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ABSTRACT

In this paper, Canonical Correlation Based Compensation(CCBC)
is proposed as an unified approach to cope with the mismatch
between training and test set. The  mismatch between training and
test conditions can be simply clustered into three classes: differ-
ences of speakers, changes of recording channel and effects of
noisy environment. In previous work, we had used CCBC ap-
proach with some modifications to make our speech recognizer
robust to the noisy environment successfully[1]. Recently, the
same approach has been extended for speaker and channel adapta-
tion. The results of our experiments show that CCBC approach
well compensated all three kinds of distortion source between
training and test conditions. In order to compare the performance
of CCBC with that of some conventional adaptation approaches,
the capacities of the techniques of cepstral mean normalization,
RASTA and Lin-Log RASTA are tested. We find that CCBC has
better performance than them. As an very important problem in
CCBC approach, the selection of appropriate reference speech
data is also discussed in this paper.

1. INTRODUCTION

Over the past decade, we have witnessed that speech recognition
in controlled situations has reached very high level of perform-
ance. However, the deployment of speech recognition technology
is still hampered by lack of robustness in system performance. It is
common to have a recognition system’s error rate increase by
several folds when tested using a microphone different from the
one on which it was trained. Similarly, degradation in recognition
performance are often observed when the system is used by a new
speaker. In case of high noisy environments, the recognition sys-
tem will often be corrupted to be unacceptable.

Channel,  speaker and additive noise affect the speech signal in
different ways. Convolutional distortion may be introduced by
speakers’ vocal tracts and microphone transfer functions. The
acoustic variations affected by noisy environment come from two
ways. First, additive noise contaminates the speech signal and
changes the characteristic vectors representing speech. Second,
when the speaker attempts to increase the communication effi-
ciency over the noisy medium,  speaking causes statistically sig-
nificant articulation variability. This is known as lombard effect.

Some previous researchers[3][5][6][8][12] had performed com-
pensation for three kinds of distortion sources mentioned above.
But their studies had coped with each one  with a different proc-

essing approach.  In this paper, we utilized an unified spectral
transformation adaptation method to compensate all three kinds of
distortion sources affecting the speech signal. Unlike EM algo-
rithm commonly used in spectral transformation compensation,
which is an iterative one, CCBC is proved to have a solution. Its
calculating procedure is specific and short.

Compared with training speech, the cepstrum of test speech has
three main changes affected by all kinds of distortion sources:
mean value shift, norm shrink and  the bad correlation of each
dimension between training vectors and test vectors[1]. While
other compensation methods often deal with only one or two of
the cepstrum changes, for example, cepstral normalization only
compensates the cepstral mean value shift, CCBC as a linear cep-
stral transforming approach amounts to a rotation and scaling in
cepstral vector space. And it reconstructs the correct correlation
between training vectors and test vectors. So it can compensate all
three kinds of cepstral variations affected by distortion sources
and can be an unified spectral transformation adaptation approach
to deal with all kinds of mismatch between training and test set.

In Section 2 we describe the algorithm of CCBC. In section 3 we
report the performance of CCBC, cepstral mean normalization,
RASTA and Lin-Log RASTA on our speaker-independent
VQ/DHMM isolated-word speech recognition system. Finally, in
Section 4 we present our conclusions.

2. CANONICAL CORRELATION 
BASED COMPENSATION

2.1.  Algorithm

Speech signal can be represented as a sequence of feature vectors,
each vector can be thought as a point in the feature vector space.
In our case, we used P-order mel-frequency cepstral coefficients as
the feature vector. The differences between training vectors and
test vectors can be compensated by CCBC. But CCBC does not
directly transform test space to training space. It makes the train-
ing vectors and test vectors maximum correlation in  the  reference
space (the third space).  If  we  regard  that training vectors and
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Figure 1: Procedure of  Calculating the
transformation of CCBC
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We can prove that the equation (1) has P roots, λ λ λ1 2, ....., p [2]. To

solve equation (1), the canonical correlation problem is trans-
formed into a general characteristic value problem. The character-

istic vectors (a b( ) ( ),1 1 ), (a b( ) ( ),2 2 )...., (a bp p( ) ( ), ) corresponding
to λ λ λ1 2, ....., p are the row vectors of transformation Matrixes A

and B. Finally we can map the test vectors into training space by
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. Dong Yu find that retrain-

ing with transformed speech has the best compensating effect[1].
But when we considered the on-line application of this technique,
we did not retrain model and only transformed the test cepstral
vectors into the training space to recognize.

