
Dan Harkey

Director

Client/Server and Distributed Objects Program

San Jose State University

dharkey@email.sjsu.edu

www.corbajava.engr.sjsu.edu

Copyright 1999, Dan Harkey. All rights reserved.

Agenda

Enterprise JavaBeans (EJB) Overview
Your first EJB code examples
EJB Vendors: Meet the players

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans (EJB) Overview

Copyright 1999, Dan Harkey. All rights reserved.

EJB and Java 2 Enterprise Edition

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JNDI

Java Naming and Directory Service (JNDI)
Java API layer built on top of existing Naming or
Directory Service

COS Naming
LDAP
etc

Provides a look-up mechanism for EJB clients
Used to provide deployment information to EJBs

Home Interface look-up
Environment properties
Resource locations

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JTA/JTS

Java Transaction API (JTA)
Provides transaction interfaces for applications,
application servers, and resource managers
Consists of three parts

High-level application interface that provides begin,
commit, rollback semantics
Java Mapping of X/Open XA protocol
Transaction Manager interface for an application server to
control transactions

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: JTA/JTS (cont.)

Java Transaction Service (JTS)
Specifies the implementation of a transaction
manager using the JTA interfaces
Uses the Java mapping of the CORBA Object
Transaction Service (OTS) version 1.1 for the
implementation

Copyright 1999, Dan Harkey. All rights reserved.

EJB Related Technologies: RMI/IIOP

Remote Method Invocation (RMI)/Internet
Inter-ORB Protocol (IIOP)

EJBs and their clients use RMI programming
APIs
IIOP is used as the transport protocol for
interoperability and to provide transaction and
security contexts

Copyright 1999, Dan Harkey. All rights reserved.

EJB Interoperability

Copyright 1999, Dan Harkey. All rights reserved.

EJB Transactions

Container-managed transactions
Six types of declarative transactions:
NotSupported, Required, Supports, RequiresNew,
Mandatory, Never
Transaction types declared in deployment
descriptor for bean methods

Session beans can manage transactions using
begin, commit, and rollback methods of the
UserTransaction interface
Clients can also use the UserTransaction
interface to manage transactions

Copyright 1999, Dan Harkey. All rights reserved.

EJB Transactions: Transaction Context Propagation

Copyright 1999, Dan Harkey. All rights reserved.

EJB Transactions: Client Demarcated Transactions

Copyright 1999, Dan Harkey. All rights reserved.

EJB Declarative Transactions

Copyright 1999, Dan Harkey. All rights reserved.

EJB Declarative Transactions (cont.)

Copyright 1999, Dan Harkey. All rights reserved.

EJB Security

Roles and method permissions defined in
deployment descriptor
APIs defined for EJBs to get Principal and test
if caller is defined in a role
Authentication, encryption, auditing, etc. is
outside of the EJB spec definition and is left to
the EJB Server vendor

Copyright 1999, Dan Harkey. All rights reserved.

EJB Packaging

EJBs are stored in JAR files
Multiple EJBs used to assemble an application
Application is deployed to an EJB server
XML used to describe bean, application, and
deployment information

Copyright 1999, Dan Harkey. All rights reserved.

EJB Contracts

Copyright 1999, Dan Harkey. All rights reserved.

EJB Session Beans

Implement business logic that runs on an EJB
server
Are not shared between clients--logical
extension of a single client
Do not maintain persistent state
Two types

Stateless--no client specific state is maintained
between client method calls
Stateful--can maintain conversational state

Copyright 1999, Dan Harkey. All rights reserved.

Client View of Session Bean

EJBObject

getEJBHome()
getHandle()
getPrimaryKey()
isIdentical()
remove()

(from ejb)

<<Interface>>
EJBHome

getEJBMetaData()
getHomeHandle()
remove()
remove()

(from ejb)

<<Interface>>

EJBMetaData

getEJBHome()
getHomeInterfaceClass()
getPrimaryKeyClass()
getRemoteInterfaceClass()
isSession()

(from ejb)

<<Interface>>
Remote
(from rmi)

<<Interface>>

Handle

getEJBObject()

(from ejb)

<<Interface>>

Serializable
(from io)

<<Interface>>

YourRemoteInterface

businessMethod()

<<Interface>>
YourHomeInterface

create()

<<Interface>>

Copyright 1999, Dan Harkey. All rights reserved.

