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ABSTRACT

This paper presents a new method for addressing prob-
lems related to the sparsity of the discrete time-frequency
representation. Although each real signal z[n] has only N
free parameters, its representation has N? elements, along
N(N + 1)/2 independent dimensions. This leads to prob-
lems in modeling, classification, and recognition tasks.

An overview of our discrete time-frequency representa-
tions is presented, together with a brief discussion of pre-
vious work in continuous time-frequency representations.
These discrete time-frequency representations have all of
the descriptive power of conventional discrete spectral fea-
tures, together with a powerful framework that describes
how the spectrum evolves over time. Unfortunately, using
these features directly in their natural, high-dimensional
space tends to be unworkable.

A geodesic distance measure is introduced, that lever-
ages our knowledge of the set of valid time-frequency rep-
resentations to reduce the apparent dimensionality of the
problem. Applications of this geodesic distance are found
in signal classification and nonlinear time-frequency inter-
polation.

1. INTRODUCTION

Standard techniques such as Gaussian mixture models, vec-
tor quantization, or k-nearest neighbor can break down
when applied to discrete time-frequeny representations.
There are three reasons for these difficulties. The first rea-
son is data sparsity. For real signals with length N, the
time-frequency representation consists of N(N + 1)/2 lin-
early independent dimensions. To model this feature accu-
rately using conventional methods, on the order of N2 inde-
pendent training examples would be needed, which is often
impractical. The second reason is that not all configura-
tions in this high-dimensional feature space are valid time-
frequency representations. In particular, it can be shown
that the set of all valid time-frequency representations is a
continuous N dimensional surface embedded in the feature
space. As a result, at every point in the feature space, a
distribution has zero extent in at least N(N — 1)/2 dimen-
sions. The third problem with modeling with traditional
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techniques is that the mean feature may not lie near any
valid representations. That is, for a given set of data, the
mean of the data does not correspond with an actual signal.
In other words, the mapping from the representation to the
signal is over-determined.

As an example of the problems that may be encoun-
tered, consider the case of a set of three dimensional data
restricted to lie on the surface of a cone. While it may
take many mixtures of full covariance Gaussians to model
the data accurately, there is a simple underlying structure
that should be exploited. Section 2 presents an abbrevi-
ated derivation of the discrete time-frequency representa-
tions that are the focus of this paper, together with an
overview of previous work on continuous time-frequency
representations and a short discussion of how to read and
interpret these representations. Section 3 describes what
can be expected of the set of valid time-frequency repre-
sentations. The dimensionality of the representations is
explored, together with the gross shape of the set. Sec-
tion 4 continues the discussion by introducing a geodesic
distance metric that leverages the information contained in
Section 3. Three methods are explored to compute and
approximate this metric.

Applications in signal classification and non-linear inter-
polation are discussed in Sections 5 and 6. These Sections
illustrate the usefulness of this geodesic metric for classi-
fication and interpolation tasks. The metric incorporates
topological knowledge of the feature space, and improves
performance for classification in addition to having some
novel signal morphing, or non-linear signal interpolation,
properties.

2. DISCRETE TIME-FREQUENCY
REPRESENTATIONS

Our time-frequency representations are based on the work
of Leon Cohen, who developed a systematic way of obtain-
ing bilinear, joint bivariate densities of time and frequency
using operator theory[1l]. More recently [2], he presented a
generalized approach for obtaining joint representations for
arbitrary quantities (not just time and frequency) using the
characteristic function operator methods of Moyal [3] and
Ville [9].

Although Cohen’s class of continuous quadratic TFRs
are backed by rich theory, they have to undergo discrete



sampling, resulting in discrete-time, discrete-frequency
functions, before they can be implemented in any digital
system and be of practical use. A considerable amount of
work has gone into the study of sampling the continuous-
time TFRs and ameliorating the ill effects introduced by
the process, e.g. [5].

