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ABSTRACT that assume the noise environment is known and directly learn the
transformation from noisy cepstra to clean cepstra.

The main advantage of adopting the parametric approach is
obvious. It allows for adaptation to unseen, unknown, and slowly
changing conditions. But there are disadvantages to the paramet-
ric approach that are wedded to its fundamental design. First, for
tractability, it is fashionable to assume a linear distortion chan-
nel and stationary additive noise. This limits the system’s ability
to deal with nonlinear transducers, cross-frame effects, or nonsta-
tionary additive noise. Secondly, these systems tend to use gradi-
. . e S e ent descent techniques to track the system parameters. As such,
each enwron_ment—clean da_ta with artificial mixing is sufnment. there is a tradeoff that needs to be made between how quickly the

When this new method is used as a pre-processing stage (0 4| can adapt to changing conditions and how precisely it can
large vocabulary speech recognition system, it can be made robusf, 4| stationary conditions.
to a wide variety of acoustic environments. With synthetic training The nonparametric approaches make no assumptions about the
data, we are able to reduce the word error rate by 27%. nature of corruption caused by the acoustic environment, whether

stationary or not. They directly estimate the necessary transforma-
1. INTRODUCTION tion from noisy to clean cepstrum. FCDCN accomplishes this with
a piecewise linear function which can be estimated to an arbitrary
As speech recognition continues to move out of pristine laboratory precision. It is arguably the simplest and most effective technique
environments and into real world recognition applications, noise to use when the environment is known.
robustness becomes a necessary component of any application. It There are two disadvantages that have made FCDCN imprac-
is no longer safe to assume that speech input comes from a knowrtical in the past, and both are addressed in this paper.
microphone through a channel with high signal to noise ratio. Con- First, if the testing acoustic environment does not match the
sequently, systems must be modified to deal with these harsher entraining environment, recognition performance degrades. This is
vironments. because FCDCN was designed to normalize one acoustic environ-

There is ongoing research into both feature-domain and model-ment only. We show that it is practical to train multiple noise envi-
domain techniques to improve the robustness of speech recognironment hypotheses to run in parallel, and choose among them at
tion systems. It has recently been shown [5] that, in a known en- run time.
vironment, a feature-domain technique can achieve higher recog-  The second classic disadvantage is that it was believed that it
nition accuracy than using matched noisy training and testing con-was necessary to collect a large set of real stereo training data from
ditions. Since this matched condition is the limit that any model- the target environment. We show that a small amount of real noise
domain technique strives for, we focus on feature-domain tech- synthetically mixed into a large, clean corpus is enough to achieve
niques that allow us to beat the limit. significant benefits.

One general method for feature-domain cepstral de-noisingis ~ Together, these two improvements allow us to build a FCDCN
to design a module that pre-processes cepstra before they are fedased continuous speech recognition system, with a reasonable
into a speech recognition system. This includes parametric featureamount of training data, that is robust to many types of noise.
space transformations [1, 2], spectral subtraction, VTS, CDCN [3], Section 2 includes a conceptual overview of the FCDCN algo-
FCDCN [4] and most of its descendants, and cepstral smooth-rithm, and how stereo data is used to train the system for operation
ing techniques such as RASTA and CMN. The advantage of all in a known acoustic environment. It is then shown in Section 3
of these techniques is that they can be seamlessly integrated intdiow to make a maximum likelihood decision about the acous-
existing systems, without a complete overhaul of existing code. tic environment at run-time. This allows us to train parallel sys-

Of these feature-domain cepstral pre-processing techniquestems for exemplar acoustic conditions, and decide among them just
most have the same goal. Namely, to find the expected value ofprior to performing speech recognition. Section 4 discusses some
the clean cepstral vector, given the noisy observation. They tendresults using this technique. In particular, we look at how the ML
to fall into two categories: those that parameterize the environ- estimate can me smoothed over time, the frame-level accuracy of
ment and then learn those parameters from the test data, and thosthe environmental decision, and speech recognition performance.

There exists a number of cepstral de-noising algorithms which
perform quite well when trained and tested under similar acoustic
environments, but degrade quickly under mismatched conditions.

