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ABSTRACT

This paper presents a technique that exploits the denoised speech’s
variance, estimated during the speech feature enhancement pro-
cess, to improve noise-robust speech recognition. This technique
provides an alternative to the Bayesian predictive classification de-
cision rule by carrying out an integration over the feature space in-
stead of over the model-parameter space, offering a much simpler
system implementation and lower computational cost. We extend
our earlier work [5] by using a new approach, based on a parametric
model of speech distortion and thus free from the use of any stereo
training data, to statistical feature enhancement, for which a novel
algorithm for estimating the variance of the enhanced speech fea-
tures is developed. Experimental evaluation using the full Aurora2
test data sets demonstrates an 11.4% digit error rate reduction av-
eraged over all noisy and SNR conditions, compared with the best
technique we have developed [2] prior to this work that did not ex-
ploit the variance information and that required no stereo training
data.

1. INTRODUCTION

Effective exploitation of variances or uncertainty is a key essence
in statistical pattern recognition. In already successful applica-
tions of HMM-based robust speech recognition, uncertainty in the
HMM parameter values has been represented by their statistical
distributions (e.g., [9, 8]). The motivation of such model-space
Bayesian approaches has been the widely varied speech properties
due to many possible sources of differences, including speakers
and acoustic environments, across and possibly within training and
test data. In order to take advantage of the model parameter un-
certainty, the decision rule for recognition or decoding has been
improved from the conventional MAP rule to the Bayesian pre-
dictive classification (BPC) rule [7]. The former, MAP rule has
been

W = argmax p(X|A, W)P(W), ()

where P(W) is the prior probability that the speaker utters a word
sequence W, and P(X|A, W) is the probability that the speaker
produces the acoustic feature sequence, X = [X1, X2, ..., X¢, ...XT]
when W is the intended word sequence. Computation of the prob-
ability P(X|A, W) uses deterministic parameters A in the speech
model.

When the parameters A of the speech model are made random
to take account of their uncertainty, the new BPC rule requires
integration over all possible parameter values [7]:

W = arg max [ | XA Wpale, Wian| P(w), @
w AEQ

where ¢ is the (deterministic) hyper-parameters characterizing the
distribution of the random model parameters.

An alternative to the model-space characterization of uncer-
tainty such as the above BPC is to represent the uncertainty by
integrating over the feature space instead of over the model param-
eters. The uncertainty in the feature space can be established during
a statistical feature enhancement or extraction process. While most
of the feature enhancement algorithms developed in the past dis-
card the uncertainty information [3, 4, 2], such side information
available from most of these algorithms can be taken advantage of
to improve the recognition decision rule. The main advantage of
the feature-space treatment of uncertainty over that in the model
space is the significantly reduced implementation simplicity and
computational cost. More detailed motivations for making use of
the feature-space uncertainty, called “uncertainty decoding”, can be
found in our recent work [5], where positive results were reported
based on a specific, stereo-based feature enhancement algorithm
(SPLICE [3, 4]) under a matched training and testing condition.

To relax the matched condition required of the SPLICE for ef-
fective uncertainty decoding, we in this paper will present a new
uncertainty decoding technique based on a statistical enhancement
algorithm developed using a parametric model of speech distortion
and hence free from any stereo training data. In Section 2, we will
introduce this technique. Detailed computation for the variances
required by the technique will be presented in Section 3. Com-
prehensive results obtained using the complete Autora2 task will
be reported in Section 4. They demonstrate the effectiveness of
feature-space uncertainty decoding for noise-robust speech recog-
nition under the full range of noisy and SNR conditions supplied
by the Aurora2 database.

2. NEW DECISION RULE EXPLOITING VARIANCE IN
FEATURE EXTRACTION

As discussed above, uncertainty decoding based on the feature-
space variance information provides greater simplicity compared
with the model-space uncertainty decoding strategy exemplified by
the BPC decision rule of Eq.2. The counterpart of the BPC rule
in the feature space requires an integration over the uncertainty in
the enhanced feature sequence X rather than over that in the model
parameter A:

W = arg max [/ p(X|A, W)p(X[0)dX | P(W), (3)

Xew

where A is the fixed model parameters (no uncertainty), and 6 is
the parameters characterizing the distribution, p(X|6), of the en-
hanced speech features computed from a statistical feature extrac-
tion algorithm. Note that, unlike the model-domain uncertainty
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characterization by p(A|¢, W) in Eq.2, p(X|6) in Eq.3 can be rea-
sonably assumed to be independent of the word identities W (and
independent of model parameters A).

The main motivation for the use of the new decision rule Eq.3
is the acceptance that no noise reduction or feature enhancement
algorithm is perfect. Use of an estimated degree of the imperfec-
tion according to the distribution p(X|0) provides a mechanism to
effectively mask some undesirable distortion effects. For example,
the frames with a negative instantaneous SNR which are difficult
to enhance can be automatically discounted when the variance in
p(X|0) for these frames is sufficiently large. This mechanism may
also effectively extend the HMM uncertainty to cover the gap be-
tween true and estimated clean speech features.