Our approach to formulating discrete-time, discrete-
frequency Representations [4] avoids these sampling issues
by providing a direct theoretical link between the discrete
time sequence z[n]| and its discrete time-frequency repre-
sentation P[n,k]. The derivation parallels Cohen’s method
for continuous time and frequency operators, but substi-
tutes discrete operators in their place. As in the continu-
ous case, each discrete time sequence is associated with not
one, but a multitude of time-frequency distributions, each
one uniquely specified by the root distribution and a kernel
function.

A similar method of deriving discrete time-frequency
representations, based on group theory, has been presented
by Richman, et al. in [6]. One notable difference between
the two is that whereas Richman’s technique incorporates
different calculations for even and odd length signals, our
technique is invariant to signal length.

2.1. Derivation

We begin by assuming that we have a discrete, periodic
sequence z[n] with period IV, whose discrete Fourier trans-
form is X[k]. By developing discrete (matrix) operators cor-
responding to discrete time and frequency variables, we can
generate a discrete representation in time and frequency,
Pln,k]. This yields a technique that is distinct from sam-
pling a distribution produced with the continuous time and
frequency operators. There are problems inherent in sam-
pling the continuous distribution that the discrete theory
circumvents, by mapping directly from a discrete signal to
a discrete time-frequency representation.

The first step is, of course, to formulate the discrete
counterparts of the time and frequency operators. The time
operator in the time domain, £, and the frequency operator
in the time domain, K, obey the equations

> o' nlkaln] = X*[k]kX[k], and (1)
n=0 k=0
Lz[n] = nzn]. (2

Since these operators are discrete and linear, they can
be compactly represented by the matrices L and K. Op-
erator theory dictates that we can compute time-frequency
representations according to the expectation

Mn, 7] = (exp(j2wLn) exp(j27KT)) . (3)

Simplifying Equation 3 above, and absorbing the con-
stants into the operators for convenience, we get

Min, 7]
= (exp(jnL) exp(j7K))
z"[n] exp(jnL) exp(j7K)z[n + 7]

n=0

2

= z"[n] exp(jnL)z[n + 7]. (4)

n=0

A two dimensional discrete Fourier transform and further
simplification yields the time-frequency representation,

Pln, k] = z"[n] exp(jnk) X[k], (5)

which is the discrete version of the well-known Rihaczek
TFR [7]. This result is analogous to the continuous-time
result which can be derived in a similar fashion.

Just as in the continuous case, we can take advantage
of the correspondence rule to represent permutations of the
operators in Equation 3 as a multiplicative kernel function
@[n, 7]. In this way, the complete set of time-frequency rep-
resentations within this class can be generated in the usual
way. Members of this class of discrete time-frequency rep-
resentations include the discrete Rihaczek TFR [7], the dis-
crete Margeneau-Hill, and the spectrogram.

2.2. Interpretation

Time-frequency representations promise to capture both
static spectral information and evolutionary spectral infor-
mation in a single feature. Although representations in time
and frequency usually make intuitive sense to even the un-
trained viewer, representations in n and 7, as in Equation 4,
tend to be less intuitive.

The representation described by Equation 4 contains
a lot of information about the signal z[n]. If n = 0, then
M]n, 7] becomes the stationary autocorrelation of the signal
z[n], with 7 taking its familiar role as the time lag variable.

N-1

M[0,7] =" 2" [n — 7]a[n] (6)

n=0

As a result, values along the n = 0 axis are always inter-
preted as the autocorrelation of the signal z[n]. Conversely,
any stationary signal will concentrate its energy within this
region.

If 7 = 0, then M[n, 7] becomes the spectrum of the
instantaneous energy of the signal z[n]. This leads us to
refer to n as the modulation frequency variable, because it
relates to how quickly the envelope of the signal is changing.

Min,0) = 3 falnl exp (22271 7

n=0

As a result, values along the 7 = 0 axis show how the mod-
ulation “envelope” of the signal z[n] is changing with time.
A signal with=20 little correlation between its samples will
concentrate its energy in this region.

Any point M|[n, 7] refers to how quickly a specific cor-
relation coefficient is being modulated. It can be inter-
preted as the output of a non-stationary sinusoidal filter-
bank, where distance from the origin is analogous to band-
width, and the angle from the 7 axis represents the linear
chirp rate of the filter-bank.

