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ABSTRACT

There exists a number of cepstral de-noising algorithms which
perform quite well when trained and tested under similar acoustic
environments, but degrade quickly under mismatched conditions.

We present two key results that make these algorithms practi-
cal in real noise environments, with the ability to adapt to different
acoustic environments over time. First, we show that it is possible
to leverage the existing de-noising computations to estimate the
acoustic environment on-line and in real time. Second, we show
that it is not necessary to collect large amounts of training data in
each environment–clean data with artificial mixing is sufficient.

When this new method is used as a pre-processing stage to a
large vocabulary speech recognition system, it can be made robust
to a wide variety of acoustic environments. With synthetic training
data, we are able to reduce the word error rate by 27%.

1. INTRODUCTION

As speech recognition continues to move out of pristine laboratory
environments and into real world recognition applications, noise
robustness becomes a necessary component of any application. It
is no longer safe to assume that speech input comes from a known
microphone through a channel with high signal to noise ratio. Con-
sequently, systems must be modified to deal with these harsher en-
vironments.

There is ongoing research into both feature-domain and model-
domain techniques to improve the robustness of speech recogni-
tion systems. It has recently been shown [5] that, in a known en-
vironment, a feature-domain technique can achieve higher recog-
nition accuracy than using matched noisy training and testing con-
ditions. Since this matched condition is the limit that any model-
domain technique strives for, we focus on feature-domain tech-
niques that allow us to beat the limit.

One general method for feature-domain cepstral de-noising is
to design a module that pre-processes cepstra before they are fed
into a speech recognition system. This includes parametric feature
space transformations [1, 2], spectral subtraction, VTS, CDCN [3],
FCDCN [4] and most of its descendants, and cepstral smooth-
ing techniques such as RASTA and CMN. The advantage of all
of these techniques is that they can be seamlessly integrated into
existing systems, without a complete overhaul of existing code.

Of these feature-domain cepstral pre-processing techniques,
most have the same goal. Namely, to find the expected value of
the clean cepstral vector, given the noisy observation. They tend
to fall into two categories: those that parameterize the environ-
ment and then learn those parameters from the test data, and those

that assume the noise environment is known and directly learn the
transformation from noisy cepstra to clean cepstra.

The main advantage of adopting the parametric approach is
obvious. It allows for adaptation to unseen, unknown, and slowly
changing conditions. But there are disadvantages to the paramet-
ric approach that are wedded to its fundamental design. First, for
tractability, it is fashionable to assume a linear distortion chan-
nel and stationary additive noise. This limits the system’s ability
to deal with nonlinear transducers, cross-frame effects, or nonsta-
tionary additive noise. Secondly, these systems tend to use gradi-
ent descent techniques to track the system parameters. As such,
there is a tradeoff that needs to be made between how quickly the
model can adapt to changing conditions and how precisely it can
model stationary conditions.

The nonparametric approaches make no assumptions about the
nature of corruption caused by the acoustic environment, whether
stationary or not. They directly estimate the necessary transforma-
tion from noisy to clean cepstrum. FCDCN accomplishes this with
a piecewise linear function which can be estimated to an arbitrary
precision. It is arguably the simplest and most effective technique
to use when the environment is known.

There are two disadvantages that have made FCDCN imprac-
tical in the past, and both are addressed in this paper.

First, if the testing acoustic environment does not match the
training environment, recognition performance degrades. This is
because FCDCN was designed to normalize one acoustic environ-
ment only. We show that it is practical to train multiple noise envi-
ronment hypotheses to run in parallel, and choose among them at
run time.

The second classic disadvantage is that it was believed that it
was necessary to collect a large set of real stereo training data from
the target environment. We show that a small amount of real noise
synthetically mixed into a large, clean corpus is enough to achieve
significant benefits.

Together, these two improvements allow us to build a FCDCN
based continuous speech recognition system, with a reasonable
amount of training data, that is robust to many types of noise.