We present two key results that make these algorithms practi-
cal in real noise environments, with the ability to adapt to different
acoustic environments over time. First, we show that it is possible
to leverage the existing de-noising computations to estimate the
acoustic environment on-line and in real time. Second, we show
that it is not necessary to collect large amounts of training data in



2. REVIEW OF FCDCN Fortunately, FCDCN can be modified to directly produce val-
ues that can be used as estimates of this conditional probability.
The parametric cepstral de-noising algorithms make assumptionsin the past, codebooks have been trained on clean speech and the
about the structure of the corruption, usually a linear convolutional expected value of the difference between noisy and clean cepstra,
channel distortion and additive stationary noise. FCDCN, intro- for each codeword in the clean space [3].
duced in [4], bypasses issues associated with building a model of  If instead the base codebook is trained on the noisy data for
the corruption by directly estimating a function that maps from the each noise environment, it forms an implicit probability distribu-

corrupted signal space to the clean signal space. tion function for the noisy cepstra given the noise environment. As
For each noisy cepstrug, it computes the expected value of part of the VQ search, distances are calculated between the current
the clean cepstrunx through data frame and each codeword of each noise environment. Inter-
preting each codeword” as one mixture in a Gaussian mixture
x = E{x|y}, @ model, we can evaluate the conditional probability of the acoustics
given the environment,

or equivalently,

x=y+rly) @ P(A|E) = Zexp d(y.c?)P(F)  (®)
wherer(y) is the correction to apply at each point in the noisy
cepstral space.

During training, the correction(y) is approximated as a piece-
wise linear function. A vector quantization codebook is trained on
the noisy cepstrg, and for each codeword; the expected value
of the difference between clean and noisy cepstra is stored as

During testing, the indekof the codeword closest to the noisy
cepstrum is found. Then, the correction veatpis added and de-

noising process is complete.
- 1 1 .
X=y+r; 3) P(A|E) = —m exp (—5 (ml_ln d(x, cZE))) , )

As a byproduct of the VQ search, distances are calculated be-which is a monotonic function of the minimum codeword distance.
tween the noisy cepstrum and each codeword.
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If we further assume a uniform prior on the codeworléc?” )
can be ignored, and the conditional probability of the acoustics for
a given noise environment is directly computable from the distor-
tions calculated in the VQ processing.

Further shortcuts are also possible. It is reasonable to assume
that the closest codeword dominates the calculatio? Q4 |E),
so that it can be approximated as

3.2. On-Line Environmental Estimation

3. ENVIRONMENTAL ESTIMATION Essentially, reliable estimation of the environment can be made by

examining the average codebook distortion between the test data
and each known environment. In [6], it is shown that sentence-
level decisions are reliable enough to reap the benefits of FCDCN
without prior knowledge of the noise type. Unlike previous work,
our noise adaptation is done on-line, that is, the estimate of the
noise environment is updated on a frame-by-frame basis.

It is assumed that the testing conditions are close to one of
%the training conditions. In the worst case, one would expect the
chosen FCDCN codebook to do no worse than leaving the signal
unprocessed, because the nature of the transform is to try and move
3.1. Bayesian Formulation the noisy feature space to match the prior distribution of clean data.

One convenient side-effect of this de-noising system is that er-
rors only occur when they are not important. That is, when the
system becomes confused it is because the incoming noisy data
matches more than one trained noise condition. In this case, the

Since FCDCN works well when the acoustic environment is known,
an obvious extension is to train a rich set of FCDCN systems, and
choose among them at run time. The problem that remains is find-
ing an efficient and reliable way of making this choice.

This section shows how some calculations performed by the
FCDCN algorithm can be re-cycled to estimate the probability of
the acoustics given the environment, which then can be used to
predict the most likely environment.

The conditional probability of the environmehtgiven the acous-
tics A can be inferred using Bayes' rule and the implicit model of
each acoustic space.

P(E) noise condition matches multiple conditions equally well and it
P(E|A) = P(A\E)m 4 shouldn’t matter which decision is made—any one should be ap-
propriate.
It is safe to ignoreP(E) in Equation 4. If many frames are The P(A|E) estimate is smoothed over time for each envi-
used to estimat®(A|E), the relative importance of this prior will ~ ronmentE in two stages. In the first stage, an FIR filter is applied

diminish. Also, since the margindP(A) is independent of the identically to each estimate, with a time constant chosen to reduce

environment, and we are only interested in the most likely envi- the noise of the estimation while also allowing the estimates to
ronment, it can be ignored. adapt to changing conditions. At time for an environmeng,

The maximum likelihood estimate of the environment is then  this first smoothing produces

M—-1

E = argmax, P(A|E). ®) PV(AIE) = Z h[m]Pr—m(A|E). (8)

That is, to find the maximum likelihood environment, use the
given acoustics to estimafe(A|E) for eachE, and then choose The advantages of keeping this time constant short are clear—
the environment that maximizes this quantity. if someone using a mobile, speech-enabled device were to enter



an elevator or to emerge from the lobby of a quiet building into ‘ ‘ ‘ ‘ ‘ ‘
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4. RESULTS
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The data for these experiments consists of three sets of trainingS; o i
data and testing data, which correspond to three different acoustic _,| |
environments. In general, the training data consisted of a clean
Wall Street Journal (WSJ) corpus with synthetically mixed addi- 41 02s o03s o04s o05s 06s 0vs 08s
tive natural noise. The testing data consisted of 167 sentences of () Time Series
WSJ utterances with either synthetically mixed additive noise or
real signals collected in a noisy environment. Fig. 1. Conditional probability measure before and after smooth-

The first set of data, labeled “Office” in our tests, was designed ing. (a) Normalized probability using one frame of codebook dis-
to approximate speech in a private office collected by a desktop mi-tortion. (b) Normalized probability using 32 frames of codebook
crophone. Both the training and testing waveforms were corrupteddistortion. (c) Corresponding time series.
by adding noise sampled separately from a desktop microphone.