To see this, consider a kernel function

¢[n, 7] = &[n—alé[r —b], where (8)
o) = {3 n =0 (9)

otherwise.



In the (n x k) plane, this kernel becomes a complex expo-
nential,=20 with parameters controlled by a and b.
®[n, k] = exp (—j2w(an + bk)) (10)
In summary, a stationary process has no extent in 7, a
spectrally flat process has no extent in 7, and more inter-
esting structures appear when 1 # 0 and 7 # 0. Time mod-
ulations increase a signal’s extent in 7, and colored spectra
are responsible for extent in 7.

2.3. Unleashing Discrete Time-Frequency Repre-
sentation’s Power

The traditional disadvantage to using these representations
as features is the deluge of information. Whereas station-
ary spectral features produce vectors with at most a few
dozen dimensions, a real length N signal will always pro-
duce a representation with N(N+1)/2 linearly independent
dimensions. For a 250 ms signal sampled at 16 kHz, this
amounts to no less than eight million dimensions.

There have been several attempts in the literature to re-
duce this information into salient features, including taking
autocorrelation coefficients of the representation in time or
frequency to achieve a time-shift or frequency-shift invari-
ant representation of the data [10], and finding two dimen-
sional moments of the time-frequency representation [8].

Given the apparently immense dimensionality of the
feature space, one might assume that extracting useful in-
formation in an automated and efficient way would be im-
possible. This is not the case. The next sections present a
new way of looking at these representations.

3. THE SET OF VALID TIME-FREQUENCY
REPRESENTATIONS

Consider the discrete-time signal z[n], with length N. The
discrete time-frequency representation M|n, 7] associated
with z[n] consists of N” complex numbers, and is contained
in the set of length N complex vectors.

Min, 7] = Z z"[n]z[n + 7] exp (27nn/N) .

This, however, is somewhat misleading as to the true
size of the feature space. A discrete Fourier transform from
1 into n yields,

Aln, 7] = 2" [n]z[n + 7). (11)

Clearly, there are N(N — 1)/2 unique products when
7 # 0, and N magnitudes when 7 = 0. For complex sig-
nals, this yields a feature space with N? linearly indepen-
dent dimensions, and for real signals, the feature space has
N(N + 1)/2 linearly independent dimensions.

Furthermore, the mapping between the signal z[n] and
its representation M|[n, k] is continuous, and therefore the
set of representations that correspond to actual signals
forms a continuous subspace.

For real signals with N = 2, the set of valid time-
frequency representations is a 90 degree cone embedded in

a four-dimensional space, with extent only in three dimen-
sions. This agrees with the predicted value, since the ex-
pected dimensionality of the cone is 2(2 + 1)/2 = 3. This
case is examined in detail in Section 4.1.
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Figure 1: Conical structure of valid TFR

For larger values of N, the surface can not be named,
but it can be functionally described. The set of valid dis-
crete time-frequency representations always lies on a conical
structure, regardless of N. The axis of the cone corresponds
to the energy of the signal z[n], which is stored at the ori-
gin of the (n, 7) plane, M]0,0]. For a fixed energy, the valid
representations lie on a hyper-sphere with a radius propor-
tional to M0, 0].
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Although all valid representations lie on this conical
structure, not all points on this structure are valid repre-
sentations. That is, meeting Equation 12 is a necessary, but
not sufficient test for valid time-frequency representations.

4. A GEODESIC DISTANCE MEASURE

Measuring the distance between New York and San Fran-
cisco by drawing a straight line through three dimensional



space would not seem to be an acceptable measure. Sim-
ilarly, measuring the distance along a line connecting two
valid representations, but lying entirely outside of the sur-
face of valid representations, may not be the best solution.
This is exactly what is going on with a Euclidean distance
metric in the time-frequency representation space.

The structure of the surface of valid time frequency rep-
resentations, along with the calculus of variations, allows
us to find the shortest line connecting two representations,
that remains entirely within the set of representations of
true signals. This line is a geodesic, and its length is the
geodesic distance between the endpoints.