Session Bean Classes

EnterpriseBean
(from ejb)

<<Interface>>

SessionBean

ejbActivate()
ejbPassivate()
ejbRemove()
setSessionContext()

(from ejb)

<<Interface>>

EJBContext

getCallerIdentity()
getCallerPrincipal()
getEJBHome()
getEnvironment()
getRollbackOnly()
getUserTransaction()
isCallerInRole()
isCallerInRole()
setRollbackOnly()

(from ejb)

<<Interface>>

SessionContext

getEJBObject()

(from ejb)

<<Interface>>

SessionSynchronization

afterBegin()
afterCompletion()
beforeCompletion()

(from ejb)

<<Interface>>

Serializable
(from io)

<<Interface>>

YourSessionBean

Optional

Copyright 1999, Dan Harkey. All rights reserved.

EJB Entity Beans

An object-oriented view of an "entity" in
persistent storage
Can be accessed by multiple clients concurrently
Container manages state synchronization
between bean and persistent storage
Entity bean identity established using a key
value

Copyright 1999, Dan Harkey. All rights reserved.

Client View of an Entity Bean

EJBObject

getEJBHome()
getHandle()
getPrimaryKey()
isIdentical()
remove()

(from ejb)

<<Interface>>
EJBHome

getEJBMetaData()
getHomeHandle()
remove()
remove()

(from ejb)

<<Interface>>

EJBMetaData

getEJBHome()
getHomeInterfaceClass()
getPrimaryKeyClass()
getRemoteInterfaceClass()
isSession()

(from ejb)

<<Interface>>
Remote
(from rmi)

<<Interface>>

Handle

getEJBObject()

(from ejb)

<<Interface>>

Serializable
(from io)

<<Interface>>

YourRemoteInterface

businessMethod()

<<Interface>> YourHomeInterface

create()
findXXX()

<<Interface>>

YourKey

Copyright 1999, Dan Harkey. All rights reserved.

Entity Bean Classes

EnterpriseBean
(from ejb)

<<Interface >>

E ntityB ea n

e jb Activate ()
e jb Lo ad ()
e jb Pa ssiva te()
e jb Re mo ve ()
e jb Sto re ()
se tEntityConte xt()
unse tEntityConte xt()

(from ejb)

<<Interface >>

E JBCo ntext

g etCa llerId entity()
g etCa llerPrincipa l()
g etE JBHom e()
g etE nvironm ent()
g etRollb ackOnly()
g etUserTransa ction()
isCa llerInRole()
isCa llerInRole()
se tRo llba ckOnly()

(from ejb)

<<Interface >>

E ntityCo ntext

getEJBObject()
getPrimaryKey()

(from ejb)

<<Interface >>

Serializable
(from io)

<<Interface >>

YourEntityBean YourKey

Copyright 1999, Dan Harkey. All rights reserved.

EJB Development Process

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean

CountBean

CountBean()
ejbCreate()
ejbActivate()
ejbPassivate()
ejbRemove()
setSessionContext()
increment()

(from statelessSession)

CountHome

create()

(from statelessSession)

<<Interface>>

CountClient

sum

main()

(from statelessSession)

Count

increment()

(from statelessSession)

<<Interface>>

EJBObject
(from ejb)

<<Interface>>

EJBHome
(from ejb)

<<Interface>>

SessionBean
(from ejb)

<<Interface>>

Copyright 1999, Dan Harkey. All rights reserved.