2.2. Approaches to Select Reference Speech
and Adaptation Vocabulary

CCBC utilizes a few of training speech samples called reference
speech and a few of test speech samples called adaptation speech
to find the mapping between training set and test set. It is obvious
that CCBC needs to know the correspondence between reference
speech and adaptation speech. Because there are always many
different utterances corresponding to the same word in training
set, how to determine the reference utterances becomes an impor-
tant issue. We have been working on three approaches to deal with
this problem:

1. We can use the utterances of the speaker with the highest rec-
ognition rate in the training set.

2. We can use the utterances of the speaker in the training set who
has the least acoustic distance from the test speaker. In our ex-
periment, we used the DTW and Euclidean distance of cepstral
vectors as the measurement of acoustic difference between two
speakers.

3. We can use the clustering technique to find the represent utter-
ance which is the centroid of all the utterances corresponding to
the same word.

We also find the adaptation vocabulary which covers most valu-
able acoustic information is superior to other arbitrarily selected
vocabularies. In our ASR system, the optimized acoustic model
considered the diphones of INITIALs. So we chose an adaptation
vocabulary which covered all the diphones of INITIALs and  FI-
NALs.

3. EXPERIMENTS AND RESULTS

Several experiments were performed to evaluate the recognition
accuracy provided by CCBC, along with related algorithms. The
database used is in Chinese and its vocabulary includes 500 iso-
lated-words. In total there are 20 speakers, 10 of them being male
speakers(m1-m10) and the other 10 speakers being female(f1-f10).
The database was originally recorded by a DAT recorder and a
close-talking microphone, and was sampled at 16kHz. The train-
ing set consisted of 18 speakers ( m1-m9 and f1-f9). The test set
contained two speakers(m10 and f10). To establish the test set for
channel changes, the speech data of three new speakers (which
were two male speakers m11 and m12, and one female speaker
f11) was recorded with a Creative 16-bit Sound Blaster and the
associated microphone, utilizing the same vocabulary. To intro-
duce the real noisy environment, we recorded a background noise
of 80dB in a noisy market at first. Then we recorded the speech
data of two male speakers(m13 and m14) in this background noise
with the Sound Blaster.
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In recognition, each utterance was represented in parametric form
by computing its 12 MFCCs and 12 delta MFCCs at a rate of
12ms with a Hamming window of 24ms. However, only the 12
MFCCs were used in the adaptation procedure of CCBC, and the
delta values of those transformed vector coefficients were com-
puted during the recognition procedure. The recognizer used here
is a basic VQ/DHMM.

Totally we performed four experiments under five mismatch con-
ditions. The results of these experiment are listed in Table 1~7.

Speaker No adap-
tation

CCBC
with S1

CCBC
with S2

CCBC
with S3

m10 9.4 7.6 6.8 6.6
f10 10.0 5.4 5.2 5.2

Table 1: Percentage  error rate for speaker adaptation using
CCBC (m10 and f10). S1, S2 and S3 represent three approaches to
select reference speech.

Adaptation
technique

m11 m12 f11

No Adaptation 22.0 20.2 27.4
CCBC with S1 9.8 11.6 7.6
CCBC with S2 10.8 10.6 7.0
CCBC with S3 7.8 8.6 7.2
Cepstral nor-
malization

13.4 13.2 14.6

RASTA 16.4 14.6 17.6
Table 2:  Comparison of percentage error rate for speaker and
channel adaptation using CCBC, cepstral normalization and RA-
STA cepstral processing.

Adaptation SNR(dB)
technique 40 30 20 10 0

No adaptation 9.4 10 18.2 34.2 44.6
CCBC with S3 6.6 7.2 9.8 14.8 22.1

Lin-Log RASTA 13.6 14.6 15 22.4 40.9
Table 3: Comparison of percentage error rate for speaker and
noise adaptation using CCBC and Lin-Log RASTA, on male
speaker m10 with simulated noise.