This line can be used to morph one signal into another,
along the shortest path in quadratic time-frequency space.
That is, given two signals, it specifies a continuous path
along which one signal slowly changes into the other. This
idea is explored in Section 6. The line can also be used to
find the “true” distance between distributions, which would
not necessarily be a straight line in the feature space.

Without explicitly solving the geodesic problem, ap-
proximate solutions can be found. Two solutions for the
geodesic distance are presented, an algorithmic approxima-
tion and a numerical approximation.

4.1. Exact Solution for Length Two Signals

This section deals with the case of real signals with N = 2.
As mentioned previously, the set of valid representations
for this case is a three dimensional cone embedded in a four
dimensional space. An exact solution for the geodesic be-
tween two given endpoints can be found using the calculus
of variations.

For convenience, let a and b represent the two samples
of the signal z[n]. In the (n, 7) plane, this signal’s represen-
tation only has three non-zero values.

M][0,1] = 2ab
M][0,0] = a® 4+ b*

M[1,1] =0
M[1,0] =a® —b°

A simple change of variables reveals the traditional for-
mula for a cone,

z = MJ[0,1] =usinv =20
y = MJ1,0] =wucosv
z = M][0,0] = u, where u >0

To determine the distance between two representations,
we measure the shortest line along the surface that joins
the two points. This is exactly the type of problem that
the calculus of variations is meant to solve.

The problem is posed as one of minimizing the line in-
tegral between the two points. The calculus of variations
tells us that the geodesic function v(u) is given by

v :cl/\/%du,

where

and
%z(u,v) = sin(v) g%x u,v) = ucos(v)
=y(u,v) = cos(v) Sy(u,v) = —usin(v)
2 2(u,v) =1 2 2(u,v) =
so

P=2 Q=0 R=4u?

Combining these equations, the result is

1
clﬁ/idu
uy/u? —c?
v = V2cos™!

C1
—|t+ec2
u

The constants c¢; and ¢y are dependent on the desired
endpoints of the geodesic, (u1,v1) and (us2,v2).

v — C2
c1 = Zucos
1 (\/5)
2 = v—+2cos! a
u

C2

I
|
5
—t+
&
=]
|
N

U1 COS % — U cos%
w1 sin % — U3 sin%

4.2. Algorithmic Approximation

To find the shortest distance between two points, lying en-
tirely along valid time-frequency representations, an initial
solution is posed, and then iteratively re-estimated. This
algorithm produces both an estimate of the geodesic dis-
tance, and evenly spaced points along the geodesic.

The initial estimate is to form a set of points equally
spaced in the signal space, with the proper endpoints. If
one endpoint is the signal a[n], and the second endpoint is
b[n], the initial set of points in the signal space would be,

z;i[n] = a[n] + (b[n] — aln]) for0<i< M.

i
M-1

The re-estimation assumes that links between neighbor-
ing signals are elastic, and tries to pull each signal towards
its neighbors in the time-frequency representation space.

First, a direction is computed that will move a signal
closer to its neighbors in the time-frequency representation
space. If the representation for y[n] moves in this direction,
the distance to the representations z[n] and z[n] tends to
decrease.

1
vln, 7] = S (z[n]z[r] + 2[n]z[r]) - y[n]y[7]
This vector is then mapped to an equivalent direction
in signal space. The derivatives of the representation with
respect to the original signal samples are

Ty Vlulr] = dln = aly{r] + dlr — aly{n]



Now, this is a scalar-valued function of n, 7, and a.
Unwrap it into a matrix, whose columns are a, and whose
rows consist of all combinations of n and 7. Call this matrix
V. Its columns represent the directions the representation
will move with changes in the signal values.

Now, all that remains is mapping the desired vector v,
which exists in the representation space, onto the available
directions contained in V. This is a simple matrix opera-
tion, and consists of the minimum square solution to the
linear equation,

Vd = v,
d = (VHEv)y vy,

If the signal y is moved in the direction d, the distances
between the representations for y and z, and y and z, is
reduced. If the representations of z, y, and z are sufficiently
close, the linear distance and the geodesic distances should
be approximately equal.