Stateless Session Bean State Diagram

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Home Interface

// CountHome.java
package count.statelessSession;

import javax.ejb.EJBHome;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface CountHome extends EJBHome
{
 public Count create() throws RemoteException, CreateException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Remote Interface

// Count.java
package count.statelessSession;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Count extends EJBObject
{
 public int increment(int sum) throws RemoteException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: EJB Class
// CountBean.java
package count.statelessSession;

import javax.ejb.*;
import java.rmi.RemoteException;

public class CountBean implements SessionBean
{
 // no arg contructor
 public CountBean() {}

 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}
 public void setSessionContext(SessionContext ctx) {}

 public int increment(int sum)
 {
 return ++sum;
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean:
Deployment Descriptor (1 of 2)

<?xml version="1.0" encoding="Cp1252"?>

<ejb-jar>
 <description>no description</description>
 <display-name>Ejb1</display-name>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>statelessSession</display-name>
 <ejb-name>statelessSession</ejb-name>
 <home>count.statelessSession.CountHome</home>
 <remote>count.statelessSession.Count</remote>
 <ejb-class>count.statelessSession.CountBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

 <assembly-descriptor>
 <container-transactions>
 <container-transaction>
 <method>
 <ejb-name>statelessSession</ejb-name>
 <method-intf>count.statelessSession.Count</method-intf>
 <method-name>increment</method-name>
 <method-param>int</method-param>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </container-transactions>
 </assembly-descriptor>
</ejb-jar>

Count Stateless Session Bean:
Deployment Descriptor (2 of 2)

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (1 of 3)

// CountClient.java
package count.statelessSession;

import count.statelessSession.Count; // Count EJB Remote
import count.statelessSession.CountHome; // Count EJB Home

import java.rmi.*;
import java.util.*;
import java.io.*;

import javax.rmi.*;
import javax.naming.*;
import javax.ejb.*;

public class CountClient
{
 public static void main (String args[])
 {
 int sum; // current sum
 CountHome countHome;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (2 of 3)

 try
 {
 // Get the initial JNDI context
 System.out.println("Getting initial context");
 InitialContext context = new InitialContext();

 // Find the home interface and narrow to CountHome
 Object object = context.lookup("statelessSessionCountHome");
 countHome =
 (CountHome)PortableRemoteObject.narrow(object, CountHome.class);

 // Create EJB
 System.out.println("Creating EJB");
 Count count = countHome.create();

 // Set sum to initial value of 0
 System.out.println("Setting sum to 0");
 sum = 0;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateless Session Bean: Client (3 of 3)

 // Calculate Start time
 long startTime = System.currentTimeMillis();

 // Increment 1000 times
 System.out.println("Incrementing");
 for (int i = 0 ; i < 1000 ; i++)
 { sum = count.increment(sum);
 }

 // Calculate stop time; print out statistics
 long stopTime = System.currentTimeMillis();
 System.out.println("Avg Ping = "
 + ((stopTime - startTime)/1000f) + " msecs");
 System.out.println("Sum = " + sum);
 } catch(Exception e)
 { System.err.println("Exception");
 System.err.println(e);
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean

EJBObject
(from ejb)

<<Interface>>

EJBHome
(from ejb)

<<Interface>>

SessionBean
(from ejb)

<<Interface>>

CountBean

sum : int

CountBean()
ejbCreate()
ejbActivate()
ejbPassivate()
ejbRemove()
setSessionContext()
getSum()
setSum()
increment()

(from statefulSession)

CountHome

create()

(from statefulSession)

<<Interface>>

Count

getSum()
setSum()
increment()

(from statefulSession)

<<Interface>>

CountClient

main()

(from statefulSession)

Copyright 1999, Dan Harkey. All rights reserved.

Stateful Session Bean Lifecycle Diagram

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Home Interface

// CountHome.java
package count.statefulSession;

import javax.ejb.EJBHome;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface CountHome extends EJBHome
{
 public Count create(int initialSum)
 throws RemoteException, CreateException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Remote Interface

// Count.java
package count.statefulSession;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Count extends EJBObject
{
 public int getSum() throws RemoteException;
 public void setSum(int val) throws RemoteException;
 public int increment() throws RemoteException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: EJB Class (1 of 2)

// CountBean.java
package count.statefulSession;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.EJBException;
import java.rmi.RemoteException;

public class CountBean extends Object implements SessionBean
{
 private int sum; // state variable

 // no arg contructor
 public CountBean() {}

 public void ejbCreate (int initialSum)
 throws javax.ejb.CreateException
 { sum = initialSum;
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: EJB Class (2 of 2)

 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}
 public void setSessionContext(SessionContext ctx) {}