For simplicity purposes, we in this paper use the Gaussian
assumption to characterize the uncertainty in the enhanced speech
features:

p(%¢|0t) :N(f{t;p’)‘ctvzﬁt)v )

where frame (1)-specific parameters are 0; = [, , 3z,]. Note
that the variance parameter 3%, provides a complete characteri-
zation of the uncertainty. The Gaussian distributions are assumed
independent across frames.

There are hence two key issues concerning the use of the new
decision rule Eq.3 that exploits variances in statistical feature ex-
traction or enhancement for improving noise-robust speech recog-
nition. The first issue is: given an estimate of the uncertainty
(described by p(X|6) for whatever feature enhancement algorithm
in use), how to incorporate it into the recognizer’s decoding rule?
Consider an HMM system with a mixture of Gaussians as the out-
put distribution. Under the Gaussian assumption of Eq.4 for the
feature-uncertainty characterization, it can be shown that the inte-
gral (i.e., the acoustic score in uncertainty decoding):

/ p(X|A, W)p(X|0)dX

Xew

in Eq.3 is close to the conventional acoustic score (MAP decoding in
Eq.1) when the variance of each Gaussian in the HMM is increased
by the amount equal to 3, on a frame-by-frame basis. This is
significantly simpler to implement than the model-space integration
in Eq.2.

The second issue is: how to estimate the uncertainty in statisti-
cal feature enhancement? We address this issue in the next section
in the context of a specific feature enhancement algorithm based
on a specific parametric model of speech distortion.

3. COMPUTING UNCERTAINTY BASED ON A
PARAMETRIC MODEL OF SPEECH DISTORTION

3.1. Overview of a parametric model of speech distortion

The parametric model of speech distortion, similar to the ones de-
scribed earlier in [2, 6], is briefly reviewed here as the basis for
robust feature extraction from which the uncertainty (i.e., the Gaus-
sian variance Xx, in Eq.4) is computed. Let y, x, and n be single-
frame vectors of log Mel-filter energies for the noisy speech, clean
speech, and additive noise, respectively. These quantities can be
shown to be governed by the following relationship:

y x + log [(1 +e" )1 42Ne 2 /(14 enfx)]}

n—x

Q

x + log(1 + €™ ™) + A/ cosh( ) )

where A is the inner product between the clean speech and noise
vectors of Mel-filter energies in the linear domain, and the last step
of approximation uses the assumption that A < cosh(®3*).

In order to avoid complicated evaluation of the small prediction
residual in Eq.5:

n—x

5 ) ©)

itis represented by an “ignorance” model as a zero-mean, Gaussian
random vector. This thus gives a parametric model of

r = A/ cosh(

y=x+gn-x)+r, N

where g(z) = log(1 + ¢*), and r ~ N (r;0, ).

The Gaussian assumption for the residual r in model of Eq.8
allows straightforward computation of the likelihood for the noisy
speech vector according to

p(y|x,n) :N(y;x+g(n—x),'§[’) (8)

3.2. Computing expectations of enhanced speech features

‘We now discuss the computation of expectations of enhanced speech
features as the MMSE estimate of clean speech given the speech
distortion model Eq.8. The computation of the MMSE estimate
presented here uses a prior clean-speech model for the joint static
feature x; and delta feature Ax; = x: — x;—1 according to the
following Gaussian-mixture distribution:

M
Pxe, Axe) = Y emN (%45 i, T )N (Axs; i, o).

m=1

For simplicity purposes, the prior model for noise is assumed to be
a time-varying Dirac delta function:

p(nt) = d(ny — ny), )

where n; is computed by a noise tracking algorithm described in
[1] and is assumed to be known in the following description of the
iterative MMSE estimation for the clean speech vectors.

Some derivation steps for the MMSE estimate described below
have been given in [2]. First, train and fix all parameters in the clean
speech model: ¢, py,, M,Anx, 32, and 35, Then, compute the
noise estimates, n;, and compute the weighting matrices:

Viim) = (S5 +%) (X, + 20 7H(EN),
Va(m) = (85, 4+0) (2 + 259 7's2,,
Vi(m) (=5, + )7 '%7,

Next, fix the total number, J, of intra-frame iterations. (Iterations
are used to approximate the nonlinear function g(n — x) in Eq.7
using Taylor series expansion). For each frame ¢t = 2,3,...,7T in
a noisy utterance y;, set iteration number j = 1, and initialize the
clean speech estimator by

%" = argmax Ny pl, + g(ie — pl,), ®].

Then, execute the following steps sequentially over time frames:

e Step 1: Compute

D (my = — Ny, + 89,3 + )
t St emN (ye; g, + g9, 57, + ¥)

. )
where g/ = log(1 + e ).
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e Step 2: Update the estimator:

7T = Sy (m)[Vi(m)pl, + Va(m)psX)
+ DA (m)Va(m)x(”)
+ Do (m)Vs(m)l(y — g(@m —x)).

e Step 3: If j < J, increment j++, and continue the iteration
by returning to Step 1. If 5 = J, then increment ¢++ and
start the algorithm again by re-setting j = 1 to process the
next time frame until the end of the utterance t = T'.