Section 2 includes a conceptual overview of the FCDCN algo-
rithm, and how stereo data is used to train the system for operation
in a known acoustic environment. It is then shown in Section 3
how to make a maximum likelihood decision about the acous-
tic environment at run-time. This allows us to train parallel sys-
tems for exemplar acoustic conditions, and decide among them just
prior to performing speech recognition. Section 4 discusses some
results using this technique. In particular, we look at how the ML
estimate can me smoothed over time, the frame-level accuracy of
the environmental decision, and speech recognition performance.



2. REVIEW OF FCDCN

The parametric cepstral de-noising algorithms make assumptions
about the structure of the corruption, usually a linear convolutional
channel distortion and additive stationary noise. FCDCN, intro-
duced in [4], bypasses issues associated with building a model of
the corruption by directly estimating a function that maps from the
corrupted signal space to the clean signal space.

For each noisy cepstrumy, it computes the expected value of
the clean cepstrum,x through

x̂ = E{x|y}, (1)

or equivalently,
x̂ = y + r(y), (2)

wherer(y) is the correction to apply at each point in the noisy
cepstral space.

During training, the correctionr(y) is approximated as a piece-
wise linear function. A vector quantization codebook is trained on
the noisy cepstray, and for each codewordci the expected value
of the difference between clean and noisy cepstra is stored asri.

During testing, the indexi of the codeword closest to the noisy
cepstrum is found. Then, the correction vectorri is added and de-
noising process is complete.

x̂ = y + ri (3)

As a byproduct of the VQ search, distances are calculated be-
tween the noisy cepstrum and each codeword.

3. ENVIRONMENTAL ESTIMATION

Since FCDCN works well when the acoustic environment is known,
an obvious extension is to train a rich set of FCDCN systems, and
choose among them at run time. The problem that remains is find-
ing an efficient and reliable way of making this choice.

This section shows how some calculations performed by the
FCDCN algorithm can be re-cycled to estimate the probability of
the acoustics given the environment, which then can be used to
predict the most likely environment.

3.1. Bayesian Formulation

The conditional probability of the environmentE given the acous-
ticsA can be inferred using Bayes’ rule and the implicit model of
each acoustic space.

P (E|A) = P (A|E)
P (E)
P (A)

(4)

It is safe to ignoreP (E) in Equation 4. If many frames are
used to estimateP (A|E), the relative importance of this prior will
diminish. Also, since the marginalP (A) is independent of the
environment, and we are only interested in the most likely envi-
ronment, it can be ignored.

The maximum likelihood estimate of the environment is then

Ê = argmaxEP (A|E). (5)

That is, to find the maximum likelihood environment, use the
given acoustics to estimateP (A|E) for eachE, and then choose
the environment that maximizes this quantity.

Fortunately, FCDCN can be modified to directly produce val-
ues that can be used as estimates of this conditional probability.
In the past, codebooks have been trained on clean speech and the
expected value of the difference between noisy and clean cepstra,
for each codeword in the clean space [3].

If instead the base codebook is trained on the noisy data for
each noise environment, it forms an implicit probability distribu-
tion function for the noisy cepstra given the noise environment. As
part of the VQ search, distances are calculated between the current
data frame and each codeword of each noise environment. Inter-
preting each codewordcE

i as one mixture in a Gaussian mixture
model, we can evaluate the conditional probability of the acoustics
given the environment,
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If we further assume a uniform prior on the codewords,P (cE
i )

can be ignored, and the conditional probability of the acoustics for
a given noise environment is directly computable from the distor-
tions calculated in the VQ processing.

Further shortcuts are also possible. It is reasonable to assume
that the closest codeword dominates the calculation ofP (A|E),
so that it can be approximated as
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which is a monotonic function of the minimum codeword distance.

3.2. On-Line Environmental Estimation

Essentially, reliable estimation of the environment can be made by
examining the average codebook distortion between the test data
and each known environment. In [6], it is shown that sentence-
level decisions are reliable enough to reap the benefits of FCDCN
without prior knowledge of the noise type. Unlike previous work,
our noise adaptation is done on-line, that is, the estimate of the
noise environment is updated on a frame-by-frame basis.