Adaptation SNR(dB)
technique 40 30 20 10 0

No adaptation 10 11.2 14.2 35.4 40.2
CCBC with S3 5.2 6 7.6 14 20

Lin-Log RASTA 13.2 13 13.6 27.5 44.3
Table 4: Comparison of percentage error rate for speaker and
noise adaptation using CCBC and Lin-Log RASTA, on female
speaker f10 with simulated additive noise.

Adaptation SNR(dB)
technique 40 30 20 10 0

No adaptation 22 24.2 26.2 33.6 56.6
CCBC with S3 7.8 9.2 9.2 10 21.2

Lin-Log RASTA 22.7 23 17.8 26.6 50.3

Table 5: Comparison of percentage error rate for speaker, channel
and noise adaptation using CCBC and Lin-Log RASTA, on male
speaker m11 with simulated additive noise.

Adaptation SNR(dB)
technique 40 30 20 10 0

No adaptation 27.4 27.6 32.8 39.2 81.8
CCBC with S3 7.2 7.6 8.4 10.6 19.4

Lin-Log RASTA 24.5 25.1 22.4 26.8 58.2
Table 6: Comparison of percentage error rate for speaker, channel
and noise adaptation using CCBC and Lin-Log RASTA, on fe-
male speaker f11 with simulated additive noise.

Adaptation tech-
nique

m13 m14

No adaptation 23.6 33.2
CCBC with S1 15.0 12.2
CCBC with S2 19.4 13.8
CCBC with S3 14.8 11.2
Lin-log RASTA 15.6 17.8

Table 7:  Comparison of Percentage error for speaker, channel
and noise adaptation using CCBC and Lin-Log RASTA, on male
speaker m13 and m14 with 80dB background noise recorded in a
market.

In the first experiment we examined the performance of  CCBC in
dealing with mismatch condition 1: different speaker, by test on
speaker m10 and f10(Table 1). In the second experiment we com-
pensated mismatch condition 2: different speaker and channel, in
case of speaker m11, m12 and f11(Table 2). We also compared the
recognition accuracy obtained by using the CCBC with that of
using two well-used compensation technique: (1) cepstral mean
normalization, (2) RASTA cepstral processing. In the third ex-
periment, we added additive Gaussian white noise into the speech
signal used in the first experiment(m10 and f10). This simulated
the third mismatch condition including the difference of speaker
and the effects of noisy environment. Besides CCBC, Lin-Log
RASTA spectral processing was also used to deal with this
case(Table 3 and 4). In the fourth experiment, we utilized CCBC
and Lin-Log RASTA to improve the recognition rate of the worst
degraded test speech,  in which all three kinds of mismatch be-
tween test set and training set were integrated. In this experiment,
both simulated noisy speech(m11 and f11 with simulated additive
noise) and real noisy speech(m13 and m14)  was tested, which
were listed as the mismatch condition 4 (Table 5 and 6) and con-
dition 5(Table 7) respectively.

We note that CCBC well-compensated all these mismatch condi-
tions and  outperforms  all  other  adaptation  techniques.  In  our

speaker-independent speech recognition system,  the error rate  of
training set is 6.24%. We can see from the results that by CCBC
test set can has the error rate approaching to or even better than
that of the training set in most case. Only when SNR fell to be 0
dB, this desired result was not got. However, CCBC still improved
the performance greatly even in low SNR case. The general de-
crease of error rate is two times. In a extreme case(m11), the de-



crease of error rate reaches four times. We compared three kinds
of approaches to select reference speech data on three mismatch
conditions. Except on speaker f11, the scheme 3 has the lowest
error rate on all other cases. While scheme 1 and 2 select the ut-
terances only spoken by one of the speaker in the training set,
scheme 3 select the class centroid of all the utterances corre-
sponding to the same word. Compared with the other two
schemes, it can embody the common acoustic characteristic of
training set.  So the reference speech chosen by scheme 3 can
better match the acoustic model than the reference speech chosen
by the other schemes.

