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ABSTRACT

A new Bayesian estimation framework for statistical feature ex-
traction in the form of cepstral enhancement is presented, in which
the joint prior distribution is exploited for both static and frame-
differential dynamic cepstral parametersin the clean speech model.
The conditional minimum mean square error (MM SE) estimator
for the clean speech feature is derived using the full posterior prob-
ability for clean speech given the noisy observation. The fina
form of the estimator (for each mixture component) is a weighted
sum of the prior information using the static and the dynamic pri-
ors separately, and of the prediction using the acoustic distortion
model in absence of any prior information. Comprehensive noise-
robust speech recognition experiments using the Aurora2 database
demonstrate significant improvement in accuracy by incorporating
the joint prior, compared with using only the static or dynamic
prior and with using no prior.

1. INTRODUCTION

One magjor problem that remains unsolved in speech recognition
technology is noise robustness. Towards solving this problem, we
recently have successfully developed afamily of front-end speech
feature enhancement algorithms that make use of the availability
of stereo training data consisting of simultaneously collected clean
and noisy speech under a variety of noisy conditions [4, 5, 7].
While high performance under severe noise distortion conditions
is achievable, it is desirable to remove or reduce the need for the
stereo training data, and to overcome the potential problem of un-
expected mismatch between the acoustic environments for recog-
nizer deployment and for stereo training. To this end, we have
more recently focused on the development of a new family of sta-
tistical and parametric techniques for noise-robust speech recogni-
tion. In this paper we present anew algorithm for statistical feature
extraction in the form of cepstral (or equivalent log-spectral) en-
hancement.

The new algorithm has been built upon a series of published
work on parametric modeling of nonlinear acoustic distortion [11,
1, 6,9, 10, 14], and on the use of speech prior [8, 13, 9, 2, 3], but
it represents a significant extension or generalization of the earlier
work. The main innovations of the algorithm presented in this pa-
per are: 1) incorporation of the dynamic cepstral features in the
Bayesian estimation framework; 2) a new conditional MM SE es-
timator that elegantly integrates the predictive information from
the nonlinear acoustic distortion model and the prior information
based on the dynamic as well as static clean speech’s cepstral dis-
tributions; and 3) efficient implementation of the new algorithm
(real time using a Matlab code).

This paper is organized as follows. In Section 2, we estab-
lish a statistical model for the acoustic environment which relates

the log-spectral vectors of clean speech, noise, and noisy speech
in a nonlinear manner. In Section 3, we describe “prior” models
for both clean speech and noise. In Section 4, we use Bayes rule
to derive the conditional MMSE for the clean speech cepstra or
log spectra by combining the prior information and a linearized
version of the statistical model for approximating the nonlinear
acoustic environment, In Section 5, noise-robust experimental re-
sults are reported using Aurora2 database, which demonstrate the
effectiveness of the new Bayesian approach, and in particular, of
the use of dynamic cepstral features in the prior model.

2. A STATISTICAL MODEL FOR ACOUSTIC
DISTORTION

Following the discrete-time, linear system model for the acoustic
distortion in the time and linear frequency domain, and taking into
account the random angle between the speech and noise spectral
vectors, we have established the following relationship among the
noise (n), noisy speech (y), and clean speech (z) log-spectral vec-
tors for each filter bank:
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In the above, X [k] and N[k] are the spectra for a frame of clean
speech and noise, respectively, W, is the frequency transfer func-
tion for a filter in the filter bank, and 6;. is the (random) angle
between the DFTs (complex variables) of noise and clean speech
for each frequency bin k.

Due to the generally small values of the last term in Eq.1, the
nonlinear acoustic environment model described by Eq.1 can be
interpreted as a predictive mechanism for y, where the predictor is

g=xv+g(n—u),
inwhich
g(z) =log(1+¢€*).
The small prediction residua in Eq.1:
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iscomplicated to evaluate and to model. It istherefore represented
by an “ignorance” model as a zero-mean, Gaussian random vector.



The covariance matrix for the prediction residual Eq.2 isclearly a
function of the (instantaneous) SNR. But to avoid the implementa-
tion complexity associated with the SNR dependency, we used one
fixed (diagonal) covariance matrix, ¥, which is estimated by pool-
ing the training data (Aurora2) with all available SNRs. This thus
establishes a crude but efficient statistical model for the acoustic
environment:

p(yle,n) =N(y;z +g(n—2),®) =N(y;9,%9), (3)

which will be used as one component in speech feature enhance-
ment. Thistype of model has also been used in other frameworks
for the enhancement [9].

3. PRIORMODELS

The prior model exploited in this work takes into account both
the static and dynamic properties of clean speech, in the domain of
log Mel-channel energy (or equivalently in the domain of cepstrum
via a fixed, linear transformation). One simple way of capturing
the dynamic property is to use the frame-differential, or “delta’
feature, defined by

Az =z — Ty—1,

where a one-step, backward time (frame) differenceisused in this
work.