It is assumed that the testing conditions are close to one of
the training conditions. In the worst case, one would expect the
chosen FCDCN codebook to do no worse than leaving the signal
unprocessed, because the nature of the transform is to try and move
the noisy feature space to match the prior distribution of clean data.

One convenient side-effect of this de-noising system is that er-
rors only occur when they are not important. That is, when the
system becomes confused it is because the incoming noisy data
matches more than one trained noise condition. In this case, the
noise condition matches multiple conditions equally well and it
shouldn’t matter which decision is made–any one should be ap-
propriate.

The P (A|E) estimate is smoothed over time for each envi-
ronmentE in two stages. In the first stage, an FIR filter is applied
identically to each estimate, with a time constant chosen to reduce
the noise of the estimation while also allowing the estimates to
adapt to changing conditions. At timen, for an environmentE,
this first smoothing produces

P (1)
n (A|E) =

M−1X
m=0

h[m]Pn−m(A|E). (8)

The advantages of keeping this time constant short are clear–
if someone using a mobile, speech-enabled device were to enter



an elevator or to emerge from the lobby of a quiet building into
the pouring rain, the algorithm should be free to adapt to the new
acoustic environment quickly. The filter was chosen to be rectan-
gular with a length of 500ms. It is assumed that the acoustic en-
vironment does not change drastically at smaller time scales than
this.

The linear smoothing is not always enough, so a second stage
of smoothing consists of a moving-mode filter that constrains the
rate of decision making. This non-linear filter examines the previ-
ous 64 frames and selects the environment with the highest likeli-
hood in the most number of frames. As a result, there are fewer sin-
gle and double frame errors in the environmental decision. The fil-
ter, while still allowing a fast decision transition, provides enough
smoothing to get nearly perfect results in our tests.

4. RESULTS

The data for these experiments consists of three sets of training
data and testing data, which correspond to three different acoustic
environments. In general, the training data consisted of a clean
Wall Street Journal (WSJ) corpus with synthetically mixed addi-
tive natural noise. The testing data consisted of 167 sentences of
WSJ utterances with either synthetically mixed additive noise or
real signals collected in a noisy environment.

The first set of data, labeled “Office” in our tests, was designed
to approximate speech in a private office collected by a desktop mi-
crophone. Both the training and testing waveforms were corrupted
by adding noise sampled separately from a desktop microphone.

The second set of data, labeled “Clean” in our tests, was de-
signed to approximate speech into a closetalk microphone. The
training and testing waveforms were unmodified from the original
corpus.

the testing data consisted of real recordings
The third set of data was designed to approximate speech into

a mobile device. For this set, only the training data was syntheti-
cally mixed. Ambient office noise was collected on a Compaq iPaq
PocketPC and added to the clean corpus to create the training data.
By contrast, the testing data consisted of real recordings collected
on a similar device in a similar acoustic environment. The utter-
ances were simultaneously using the device’s built-in microphone
and a closetalk microphone. This was not necessary for the cep-
stral de-noising, but enabled comparative recognition performance
results.

4.1. Smoothed Conditional Probability Estimate

Figure 1 compares the conditional probability estimation before
and after smoothing, for a single utterance with an associated noise
condition that has been seen in the training set. The signal consists
of a single word spoken into a closetalk microphone. The word
begins at frame 30 and continues to frame 64.

To produce this figure, three codebooks were trained in ad-
vance for three acoustic environments. FCDCN was run in paral-
lel for the three environments, and the codeword distortions were
harvested to estimate the conditional probabilityP (A|E).

The difference between the “Clean” condition and the “Of-
fice” condition is that the latter has additive office noise, so we
would expect most of the discrimination to occur in regions with
low SNR. This is indeed the case; the system separates these two
conditions well in the absence of speech.
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Fig. 1. Conditional probability measure before and after smooth-
ing. (a) Normalized probability using one frame of codebook dis-
tortion. (b) Normalized probability using 32 frames of codebook
distortion. (c) Corresponding time series.

The difference between the “iPaq” condition and the “Clean”
condition is that the speech is corrupted by a different channel,
but the additive noise is similar. Again, the discrimination occurs
where we would expect, this time in the high SNR regions of the
signal.