 // get sum
 public int getSum()
 { return sum;
 }

 // set sum
 public void setSum(int val)
 { sum = val;
 }

 public int increment ()
 { sum++;
 return sum;
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean:
Deployment Descriptor (1 of 2)

<?xml version="1.0" encoding="Cp1252"?>

<ejb-jar>
 <description>no description</description>
 <display-name>Ejb2</display-name>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>Count</display-name>
 <ejb-name>Count</ejb-name>
 <home>count.statefulSession.CountHome</home>
 <remote>count.statefulSession.Count</remote>
 <ejb-class>count.statefulSession.CountBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean:
Deployment Descriptor (2 of 2)

 <assembly-descriptor>
 <container-transactions>
 <container-transaction>
 <method>
 <ejb-name>Count</ejb-name>
 <method-intf>count.statefulSession.Count</method-intf>
 <method-name>increment</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 ...

 </container-transactions>
 </assembly-descriptor>
</ejb-jar>

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (1 of 3)

// CountClient.java
package count.statefulSession;

import count.statefulSession.Count; // Count EJB
import count.statefulSession.CountHome; // Count EJB Home

import java.rmi.*;
import java.io.*;
import java.util.*;

import javax.rmi.*;
import javax.naming.*;
import javax.ejb.*;

public class CountClient
{
 public static void main(String args[])
 {
 CountHome countHome;

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (2 of 3)

 try
 {
 // Get the initial JNDI context
 System.out.println("Getting initial context");
 InitialContext context = new InitialContext();

 // Find the home interface and narrow to CountHome
 java.lang.String jndiName =
 new String("statefulSessionCountHome");
 System.out.println("Finding EJB home using " + jndiName);
 Object object = context.lookup(jndiName);
 countHome =
 (CountHome)PortableRemoteObject.narrow(object, CountHome.class);

 // Create EJB with intial sum of 0
 System.out.println("Creating EJB");
 Count count = countHome.create(0);

Copyright 1999, Dan Harkey. All rights reserved.

Count Stateful Session Bean: Client (3 of 3)

 // Calculate Start time
 long startTime = System.currentTimeMillis();

 // Increment 1000 times
 System.out.println("Incrementing");
 for (int i = 0 ; i < 1000 ; i++)
 { count.increment();
 }

 // Calculate stop time; print out statistics
 long stopTime = System.currentTimeMillis();
 System.out.println("Avg Ping = "
 + ((stopTime - startTime)/1000f) + " msecs");
 System.out.println("Sum = " + count.getSum());
 } catch(Exception e)
 { System.err.println("Exception");
 System.err.println(e);
 }
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity Bean

C ountBean

curre ntSum : int
< <ke y> > co unterNa me : S tring

C o untBe an()
e jb Activate ()
e jb Pa ssiva te()
se tEntityC onte xt()
unse tEntityC onte xt()
e jb Lo ad ()
e jb Sto re ()
e jb Re mo ve ()
e jb C re ate ()
e jb Po stC re ate ()
e jb F indB yP rim aryK ey()
g etC o nnectio n()
b ea nExists()
g etC urre ntSum ()
se tC urrentS um()
increm ent()

(from be an Ma na ge dJD BC)

C ountKey

C ountKey()
setC ounterName()
getC ounterName()
hashC ode()
equals()

(from beanM anagedJDB C)

C o untHo me

create()
findByPrimaryKey()

(from be an Ma na ge dJD BC)

<<Inter face >>

C ount

getC urrentSum()
setC urrentSum()
increment()

(from be an Ma na ge dJD BC)

<<Inter face >>

EJBObject
(from ejb)

<<Interface>>

EJBHome
(from ejb)

<<Inter face >>

C ountC lient

main()

(from beanM anagedJDB C)

Copyright 1999, Dan Harkey. All rights reserved.