4.3. Numerical Approximation

The numerical approximation to the geodesic distance con-
sists of first defining a path in the representation space, and
then precisely computing its length.

According to Equation 11, the surface of valid time-
frequency representations consists of N? dimensions y;;,
where 0 < {4,j} < N. This surface is parameterized in
terms of the independent variables x;, where 0 < i < N,
which are the discrete signal samples.

Yij = TiT;

The first step is to assume the signal values z; are func-
tions of a single independent variable, ¢t. As ¢ varies from
0 to 1, a path is traced through both the signal space and
the representation space.

Let 4;; be a unit vector in the N? time-frequency rep-
resentation space such that

(iiay, fieq) = d[a — c]o[b — d].

The derivative of the path with respect to the independent
variable is given by

d. d .
7 Z%y”’““
5]
d .
= Zaxi(tm(wuw
¥

= > (i (®)ai(t) + ()i (t) = 20) i

i,J

To find the distance along the path, integrate the func-
tion f(t), where

) =

‘ ds
dt

=

> (@i (#)i(t) + @i (t)i (1) = 20)°

i,j

In many dimensions, it is difficult to solve this equation
exactly for the functions z;(t), 0 < i < N, but an approx-
imate solution can be found by assuming a linear form for
the functions. The slope and offset for each function are
entirely specified by the initial value, x;(0), and the final
value, z;(1).

xT; (t)
;i (t)

Once the endpoints for the calculation are known, the
function f(t) takes the form of a square root of a quadratic
function. This can be quickly estimated with great precision
by calculating the integral

d= /01 F(t)dt.

This approximation is equivalent to the starting point of
the iterative solution presented previously. Although this
approximation is rather gross, in practice the differences
between the two solutions do not amount to much. That
is, if you draw a straight line between two signals in the
signal space, the length of the corresponding line in the
time-frequency representation space is close to optimal.

5. CLASSIFICATION IMPROVEMENT

Figure 2 shows the performance of three distance metrics
for classification in additive white Gaussian noise. The
“L2-Signal” metric is equivalent to the matched filter so-
lution, and serves as an upper bound on performance. The
“Geodesic Approximation” corresponds to a classifier using
the numerical approximation to the geodesic distance. The
“L2-Representation” classifier uses the distance from the
mean in representation space.

The geodesic approximation does much better than
computing distances directly in the representation space.
It comes close to being the optimal detector, although it is
just an approximation to the true geodesic distance.

6. NON-LINEAR INTERPOLATION,
MORPHING

The points along a geodesic correspond to signals that are
between the endpoints and close to neighboring points in the
geodesic. By defining between and close in the discrete time-
frequency representation space, it is reasonable to assume
that as one travels along the geodesic, the signal’s time and
frequency structure are both changing.

If the endpoints are chosen to be similar signals that dif-
fer by a time shift, the algorithmic approximation presented
in Section 4.2 converges to a sequence of similar signals,
with an increasing time shift.

If the endpoints are chosen to be impulse response func-
tions for digital filters with two different resonances, the al-
gorithmic approximation converges to a sequence of signals,
whose resonance is shifting from being close to the starting
signal, to being close to the ending signal.
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Figure 2: Classification in the presence of additive noise

7. CONCLUSION AND FUTURE WORK

This paper presented a new way of computing distances
and paths between discrete time-frequency representations.
A geodesic is computed, which incorporates topological
knowledge of the feature space to reduce the apparent di-
mensionality of the problem.

Using the geodesic distance, a classifier was constructed
that outperforms classifiers that do not incorporate any
knowledge of the feature space. Furthermore, if the geodesic
in the time-frequency space is used as a non-linear interpo-
lation algorithm, reasonable results are obtained.

The kernel function ¢[n, 7] is almost completely ignored
in this work. It could be re-introduced before beginning
the geodesic calculation. Since it is a multiplicative mask
on M[n, 7], the net effect would be a cost function on the
path moving along directions with high ¢ values. One could
use the kernel to impose no cost for changing the modula-
tion of the signal, or vary the cost along 7 to penalize finer
modifications to the spectrum more or less.
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