find the hone interface and narrow t o Count Hone
(bj ect object = context.|ookup("statel essSessi onCount Hone") ;
count Honme =
(Count Hone) Por t abl eRenot e(bj ect . narr ow(obj ect, Count Hone. cl ass);

/] Create EJB
Systemout.println("Creating EIB");
Count count = count Hone. create();

[/ Set sumto initial value of O

Systemout.println("Setting sumto 0");
sum = 0;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (3 of 3)

[l Calculate Start tine
|l ong startTinme = SystemcurrentTimeMI1lis();

/1l Increment 1000 tines
Systemout.println("Increnenting");

for (int i =0 ; i < 1000 ; i++)
{ sum = count.increnment(sum;
}

/[l Calculate stop tine; print out statistics
| ong stopTine = SystemcurrentTinmeMIIlis();
Systemout.println("Avg Ping = "
+ ((stopTine - startTine)/1000f) + " nsecs");
Systemout.printin("Sum=" + sum;
} catch(Exception e)
{ Systemerr.println("Exception");
Systemerr.println(e);

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean

<<Interface>>
EJBHome
(from ejb)

1

<<Interface>>
CountHome
(from statefulSession)

Mcreate()

CountClient
(from statefulSession)

®main()

<<Interface>>
EJBObject
(from ejb)

L

<<Interface>>
SessionBean
(from ejb)

CountBean
(from statefulSession)

BSsum :int

<<Interface>>
Count
(from statefulSession)

CountBean()
®ejbCreate()
®ejbActivate ()
®ejbPassivate()
®ejbRemove ()
®setSessionContext()
®getSum()
MsetSum()
increment()

MgetSum()
®setSum()

M increment()

Copyright 1999, Dan Harkey. All rights reserved.

Stateful Session Bean Lifecycle Diagram

Instance throws system
exception from any method

-:matafraa]

1. newinstance() eJbRemove() w

2. setSesslonContext(sc) 4 timeout
3. ejpCreate(args) remove()

or timeout

chosen as LREU victim
ejbPassivate()

non-tx-method

tx method method ri:ﬂbﬂ-.:k
i
afterBegin() 1. beforeCompletion() afterCompletion(false)

2. afterCompletion(true)

non-tx or differsnt tx method

> ERROR

create() action initiated by client

newlnstance action initiated by container
Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Home Interface

/'l Count Hone. j ava
package count. st at ef ul Sessi on;

| nport j avax. ej b. EJBHone;
| nport java.rm . Renot eExcepti on;
| nport javax. ej b. Creat eExcepti on;

public interface Count Hone extends EJBHone

{
public Count create(int initial Sum

t hrows Renot eException, CreateException;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Remote Interface

/1 Count.java
package count. st at ef ul Sessi on;

| nport j avax. ej b. EJBObj ect ;
| nport java.rm . Renot eExcepti on;

public interface Count extends EJBObject

{
public int getSun() throws RenoteException;

public void setSun(int val) throws RenoteException;
public int increnment() throws RenoteException;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: EJB Class (1 of 2)

/| Count Bean. j ava
package count. st at ef ul Sessi on;

| nport | avax. ej b. Sessi onBean;

| nport javax. ej b. Sessi onCont ext ;
| nport javax. ej b. EJBExcepti on;

| nport java.rm . Renot eExcepti on;

public class Count Bean extends Cbject inplenents Sessi onBean

{

private int sum // state variable

/1l no arg contructor
public CountBean() {}

public void ejbCreate (int initial Sum)
throws javax.ejb.CreateException
{ sum= initial Sum

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: EJB Class (2 of 2)

public void ejbActivate() {}

public void ejbPassivate() {}

public void ej bRemove() {}

public voi d set Sessi onCont ext (Sessi onCont ext ctx) {}

/] get sum
public int getSum()
{ return sum

}

/1l set sum
public void setSun(int val)
{ sum = val;

}
public int increnment ()
{ sumt+;
return sum
}

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean:
Deployment Descriptor (1 of 2)

<?xm version="1.0" encodi ng="Cpl252" ?>

<ej b-jar>
<descri pti on>no descri ption</description>
<di spl ay- nane>Ej b2</ di spl ay- nane>
<ent er pri se- beans>
<sessi on>
<descri pti on>no descri ption</description>
<di spl ay- name>Count </ di spl ay- name>
<ej b- nane>Count </ ej b- name>
<honme>count . st at ef ul Sessi on. Count Hone</ hone>
<r enot e>count . st at ef ul Sessi on. Count </ r enot e>
<ej b-cl ass>count . st at ef ul Sessi on. Count Bean</ ej b-cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
</ sessi on>
</ enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean:
Deployment Descriptor (2 of 2)