Entity Bean Lifecycle Diagram

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Home Interface

// CountHome.java
package count.beanManagedJDBC;
import count.beanManagedJDBC.Count;

import java.rmi.*;
import javax.ejb.*;

public interface CountHome extends EJBHome
{
 public Count create(String name, int sum)
 throws RemoteException, CreateException;

 public Count findByPrimaryKey(CountKey primaryKey)
 throws RemoteException, FinderException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Remote Interface

// Count.java
package count.beanManagedJDBC;

import javax.ejb.*;
import java.rmi.*;

public interface Count extends EJBObject
{
 public int getCurrentSum() throws RemoteException;
 public void setCurrentSum(int val) throws RemoteException;
 public int increment() throws RemoteException;
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Key Class (1 of 2)

// CountKey.java
package count.beanManagedJDBC;

import count.beanManagedJDBC.CountBean;

public class CountKey implements java.io.Serializable
{
 public String counterName;

 public CountKey()
 { counterName = "";
 }

 public CountKey(CountBean bean)
 { counterName = bean.counterName;
 }

 public CountKey(String name)
 { counterName = name;
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Key Class (2 of 2)

 public void setCounterName(String name)
 { counterName = name;
 }

 public String getCounterName()
 {return counterName;
 }

 public int hashCode ()
 { return counterName.hashCode();
 }

 // Required by IBM implementation
 public boolean equals (Object obj)
 { return ((obj instanceof count.beanManagedJDBC.CountKey) &&
 ((((CountKey)obj).counterName).equals(counterName)));
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (1 of 11)

// CountBean.java

package count.beanManagedJDBC;

import count.beanManagedJDBC.CountKey;

import java.util.Properties;
import java.io.*;
import java.sql.*;

import javax.naming.*;
import javax.ejb.*;
import javax.sql.*;

public class CountBean implements EntityBean
{
 public String counterName; /* key */
 public int currentSum;

 private EntityContext context;
 private Connection connection;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (2 of 11)

 // no arg contructor
 public CountBean()
 { counterName = null;
 currentSum = 0;
 }

 public void ejbActivate()
 {
 CountKey key = (CountKey)context.getPrimaryKey();
 counterName = key.getCounterName();
 }

 public void ejbPassivate() {}
 public void setEntityContext(EntityContext ctx) {context = ctx;}
 public void unsetEntityContext() {context = null;}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (3 of 11)
 public void ejbLoad()
 { try
 {
 connection = getConnection();
 PreparedStatement ps = connection.prepareStatement(
 "SELECT currentSum FROM CountBean WHERE counterName = ?");
 ps.setString(1, counterName);
 ResultSet rs = ps.executeQuery();
 rs.next();
 currentSum = rs.getInt(1);
 ps.close();
 } catch (Exception e)
 { throw new EJBException("Error loading state for "
 + counterName + ", " + e.getMessage());
 } finally
 { try
 { connection.close();
 } catch (Exception e)
 { throw new EJBException(e);
 }
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (4 of 11)
 public void ejbStore()
 {
 try
 {
 connection = getConnection();
 PreparedStatement ps = connection.prepareStatement(
 "UPDATE CountBean SET currentSum = ? WHERE counterName = ?");
 ps.setInt(1, currentSum);
 ps.setString(2, counterName);
 ps.executeUpdate();
 ps.close();
 } catch (Exception e)
 { throw new EJBException("Error storing state for "
 + counterName + ", " + e.getMessage());
 } finally
 { try
 { connection.close();
 } catch (Exception e)
 { throw new EJBException(e);
 }
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (5 of 11)
 public void ejbRemove () throws RemoveException
 {
 try
 {
 connection = getConnection();
 PreparedStatement ps = connection.prepareStatement(
 "DELETE FROM CountBean WHERE counterName = ?");
 ps.setString(1, counterName);
 int resultCount = ps.executeUpdate();
 ps.close();
 } catch (Exception e)
 {
 throw new EJBException("Error removing bean "
 + counterName + ", " + e.getMessage());
 } finally
 { try
 { connection.close();
 } catch (Exception e)
 { throw new EJBException(e);
 }
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (6 of 11)

 public CountKey ejbCreate(String name, int initialSum)
 throws CreateException
 { // Set the initial instance data
 counterName = name;
 currentSum = initialSum;

 try
 { connection = getConnection();