The second set of data, labeled “Clean” in our tests, was de-
signed to approximate speech into a closetalk microphone. The  The difference between the “iPaq” condition and the “Clean”
training and testing waveforms were unmodified from the original condition is that the speech is corrupted by a different channel,
corpus. but the additive noise is similar. Again, the discrimination occurs

the testing data consisted of real recordings where we would expect, this time in the high SNR regions of the

The third set of data was designed to approximate speech intoSignal.

a mobile device. For this set, only the training data was syntheti- ~ These two cases motivate the smoothing of the conditional
cally mixed. Ambient office noise was collected on a Compaq iPaq Probability estimates (Equation 8). To discriminate acoustic en-
PocketPC and added to the clean corpus to create the training data&/ironments with dissimilar additive noise, one must smooth the
By contrast, the testing data consisted of real recordings collectedestimate long enough to keep the discrimination information oc-
on a similar device in a similar acoustic environment. The utter- curring between words. Conversely, to discriminate acoustic envi-
ances were simultaneously using the device’s built-in microphone ronments with dissimilar convolutional channels, we need to retain
and a closetalk microphone. This was not necessary for the cepihe conditional probability estimate across speech boundaries.
stral de-noising, but enabled comparative recognition performance

results. 4.2. Misclassification Errors

Figure 2 shows the frame-level probability of error for the task of
4.1. Smoothed Conditional Probability Estimate choosing among the three acoustical environments, as the length of
. . . L the FIR smoothing filter increases. Even at a filter length of eight
Figure 1 compares the conditional probability estimation before f3mes (80ms), less than five frames in 10,000 are misclassified
and after smoothing, for a single utterance with an associated nois&yith the chosen environments. This corresponds to an average

condition that has been seen in the training set. The signal consist$yt one error every twenty seconds, and has a negligible effect on
of a single word spoken into a closetalk microphone. The word recognition accuracy.

begins at frame 30 and continues to frame 64.

To produce this figure, three codebooks were trained in ad-
vance for three acoustic environments. FCDCN was run in paral-
lel for the three environments, and the codeword distortions were Table 1 shows the recognition accuracy of this system across dif-
harvested to estimate the conditional probabiltyA|E). ferent training and testing scenarios. The testing data, a 167 sen-

The difference between the “Clean” condition and the “Of- tence WSJ test set, was collected simultaneously on a hand-held
fice” condition is that the latter has additive office noise, so we device and on a closetalk microphone. The closetalk microphone
would expect most of the discrimination to occur in regions with data was not necessary for the cepstral de-noising, but was col-
low SNR. This is indeed the case; the system separates these twéected to produce a reasonable upper bound on the performance of
conditions well in the absence of speech. the cepstral de-noising algorithm.

4.3. Robust Speech Recognition
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Fig. 2. Frame level probability of error
Microphone | Acoustic Model | Word Error Rate
Closetalk Clean 6.76%
iPaq Clean 10.40%
iPaq + FCDCN Clean 8.86%
iPaq iPaq (Artificial) 7.98%
iPaq + FCDCN | iPaq (Artificial) + FCDCN 7.61%

Table 1. Performance on real data

The baseline system uses a version of the Microsoft contin-

5. CONCLUSION

Cepstral de-noising algorithms which act independently of the rec-
ognizer on the cepstral stream can significantly improve the robust-
ness of existing systems to additive noise and channel effects. One
of the most successful algorithms, FCDCN, requires a knowledge
of the current noise environment to operate. We have shown that
the calculations inherent in the FCDCN algorithm can be lever-
aged to generate a real time, accurate estimate of the noise envi-
ronment, making the system robust to both seen and some unseen
conditions.

We have further shown that it is not necessary to obtain large
amounts of speech in different acoustic environments. If ambient
noise from the environment is available, synthetically mixed train-
ing data can be used to gain large improvements in recognition
accuracy.

Used in conjunction with a sufficiently rich set of noise con-
ditions and noise adaptive training, this cepstral de-noising algo-
rithm can make continuous speech recognition robust to different
acoustic environments [7].
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