<assenbl y-descri pt or >
<cont ai ner-transacti ons>
<cont ai ner-transacti on>
<met hod>
<ej b- nane>Count </ ej b- nanme>
<met hod-i ntf >count . st at ef ul Sessi on. Count </ net hod-i ntf >
<met hod- nane>i ncr enent </ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

</ cont al ner-transacti ons>
</ assenbl y-descri ptor>
</ejb-jar>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (1 of 3)

/1l Countdient.java
package count. st at ef ul Sessi on;

| nport count. st at eful Sessi on. Count ; /1 Count EJB
| nport count. st at ef ul Sessi on. Count Hone; // Count EJB Hone

| mport java.rm.?*;
| nport java.io.?*;
| nport java.util.?*;

| mport javax.rm.*;
| mport javax. nam ng. *;
| mport javax.ejb.*;

public class Countdi ent

{

public static void main(String args[])

{

Count Hone count Hone;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (2 of 3)

try

{
/] Get the initial JND context

Systemout.println("Getting initial context");
I nitial Context context = new Initial Context();

/'l Find the hone interface and narrow t o Count Hone
java.l ang. String jndi Nane =
new String("stateful Sessi onCount Hone") ;
Systemout.println("Finding EJB hone using " + jndi Nane);
(bj ect obj ect = context.|ookup(jndi Nane) ;
count Hone =
(Count Hone) Por t abl eRenot e(bj ect . narr ow(obj ect, Count Honre. cl ass) ;

/| Create EJB with intial sumof O

Systemout.println("Creating EIB");
Count count = count Hone. create(0);

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (3 of 3)

/1l Calculate Start tine
|l ong startTinme = SystemcurrentTinmeMIIlis();

/1 Increment 1000 tines
Systemout.println("Increnenting");

for (int i =0 ; i < 1000 ; i++)
{ count.increnent();
}

// Calculate stop tine; print out statistics
| ong stopTinme = SystemcurrentTineM I 1is();
Systemout.printin("Avg Ping ="
+ ((stopTine - startTine)/1000f) + " nsecs");
Systemout.println("Sum=" + count.getSun());
} catch(Exception e)
{ Systemerr.println("Exception");
Systemerr.println(e);

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity Bean

<<Interface>> CountKey
EJBObject (from beanManagedJDBC)
(from ejb)
F¥Countkey()
®setCounterName()
A ®getCounterName()
<<Interface >> =2ashCode()
uals
Count a 0
(from beanManagedJDBC)
CountBean
I®getCurrentSum() (from beanManage dJDBC)
BsetCurrentSum() BcurrentSum :int
"increment() &< <key>> counterName : String
CountClient
(from beanManagedJDBC) B¥CountBean()
iijctivate()
®main() T s jpPassivate()
EiHon: Broc i Comex
(from €jb) -g?bsfoag(l)y ontextd)
e b Store ()
Z> ®ejbRemove ()
®ejbCreate ()
<<Interface >> ejpPostCreate ()
CountHo me B jp FindB yP rim aryK ey()
(from beanManagedJDBC) =getConnect|o n()
=¢b eanEXxists()
—ri. B iConanaum
indByPrimaryKe
Y yKey) increment()

Copyright 1999, Dan Harkey. All rights reserved.

Entity Bean Lifecycle Diagram

. Instance throws system I
exlat exception from any method

1. newlnstance() 1. unsetEntityContext()
2. setSesslonContext(sc)

ejbFind<METHOD>()

ejbCreate(args)

ejbPostCreate(args) ejbRemove()

elbLoad() ejbStore()

business method

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Home Interface

/'l Count Hone. j ava
package count. beanManagedJDBC,
| mport count. beanManagedJDBC. Count ;

i mport java.rm.*;
| mport javax.ejb.*;

public interface Count Hone extends EJBHone
{

public Count create(String nanme, int sum
t hrows Renot eExcepti on, CreateException;

public Count findByPrimaryKey(CountKey primaryKey)
t hr ows Renot eExcepti on, Fi nder Excepti on;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Remote Interface

/1 Count.java
package count. beanManagedJDBC,

i nport javax. ejb.*;
i mport java.rm.*,

public interface Count extends EJBObject

{
public int getCurrentSun() throws RenoteException;
public void setCurrentSun(int val) throws RenoteException;
public int increnment() throws RenoteException;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Key Class (1 of 2)

/1 Count Key. | ava
package count. beanManagedJDBC,

| nport count . beanManagedJDBC. Count Bean;

public class CountKey inplenents java.io. Serializable

{

public String counterNang;

publ i ¢ Count Key()
{ counterNane = "";