 if (beanExists(counterName))
 { throw new DuplicateKeyException(
 "Bean " + counterName + " already exists.");
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (7 of 11)
 PreparedStatement ps = connection.prepareStatement(
 "INSERT INTO CountBean (counterName, currentSum) values (?, ?)");
 ps.setString(1, counterName);
 ps.setInt(2, currentSum);
 ps.executeUpdate();
 ps.close();
 } catch (Exception e)
 { throw new EJBException("Error creating "
 + counterName + ", " + e.getMessage());
 } finally
 { try
 { connection.close();
 } catch (Exception e)
 { throw new EJBException(e);
 }
 }
 return new CountKey(counterName);
 }

 public void ejbPostCreate(String name, int initialSum)
 throws CreateException
 {
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (8 of 11)
 public CountKey ejbFindByPrimaryKey(CountKey primaryKey)
 throws FinderException
 { counterName = primaryKey.getCounterName();

 try
 { connection = getConnection();
 if (beanExists(counterName))
 { return primaryKey;
 }
 throw new FinderException("Error finding " + counterName);
 } catch (Exception e)
 {
 throw new EJBException("Error finding "
 + counterName + ", " + e.getMessage());
 } finally
 { try
 { connection.close();
 } catch (Exception e)
 { throw new EJBException(e);
 }
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (9 of 11)

 // private methods
 private Connection getConnection () throws SQLException
 {
 Connection connection;

 Properties environmentProperties = context.getEnvironment();

 // get the JNDI name of the data source
 String dataSourceName =
 environmentProperties.getProperty("DataSourceName");

 /* as specified in the XML/props */
 if (dataSourceName == null || dataSourceName.equals(""))
 { throw new EJBException(
 "Environment property DataSourceName not found.");
 }

 // look up the data source
 try
 { InitialContext context = new InitialContext();
 DataSource dataSource =
 (DataSource) context.lookup(dataSourceName);

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (10 of 11)

 connection = dataSource.getConnection();
 } catch (NamingException ne)
 { throw new EJBException("DataSourceName not found");
 }
 return connection;
 }

 private boolean beanExists(String key) throws SQLException
 { PreparedStatement ps = connection.prepareStatement(
 "SELECT currentSum FROM CountBean WHERE counterName = ?");
 ps.setString(1, counterName);
 ResultSet rs = ps.executeQuery();
 if (!rs.next())
 { ps.close();
 return false;
 } else
 { ps.close();
 return true;
 }
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: EJB Class (11 of 11)

 // Business Methods

 // get sum
 public int getCurrentSum()
 {
 return currentSum;
 }

 // set sum
 public void setCurrentSum(int val)
 {
 currentSum = val;
 }

 public int increment()
 {
 currentSum++;
 return currentSum;
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (1 of 3)

// CountBean.java
package count.containerManagedJDBC;

import count.beanManagedJDBC.CountKey;
import javax.ejb.*;

public class CountBean implements EntityBean
{ public String counterName; /* key */
 public int currentSum;
 private EntityContext context;

 // no arg contructor
 public CountBean()
 { counterName = null;
 currentSum = 0;
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (2 of 3)
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setEntityContext(EntityContext ctx) {context = ctx;}
 public void unsetEntityContext() {context = null;}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbRemove () {}

 public CountKey ejbCreate(String name, int initialSum)
 throws CreateException
 { // Set the initial instance data
 counterName = name;
 currentSum = initialSum;
 return new CountKey(counterName);
 }

 public void ejbPostCreate(String name, int initialSum)
 throws CreateException { }

 public CountKey ejbFindByPrimaryKey(CountKey primaryKey)
 throws FinderException
 { counterName = primaryKey.getCounterName();
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Container-Managed Entity: EJB Class (3 of 3)

 // get sum
 public int getCurrentSum()
 {
 return currentSum;
 }

 // set sum
 public void setCurrentSum(int val)
 {
 currentSum = val;
 }

 public int increment()
 {
 currentSum++;
 return currentSum;
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (1 of 3)

<?xml version="1.0" encoding="Cp1252"?>

<!DOCTYPE ejb-jar>

<ejb-jar>
 <description>no description</description>
 <display-name>Ejb1</display-name>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <display-name>Count</display-name>
 <ejb-name>Count</ejb-name>
 <home>count.beanManagedJDBC.CountHome</home>
 <remote>count.beanManagedJDBC.Count</remote>
 <ejb-class>count.beanManagedJDBC.CountBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <primkey-class>count.beanManagedJDBC.CountKey</primkey-class>
 <reentrant>false</reentrant>