Although cepstral normalization has a better performance than the
RASTA algorithm, its error rates are always  approximately two-
fold of that of CCBC. This is because cepstral normalizaion only
compensate the shift of cepstral means and CCBC can compensate
both the shift of cepstral means and norm shrinks. RASTA re-
moves the slow variation in speech signal, but it may also remove
some useful low-frequency speech component. So it did not work
as well as CCBC and cepstral normalization. Lin-Log RASTA has
positive effect on improving speech recognition rate in the worst
mismatch conditions because it can compensate both additive
noise and convolutional noise. However, its performance is worse
than CCBC because it may be viewed as a form of noise-
masking[9], which can only make the feature space insensitive to
noise and do not compensate the spectral difference between dis-
tortion speech and clean speech.  Lin-Log RASTA needs to retrain
model according to different noise level, which is hard to apply in
real application.

4. CONCLUSIONS

Although there exists the problem to select appropriate reference
speech, the proposed CCBC algorithm can make our speaker-
independent speech recognition system robust to all three kinds of
mismatch between training set and test set. CCBC provided sig-
nificant improvement in performance on five tested mismatch
conditions. In most case, the recognition rate provided by CCBC
can approach to that of the training set.

Compared with other adaptation techniques used in this paper,
CCBC not only has the best compensated effect, but also is most
suitable to be an on-line adaptation technique. Its calculation pro-
cedure is definite and highly efficient. We can only transform the
tested speech to training space without retraining the model. It do
not need to know any knowledge of distortion sources and noisy
level.

Another attractive feature of CCBC is that it can be combined
with other adaptation techniques.  We had tried replacing the cep-
stral mean value of  reference speech with that of calculated by
cepstral normalization. This improved the performance of CCBC.
The Lin-Log RASTA needs to be retrained according to different
noise level.  If we combine it with CCBC, we can solve this prob-
lem by mapping the spectrum obtained from a J value( in  the
logarithmic transform of Lin-Log RASTA) corresponding to the
noise level of test speech to a spectrum processed with a J value
for clean speech. Thus we only need to train acoustic models in
clean speech.

5. REFERENCES

1. Dong Yu and Taiyi Huang, “Canonical Correlation Based
Compensation Approach for Robust Speech Recognition in Noisy
Environment”, EUROSPEECH 95, pp477-480.

2. “An Introduction to Multivariate Statistical Analysis”,
T.W.Anderson, 2nd Edition, 1984.

3. Hynek Hermansky and Nelson Morgan, “RASTA Processing of
Speech”, IEEE Transactions on Speech and Audio Processing,
Vol. 2.,  No.4, October 1994.

4. Joachim Koehler and Nelson Morgan etc., “ Integrating RA-
STA-PLP into Speech Recognition”, ICASSP 1994, I421-I424.

5. Yunxin Zhao, “Self-learning speaker and channel adaptation
based on spectral variation source decomposition”, Speech Com-
munication, April, 1995.

6. Alejandro Acero and Richard M. Stern, “ Environmental Ro-
bustness in Automatic Speech Recognition”, ICASSP 1990,
pp849-852.

7. Chafic Mokbel and Gerard Chollet, “Word Recognition in the
Car( Speech Enhancement/ Spectral Transformations)”, ICASSP,
1991, pp925-929.

8.  Jane Chang and Victor Zue, “A Study of Speech Recognition
System Robustness to Microphone Variations: Experiments in
Phonetic Classification”, ICSLP 94.

9. J.P. Openshaw and J.S. Manson, “On the Limitations of Cep-
stral features in Noise”, ICASSP 1994, II49-II53.

10. H.C. Choi and R.W. King, “Speaker Adaptation through
Spectral Transformation for HMM based Speech Recognition”,
1994 International Symposium on Speech, Image Processing and
Neural Networks, pp686-689.

11. W. Van Summers and David B. Pisoni etc. “Effects of Noise
on Speech Production: Acoustic and Perceptual analyses”, J.
Acoust. Soc. Am., September 1988, pp917-pp926.

12. Aaron E. Rosenberg, Chin-Hui Lee, Frank K. Soong,
“Cepstral Channel Normalization Techniques for HMM-Based
Speaker Verification”, ICSLIP 1994