}

publ i ¢ Count Key(Count Bean bean)
{ counterNane = bean. count er Nane;

}

public CountKey(String nane)
{ counterNane = nane;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Key Class (2 of 2)

public void set CounterNanme(String nane)
{ counterNane = nane;

}

public String get Counter Name()
{return counter Nane;

}

public int hashCode ()
{ return counter Nane. hashCode();

}

/'l Required by IBMinplenentation

public bool ean equals (Object obj)

{ return ((obj instanceof count.beanManagedJDBC. Count Key) &&
((((Count Key) obj). count er Nane) . equal s(count er Nane))) ;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (1 of 11)

/| Count Bean. j ava
package count. beanManagedJDBC,
i nport count . beanManagedJDBC. Count Key;

i nmport java.util.Properties;
i nport java.io.?*;
| nport java.sqgl.*;

| mport javax. nam ng. *;
| mport javax.ejb.*;
| mport javax.sql.*;

public class CountBean inplenents EntityBean

{
public String counterNanme; /* key */

public int current Sum

private EntityContext context;
private Connection connecti on;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (2 of 11)

// no arg contructor

publ i ¢ Count Bean()

{ counterNane = null;
current Sum = 0;

}

public void ejbActivate()

{
Count Key key = (Count Key) cont ext. get Pri maryKey();
count er Nane = key. get Count er Nane() ;

}

public void ej bPassivate() {}
public void setEntityContext(EntityContext ctx) {context = ctx;}
public void unsetEntityContext() {context = null;}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (3 of 11)

public void ejbLoad()
{ try
{
connecti on = get Connection();
Prepar edSt at enent ps = connecti on. prepareSt at enent (
"SELECT current Sum FROM Count Bean WHERE count er Nane = ?");
ps.setString(1l, counterNanme);
ResultSet rs = ps. executeQuery();
rs. next();
currentSum = rs.getlnt(1);
ps. cl ose();
} catch (Exception e)
{ throw new EJBException("Error |oading state for
+ counterNane + ", " + e.getMessage());

} finally
{ try
{ connection.close();
} catch (Exception e)
{ throw new EJBException(e);

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (4 of 11)

public void ejbStore()

{
try
{
connecti on = get Connection();
Prepar edSt at enent ps = connecti on. prepareSt at enent (
"UPDATE Count Bean SET current Sum = ? WHERE count er Nane = ?");
ps.setlnt(1, currentSum;
ps.set String(2, counterNane);
ps. execut eUpdat e() ;
ps. cl ose();
} catch (Exception e)
{ throw new EJBException("Error storing state for "
+ counterNane + ", " + e.getMessage());
} finally
{ try
{ connection.close();
} catch (Exception e)
{ throw new EJBException(e);
}
}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (5 of 11)

public void ej bRenove () throws RenoveException

{
try
{

connection = get Connection();
Prepar edSt at enent ps = connecti on. prepareSt at enent (
"DELETE FROM Count Bean WHERE count er Nane = ?");
ps.setString(1, counterNane);
i nt resultCount = ps. executeUpdate();
ps. cl ose();
} catch (Exception e)

{
t hrow new EJBException("Error renoving bean "
+ counterName + ", " + e.getMessage());
} finally
{ try

{ connection.close();
} catch (Exception e)
{ throw new EJBException(e);

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (6 of 11)

public CountKey ejbCreate(String nane, int initial Sum
t hrows Creat eException
{ /] Set the initial instance data
count er Nane = nane;
currentSum = initial Sum

try
{ connection = get Connection();

I f (beanExi st s(count er Nane))
{ throw new Dupl i cat eKeyExcepti on(
"Bean " + counterNane + " already exists.");

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (7 of 11)

Prepar edSt at enent ps = connecti on. prepareSt at enent (:
"I NSERT | NTO Count Bean (counterNanme, currentSum) values (?, ?2)");
ps.setString(l, counterNane);
ps.setlnt(2, currentSum;
ps. execut eUpdat e() ;
ps. cl ose();
} catch (Exception e)
{ throw new EJBException("Error creating "
+ counterName + ", " + e.getMessage());
} finally
{ try
{ connection.cl ose();
} catch (Exception e)
{ throw new EJBException(e);

}
}

return new Count Key(count er Nane) ;

}

public void ej bPostCreate(String nane, int initial Sum
t hrows Creat eException

{
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (8 of 11)

publ i ¢ Count Key ej bFi ndByPri mar yKey(Count Key pri maryKey)
t hrows Fi nder Excepti on
{ counterNane = pri maryKey. get Count er Nane() ;

try
{ connection = getConnection();

| f (beanExi st s(count er Nane))