These two cases motivate the smoothing of the conditional
probability estimates (Equation 8). To discriminate acoustic en-
vironments with dissimilar additive noise, one must smooth the
estimate long enough to keep the discrimination information oc-
curring between words. Conversely, to discriminate acoustic envi-
ronments with dissimilar convolutional channels, we need to retain
the conditional probability estimate across speech boundaries.

4.2. Misclassification Errors

Figure 2 shows the frame-level probability of error for the task of
choosing among the three acoustical environments, as the length of
the FIR smoothing filter increases. Even at a filter length of eight
frames (80ms), less than five frames in 10,000 are misclassified
with the chosen environments. This corresponds to an average
of one error every twenty seconds, and has a negligible effect on
recognition accuracy.

4.3. Robust Speech Recognition

Table 1 shows the recognition accuracy of this system across dif-
ferent training and testing scenarios. The testing data, a 167 sen-
tence WSJ test set, was collected simultaneously on a hand-held
device and on a closetalk microphone. The closetalk microphone
data was not necessary for the cepstral de-noising, but was col-
lected to produce a reasonable upper bound on the performance of
the cepstral de-noising algorithm.
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Fig. 2. Frame level probability of error

Microphone Acoustic Model Word Error Rate
Closetalk Clean 6.76%

iPaq Clean 10.40%
iPaq + FCDCN Clean 8.86%

iPaq iPaq (Artificial) 7.98%
iPaq + FCDCN iPaq (Artificial) + FCDCN 7.61%

Table 1. Performance on real data

The baseline system uses a version of the Microsoft contin-
uous density speech recognition engine (Whisper). The system
uses 6000 senones (tied HMM states) and 20 Gaussians per state.
The recognition task is 5000-word vocabulary, continuous speech
recognition with a fixed bigram language model.

For reference, the first row of Table 1 shows the practical limit
of any de-noising algorithm. When clean models are used to rec-
ognize data taken on the closetalk microphone, the accuracy is
93.24%.

The second row represents taking unmodified data from the
hand-held device and recognizing it with models trained with clean
WSJ data. Not surprisingly, this mismatched condition is the worst
result. When the test data is de-noised with FCDCN, the accuracy
increases by 1.5% absolute, which is a confirmation that the de-
noising algorithm is modifying the data in the correct way.

It is a commonly held belief that using matched conditions in
training and testing is the best one can do with noisy data. The
fourth row of Table 1 shows that when we train models on data
with utterances modified to simulate the noise picked up by the
hand-held device, we do fairly well. But it is not the best we can
do.

The last row of the table represents a different kind of matched
condition. The only difference from the previous experiment is
that both the training and the testing data have been passed through
the cepstral de-noising algorithm. Similar results have been shown
previously in [5, 7]. Even though conventional wisdom would
indicate that the best one can do is to train models based on a
matched noisy condition, in this case the matched de-noised con-
dition reduces the word error rate by 4.7%.

Since reliable environment data is available from the cepstral
de-noising algorithm, we can expect to approach this result closely.
That is, even when the acoustic environment is unknown at run-
time, we can clean the cepstrum and use a matched acoustic model
to achieve optimum performance.

5. CONCLUSION

Cepstral de-noising algorithms which act independently of the rec-
ognizer on the cepstral stream can significantly improve the robust-
ness of existing systems to additive noise and channel effects. One
of the most successful algorithms, FCDCN, requires a knowledge
of the current noise environment to operate. We have shown that
the calculations inherent in the FCDCN algorithm can be lever-
aged to generate a real time, accurate estimate of the noise envi-
ronment, making the system robust to both seen and some unseen
conditions.

We have further shown that it is not necessary to obtain large
amounts of speech in different acoustic environments. If ambient
noise from the environment is available, synthetically mixed train-
ing data can be used to gain large improvements in recognition
accuracy.

Used in conjunction with a sufficiently rich set of noise con-
ditions and noise adaptive training, this cepstral de-noising algo-
rithm can make continuous speech recognition robust to different
acoustic environments [7].
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