Thefunctional form of the probability distribution for both the
static and delta features of clean speech is chosen, motivated by
simplicity in the algorithm implementation, as a mixture of mul-
tivariate Gaussians, where in each Gaussian component the static
and delta features are assumed to be uncorrelated with each other.
This givesthejoint distribution:
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In our speech feature enhancement system implementation, a stan-
dard EM agorithm isused to train the mean and covariance param-
eters p%,, ®%,, ua®, and 57 in the cepstral domain. Then the
mean vectors in the log Mel-channel energy domain are obtained
via the linear transform using the inverse cosine transformation
matrix. The diagonal elements of the two covariance matrices in
the log Mel-channel energy domain are computed also from those
inthe cepstral domain, using the inverse cosine transformation ma-
trix and its transpose. After this training and the transformations,
we now assume that all parameters in Eq.4 are known in the log
Mel-channel energy domain.

In principle, in the Bayesian framework adopted in this work,
it is also desirable to provide a prior distribution for the noise pa-
rameter n. Due to the fast changing nature of the noise in the
database (Aurora2) which we evaluate our algorithm on, the noise
distribution would need to be nonstationary or time-varying; that
is, the noise distribution be a function of time frame ¢. Given only
alimited amount of noisy speech training data available, even as-
suming asimple Gaussian model for the noise feature with atime-
varying mean and variance, accurate estimation of these parame-
tersis still very difficult. To overcome this difficulty, we in this
work use the results from our earlier research where the noise fea-
ture is assumed to be deterministic and is tracked sequentially di-
rectly from the individual noisy test utterance [6]. Thisis equiva-
lent to assuming the prior distribution for noise is a time-varying,
vector-valued, delta function:

p(ne) = d(ne — 7). )

4. ALGORITHMSFOR SPEECH FEATURE
ENHANCEMENT

Given the observation vector y, the MMSE estimator & for the
random vector z isthe conditional expectation:
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where the last step used Bayes rule. The enhancement algorithms
to be described below provide efficient ways of computing the
right hand side of Eq.6.

4.1. Estimation with static prior only

To facilitate the derivation of the MM SE estimator with the prior
speech model for joint static and dynamic features, we first derive
the estimator with the static prior only. The result will be extended
to the desired case in the next subsection.

In this derivation, the prior model for clean speech isasimpli-
fied version of the model in Eq.4:
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Eq.6 can then be evaluated as
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after using the deterministic prior noise model Eq.5.
Based on the statistical environment model of Eq.3, the inte-
gral in Eq.8 is computed as

L = [ @i 50N i+ g0 = ), Wyda, (9)

where y and n are treated as constants. This integral, unfortu-
nately, does not have a closed-form result due to the nonlinear
function of = in g(=°n — ). To overcome this, we linearize the
nonlinearity using truncated Taylor series. The zero-th order Tay-
lor series expansion on g(e) at x = xo givesthe following simple
approximation:

y=z+g(h—wzo)+r,

or equivalently,
p(ylz,n) = N(y;z + g(n — z0), ¥). (10)
g
This approximation leads to the closed form of
I & [wi(m)py, +w2(m)(y — go)INm(y), (11
where go = g(72 — x0), and where we introduced the weights
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can be easily shown to be the likelihood of observation y given the
m-th component in the clean speech model and under the zero-th
order approximation madein Eq.10. That is,

p(ylm) = Nm(y).
Using the result of Eq.11, together with

M M
p(y) =D cmp(ylm) = > cn N (y), (12)

we obtain the approximate MM SE estimator as
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is the discrete posterior probability p(mly).

4.2. Estimation with joint static and dynamic prior

We now derive the (conditional) MM SE estimator using a more
complex prior speech model Eq.4 with joint static and dynamic
features.

Given the estimated clean speech feature in the immediately
past frame, £;—1, the conditional MM SE estimator for the current
frame ¢ becomes

ZBepe—1 = Elx|y, #:-1].

Following a similar derivation for Eq.8, the corresponding re-
sultis
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To compute the integral in Eq.14, we first evaluate the condi-
tional prior of

p(xe|m, ze—1)
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Fitting the exponent in the product of the above two Gaussians
into the standard quadratic formin z;, we have

p(xt|m, 1'75*1) = N(fft;llm,q’m), (16)
where
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Using the same zero-th order approximation of EQ.10, and
substituting Egs. 16-18 into Eq.14, we obtain the final result for
the approximate conditional MM SE estimator:

Foer = Y Ym@vi(m)pi, + va(m) (@1 + pm”) +
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where
BoT
vi(m) = wl(m)m,
7
v2(m) = wl(m)m,

andwherez; 1 ~ ;1 isused.
Note that

vi(m) +va(m) +w2(m)=1. Vm

This provides a clear interpretation of Eq.19 — each summand in
Eq.19, as a mixture-component (m) specific contribution to the fi-
nal estimator, is a weighted sum of three terms. The unweighted
first two terms are derived from the static and dynamic elementsin
the prior clean speech model, respectively. The unweighted third
term is derived from the predictive mechanism based on the lin-
earized acoustic distortion model in absence of any prior informa-
tion.

Note also that under the limiting case where 5% — oo, we
have

vi(m) = wi(m), and v2(m) — 0.