{ return primaryKey;

}

t hrow new Fi nder Exception("Error finding " + counterNane);
} catch (Exception e)

{

t hr ow new EJBException("Error finding "

+ counterName + ", " + e.getMessage());

} finally
{ try

{ connection.cl ose();

} catch (Exception e)

{ throw new EJBException(e);

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (9 of 11)

/| private nethods
private Connection getConnection () throws SQLException
{

Connecti on connecti on;
Properties environnent Properties = context.getEnvironnment();

/1l get the JNDI nane of the data source
String dataSourceNane =
envi ronnent Properties. get Property(" Dat aSour ceNane") ;

/* as specified in the XM/ props */
I f (dataSourceNane == null || dataSourceNane.equal s(""))
{ throw new EJBExcepti on(
"Environnent property DataSourceNane not found.");

}

/'l 1ook up the data source
try
{ I'nitial Context context = new Initial Context();
Dat aSour ce dat aSource =

(Dat aSour ce) context.| ookup(dataSourceNane) ;
Copyright 1999, Dan Harkey. All'rights reserved.

Count Bean-Managed Entity: EJB Class (10 of 11)

connecti on = dataSour ce. get Connection();
} catch (Nam ngException ne)
{ throw new EJBExcepti on("Dat aSourceNane not found");
}

return connecti on;

}

private bool ean beanExi sts(String key) throws SQLException
{ PreparedStatenent ps = connection. prepareStatenent (
"SELECT current Sum FROM Count Bean WHERE count er Nane = ?");
ps.setString(1, counterNane);
Resul tSet rs = ps. executeQuery();
i f (!'rs.next())
{ ps.close();
return fal se;
} else
{ ps.close();
return true;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (11 of 11)

[/ Busi ness Mt hods

/] get sum
public int getCurrent Sun()

{

return current Sum

}

/] set sum
public void setCurrentSun(int val)

{

current Sum = val ;

}

public int increnent()

{

current Sumt+;
return current Sum

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (1 of 3)

/'l Count Bean. j ava
package count. cont ai ner ManagedJDBC,

i mport count. beanManagedJDBC. Count Key;
| mport javax.ejb.*;

public class CountBean inplenents EntityBean
{ public String counterNane; /* key */
public int currentSum
private EntityContext context;

/'l no arg contructor

publ i c Count Bean()

{ counterNane = null;
current Sum = 0;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (2 of 3)

publ i
publ i
publ i
publ i
publ |
publ i
publ i

publ i

}

O O O 0O 0O O 0

voi d
voi d
voi d
voi d
voi d
voi d
voi d

ej bActivate() {}
ej bPassi vate() {}
setEntityContext (EntityContext ctx) {context = ctx;}
unset EntityContext() {context = null;}

ej bLoad() {}

ej bStore() {}

ej bRenove () {}

Count Key ejbCreate(String nane, int initial Sum
t hrows CreateException
{ I/ Set the initial instance data

count er Nane = nane;

currentSum = initial Sum

return new Count Key(count er Nane) ;

public void ej bPostCreate(String nane, int initial Sum
t hrows CreateException { }

publ i ¢ Count Key ej bFi ndByPri mar yKey(Count Key pri maryKey)
t hrows Fi nder Excepti on
{ counterNane = pri maryKey. get Count er Nane() ;

}

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (3 of 3)

/1 get sum
public int getCurrent Sun()

{

return current Sum

}

/] set sum
public void setCurrentSun(int val)

{

current Sum = val ;

}

public int increnent()

{

current Sum++;
return current Sum

}
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (1 of 3)

<?xm version="1.0" encodi ng="Cpl252" ?>
<I DOCTYPE ej b-jar>

<ej b-jar>

<descri pti on>no descri ption</description>

<di spl ay- nanme>Ej b1l</ di spl ay- nanme>

<ent er pri se- beans>

<entity>

<descri pti on>no descri ption</description>
<di spl ay- name>Count </ di spl ay- nanme>
<ej b- nanme>Count </ ej b- nane>
<honme>count . beanManagedJDBC. Count Hone</ hone>
<r enot e>count . beanManagedJDBC. Count </ r enot e>
<ej b- cl ass>count . beanManagedJDBC. Count Bean</ ej b-cl ass>
<per si st ence-t ype>Bean</ persi stence-type>
<pri nkey-cl ass>count . beanManagedJDBC. Count Key</ pri nkey- cl ass>
<reentrant >f al se</ reentrant >