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (2 of 3)

 <env-props>
 <env-prop>
 <env-prop-name>DataSourceName</env-prop-name>
 <env-prop-value>jdbc/odbc</env-prop-value>
 </env-prop>
 </env-props>
 <resource-refs>
 <resource-ref>
 <res-ref-name>DataSourceName</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>
 </resource-refs>
 </entity>
 </enterprise-beans>

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity:
Deployment Descriptor (1 of 3)

 <assembly-descriptor>
 <container-transactions>
 <container-transaction>
 <method>
 <ejb-name>Count</ejb-name>
 <method-intf>int</method-intf>
 <method-name>increment</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 </assembly-descriptor>
</ejb-jar>

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (1 of 4)

// CountClient.java
package count.beanManagedJDBC;

import count.beanManagedJDBC.Count; // Count EJB
import count.beanManagedJDBC.CountKey; // Count EJB Key
import count.beanManagedJDBC.CountHome; // Count EJB Home

import java.rmi.*;
import java.io.*;
import java.util.*;
import javax.naming.*;
import javax.ejb.*;
import javax.rmi.*;

public class CountClient
{
 public static void main (String args[])
 {
 CountHome countHome;
 Count count = null;

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (2 of 4)

 try
 {
 if (args.length != 2)
 { System.out.println("Parameter error");
 System.out.println("Usage: CountClient cmd counter-name");
 System.out.println(" Where cmd = create, find, or remove");
 System.exit(1);
 }

 // Get the initial context
 System.out.println("Getting initial context");
 InitialContext context = new InitialContext();

 // Lookup the home interface and narrow to CountHome
 System.out.println("Finding EJB home");
 Object object = context.lookup("beanManagedJDBCCountHome");
 System.out.println("Narrowing EJB home");
 countHome =
 (CountHome)PortableRemoteObject.narrow(object, CountHome.class);

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (3 of 4)
 // Remove an existing EJB
 if (args[0].equals("remove"))
 { System.out.println("Removing " + args[1]);
 countHome.remove(new CountKey(args[1]));
 System.exit(0); // no counting, just exit
 }

 // Create a new EJB
 if (args[0].equals("create"))
 { System.out.println("Creating " + args[1]);
 count = countHome.create(args[1], 0);
 } else

 // Find an existing EJB
 if (args[0].equals("find"))
 { System.out.println("Finding " + args[1]);
 CountKey key = new CountKey(args[1]);
 count = countHome.findByPrimaryKey(key);
 } else
 { System.out.println("Invalid parameters");
 System.exit(1);
 }

Copyright 1999, Dan Harkey. All rights reserved.

Count Bean-Managed Entity: Client (4 of 4)

 // Calculate Start time
 long startTime = System.currentTimeMillis();

 // Increment 1000 times
 System.out.println("Incrementing");
 for (int i = 0 ; i < 1000 ; i++)
 { count.increment();
 }

 // Calculate stop time; print out statistics
 long stopTime = System.currentTimeMillis();
 System.out.println("Avg Ping = "
 + ((stopTime - startTime)/1000f) + " msecs");
 System.out.println("Sum = " + count.getCurrentSum());
 } catch(Exception e)
 { System.err.println("Exception");
 e.printStackTrace();
 }
 }
}

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans: Meet the Players

Copyright 1999, Dan Harkey. All rights reserved.

Enterprise JavaBeans: Meet the Players (cont.)

See List of Players at java.sun.com/ejb
~35 server vendors have announced products
~30 tool vendors
Third party component market developing

Copyright 1999, Dan Harkey. All rights reserved.

For More Information...

Sun EJB Home Page -- java.sun.com/ejb
EJB Specifications and Documentation
List of Vendors
White Papers

San Jose State University program --
www.corbajava.engr.sjsu.edu
Client/Server Survival Guide, Third Edition,
Orfali, Harkey, and Edwards (Wiley, 1999)
Client/Server Programming with Java and
CORBA, Second Edition, Orfali andHarkey
(Wiley, 1998)

Copyright 1999, Dan Harkey. All rights reserved.