Then the conditional MM SE estimator Eq.19 revertsto the MM SE
estimator Eq.13 when no prior for dynamic speech features is ex-
ploited. This shows a desirable property of Eq.19 since when
®2® — oo the effect of using the prior for dynamic features
should indeed be diminishing to null.

Asthe opposite limiting case, let 4% — 0. We then have

vi(m) = 0, and v2(m) — wi(m).

That is, only the prior information for the dynamic speech features
is used for speech feature enhancement.

5. SPEECH RECOGNITION EXPERIMENTS

5.1. Database and recognition task

The algorithm presented thus far for estimating clean speech fea-
ture vectors has been evaluated on the Aurora2 database, using
the standard recognition tasks designed for this database [12]. The
database consists of English connected digitsrecorded in clean en-
vironments. Three sets of digit utterances (sets A, B, and C) are
prepared as the test material. These utterances are artificially con-
taminated by adding noise recorded under a number of conditions
and for different noise levels (sets A, B, and C), and also by pass-
ing them through different distortion channels (for set C only).

The recognition system used in our evaluation experiments are
based on continuous HMMs, and one HMM s trained for each
digit under clean condition. Both training and recognition phases
are performed using the HTK scripts provided by the Aurora2
database. The speech feature used for the reference experiments
to evaluate the new denoising algorithm is the standard MFCCs.
The new algorithm is used only as the front-end.

5.2. Aurora2results

Table 1 summarizes the results for al three sets of the test data
in the Aurora2 database. The HMM systems with four different
front-ends are compared: (1) use of the algorithm in Eq.19 to im-
plement the conditional MMSE estimator, with the prior speech
model consisting of both static and dynamic cepstra; (2) use of
the same estimator except with the prior speech model consisting



essentially of only the static cepstra (by setting ®2% — c0); (3)
use of the same estimator except with the prior speech model con-
sisting of only the dynamic cepstra (by setting 5% — 0); (4) no
speech prior is used directly (prediction term only); and (5) aslight
modification of Aurora2-supplied standard reference MFCCs with
no denoising. * The HMMs used in the four systems are the same.
They are trained using the same clean-speech training set.

Comparisonsin Table 1 show that the conditional MM SE esti-
mator that fully utilizes both the static and dynamic cepstral distri-
butions (front-end (1)) performs significantly better than the same
estimator which utilizes only the partial information ((2) and (3))
or using prediction only (4). They are, however, al significantly
and consistently better than the standard MFCCs supplied by the
Auroratask using no robust preprocessing to enhance speech fea-
tures (front-end (5)). The relative word error rate reduction using
front-end (1) is 64.54% compared with the results with standard
MFCCs. These results are statistically significant, based on atotal
of 1001 x 10 x 5 = 50050 test utterances from all set A, B, and
C, among which there are 8008 distinct digit sequences corrupted
under various distortion conditions.

It is worth mentioning that the front-end (4) as a degenerate,
special case of the current algorithm, where v (m) = v2(m) =0,
issimilar to the VTS technique [11], with the difference that only
one Taylor series expansion point is used and this point is iterated.
With this degenerate case, our algorithm yielded similar results of
the VTS asreported in [14] where theidentical Aurora2 evaluation
task was used.

[ Priorsfor Denoising | SetA | SetB | SetC [ Overdl

(1) Static-Dynamic Cepstra | 86.72 | 87.03 | 81.70 | 85.84
(2) Static Cepstraonly 84.74 | 85.19 | 78.87 | 83.74
(3) Dynamic Cepstra only 79.96 | 7891 | 76.72 | 78.89
(4) Prediction only 77.72 | 77.30 | 7540 | 77.08

[ (5) No Denoising (ref.) [ 61.34 | 5575 ] 66.14 | 60.06

Table 1. Comparisons of Aurora2 recognition rates (%) for the
HMM systems using four different front-ends for al sets of the
Aurora2 test data. Clean HMM training with cepstral mean nor-
malization is used. Front-end (1) uses the algorithm described in
Section 4.2. Front-ends (2) and (3) correspond to the two limiting
cases discussed at the end of Section 4.2.

6. SUMMARY AND CONCLUSIONS

In this paper, a novel algorithm with its derivation, implementa-
tion, and evaluation is presented for statistical speech feature en-
hancement in the cepstral domain. It incorporates the joint static
and dynamic cepstral featuresin the prior speech model within the
Bayesian framework for optimal estimation of clean speech fea-
tures. The estimator isbased on the full posterior computation, and
it elegantly integrates the predictive information from a statistical
nonlinear acoustic distortion model, the prior information based
on the static prior, and the prior based on the frame-differentia
dynamic prior. We have efficiently implemented this algorithm,
which isused in the Aurora2 noise-robust speech recognition. The

1The standard uses log-magnitude spectra, and we modified it to use
log-magnitude squared spectra.

results demonstrate significant improvement in the recognition ac-
curacy by incorporating the joint static/dynamic prior, compared
with using only the static or dynamic prior and with using no prior.

The optimal estimator presented in Section 4 can be easily ex-
tended to include the conditional variance estimation. Given both
the mean and variance estimates for the enhanced speech features,
our future work will aim at a tight integration between the front-
end denoising and the back-end speech recognition.
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