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (2 of 3)

<env- props>
<env- prop>
<env- pr op- nane>Dat aSour ceNane</ env- pr op- nane>
<env- pr op-val ue>j dbc/ odbc</ env- pr op- val ue>
</ env- prop>
</ env- props>
<resource-refs>
<resource-ref>
<r es-ref - name>Dat aSour ceNane</res-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
</resource-ref>
</resource-refs>
</entity>
</ enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (1 of 3)

<assenbl y-descri ptor>
<cont ai ner-transacti ons>
<cont al ner-transacti on>
<met hod>
<ej b- name>Count </ ej b- nane>
<met hod-i ntf>i nt </ net hod-i ntf>
<met hod- nane>i ncr enent </ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attri bute>
</ cont ai ner-transacti on>

</ assenbl y-descri ptor>
</ejb-jar>

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (1 of 4)

/1l Countdient.java
package count.beanManagedJDBC,

| nport count . beanManagedJDBC. Count ; /1 Count EJB
i nport count . beanManagedJDBC. Count Key; /1 Count EJB Key
| nport count. beanManagedJDBC. Count Hone; // Count EJB Hone

| nport java.rm.*;

| nport java.io.?*;

i mport java.util.*;

| nport j avax. nam ng. *;
| mport javax.ejb.*;

| mport javax.rm.*,;

public class Countdi ent

{

public static void main (String args[])

{

Count Hone count Hone;
Count count = null;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (2 of 4)

try
{
if (args.length I= 2)
{ Systemout.println("Paraneter error");
Systemout.println("Usage: Countdient cnd counter-nane");
Systemout. println(" Where cnd = create, find, or renove");
Systemexit(1l);
}

/[l Get the initial context
Systemout.printin("Getting initial context");
I nitial Context context = new Initial Context();

/'l Lookup the hone interface and narrow to Count Hone
Systemout. println("Fi nding EJB hone");
(bj ect object = context.|ookup("beanManagedJDBCCount Hone") ;
Systemout. println("Narrow ng EJB hone");
count Hone =
(Count Hone) Por t abl eRenot eCbj ect . narr ow obj ect, Count Hone. cl ass);

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (3 of 4)

/'l Renove an existing EJB

I f (args[O0].equal s("renove"))

{ Systemout.println("Renmoving " + args[1]);
count Hone. renove(new Count Key(args[1]));
Systemexit(0); // no counting, just exit

}

/|l Create a new EJB

I f (args[O0].equal s("create"))

{ Systemout.println("Creating " + args[1]);
count = count Hone.create(args[1], 0);

} else

/[l Find an existing EJB

I f (args[0].equal s("find"))

{ Systemout.println("Finding " + args[1]);
Count Key key = new Count Key(args[1]);
count = count Hone. fi ndByPri mar yKey(key);

} else

{ Systemout.println("lInvalid paraneters");
Systemexit(1l);

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (4 of 4)

/1l Calculate Start tine
|l ong startTinme = SystemcurrentTinmeMIIlis();

/1 Increment 1000 tines
Systemout.println("Increnenting");

for (int i =0 ; i < 1000 ; i++)
{ count.increnent();
}

// Calculate stop tine; print out statistics
| ong stopTinme = SystemcurrentTineM I 1is();
Systemout.printin("Avg Ping ="
+ ((stopTine - startTine)/1000f) + " nsecs");
Systemout.println("Sum=" + count.getCurrentSun());
} catch(Exception e)
{ Systemerr.println("Exception");
e.printStackTrace();

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans: Meet the Players

TF Monitor
Vendors

=

® BEA WebLogic
® [BM WebSphere

EJB Application Servers

Yendors

e Oracle Application
Server/Oraclebi

® GemStone/)

® Sybase CTS

ORB
Vendors

Bab

¢ |ona OrbixBeans
® [nprise Application

Web Server
Yendors

S

¢ Netscape/Sun
Alliance

Server

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans: Meet the Players (cont.)

v/ See List of Players at java.sun.com/ejb
@ ~35 server vendors have announced products
@ ~30 tool vendors
® Third party component market developing

Copyright 1999, Dan Harkey. All rights reserved.

For More Information...

v/ Sun EJB Home Page -- java.sun.com/ejb
® EJB Specifications and Documentation
® List of Vendors
@ White Papers

v/ $an Jose State University program --
www.corbajava.engr.sjsu.edu

v/ Client/Server Survival Guide, Third Edition,
Orfali, Harkey, and Edwards (Wiley, 1999)

v/ Client/Server Programming with Java and
CORBA, Second Edition, Orfali andHarkey
(Wiley, 1998)