The expectation of the enhanced speech feature vector is ob-
tained as the final iteration of the estimate above for each time
frame:

phg, = %7 (10)

3.3. Computing variances of enhanced speech features

Given the expectation for the enhanced speech feature computed
above, the variance can now be computed according to

i, = Elxilyd — pi,, (11
where
Im (yt)
9 ij,zl Cm /X%p(xt|m7 iz—1)p(yt|xt, I_lt)dXt
Elxi|y:] = -

p(ye)
(12)

After using the zero-th order Taylor series to approximate the
nonlinear function g(n; —x;) (contained in p(y|x:, 0, ); rf. Eq.8)
by go(n+ — Xo), the integral in Eq.12 becomes:

I, = /X?N(Xt;umazm)f\/(}’ﬁxt + go, ¥)dx;
= / X?N [xt;em(t)y (Em + ‘I’)_lzm‘l’} dxt X Nm(Yt)
= [(Zm+T)'T0 T +05] X Ninlye) (13)
where

B = (S0 307) ™ 0 e (S04 307 T S (e, ),

B = (Zh+ 30T IELENS
Om(t) = (Zm+0)"" [P, + Sy — o)l
Nm(yt) = N[yt;/'l'm‘f'gmzm “F‘I’} .
Substituting the result of Eq.13 into Eq.12, we obtain
M
Exilyd =D ym(ye) [(Bm +¥) 'S0 ¥ +67,(1)]
m=1
where
Tnly) = o)

2m=1 EmNm (yt)
Eq.11 then gives the final variance estimate for the (static) enhanced
feature. In our implementation, an iterative procedure similar to the
computation of the expectations described in Section 3.2 is used
to estimate the variance also in order to reduce errors caused by
approximating g(n — x) by go(f — Xo).

3.4. Computing variances of temporal differences of the en-
hanced features

In our implementation, the differentials of the enhanced features,
also referred to as the delta or dynamic features, are computed in
the same manner as those for the clean speech features:

L

Z UVr A)A(tJr-”

r=—1L

K
A~ A~ 2.~
AXt = E WrXt+1, A Xt =

r=—K

(14)

where K = 3, L = 2, and the weights w, and v, are fixed. Under
the assumption of temporal independence, we can easily determine
the variances for these differentials according to

K L
2 2
EAﬁt = 'LU.,.E,}“ 2A2$¢ = UTEA?Ct )
t

T=—K T=—L

15)

where X, is already computed according to Eq.11.

4. SPEECH RECOGNITION EXPERIMENTS ON THE
AURORA2 TASK

We have described the mean and variance estimators (Eqgs.10 and
11) that fully characterize the statistical distribution (Eq.4) of the
enhanced speech features. Given this distribution, the feature-space
uncertainty decoding rule (Eq.3) can be used to perform speech
recognition. In the current work, the rule Eq.3 is implemented in
the conventional HMM recognizer by adding 3, to the variances
of all Gaussians (about 500 in total for the Aurora2 task using
whole-digit units) in the HMMs at each frame ¢, while using o5,
as the observation vector. We have evaluated this new decoding
strategy on the Aurora2 database. The task is to recognize strings
of connected English digits embedded in several types of artificially
created distortion environments with a range of SNRs from 0-20dB.
Three sets of digit utterances (sets A, B, and C) are prepared as the
test material. The original HMMs used for decoding (before adding
the variance estimator X, ) are trained using all clean speech files
in the training set of the Aurora2 database. The noise estimate used
for computing both the expectations and variances of the enhanced
features in the experiments below is based on the iterative stochastic
approximation algorithm described in [1].

4.1. Results comparing the uses of uncertainty in different sets
of feature streams

Table 1 presents the percent-accurate performance results on all
three sets of the Aurora2 test data, averaged over all SNRs from 0
to 20 dB and over four (sets A/B) or two (set C) distortion conditions
(each condition and SNR contains 1101 digit strings). Row I gives
the baseline results using the conventional MAP rule Eq.1 (i.e.,
“point” decoding), where the expectations of the enhanced speech
feature vectors pg,’s computed according to Eq.10 described in
Section 3.2 (jointly with A%; and A?%,; computed by Eq.14) are
used as the observational feature vector sequence X in Eq.1, and
the variances for all feature streams (static and dynamic) are set to
zero: Mg, = Yax, = Zazg, = 0.

Row II in Table 1 shows the recognizer’s performance using
the feature-space uncertainty decoding rule Eq.3 where the vari-
ance of the static feature stream is computed according to Eq.11
while the variances of the dynamic feature streams are set to zero:
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Table 1. Aurora2 performance (percent accurate) exploiting differ-
ent sets of feature streams. Uncertainty or variances are computed
using the estimation formulas described in Section 3.

| [ setA | setB [ setC [ Ave. |

I: MAP-rule 85.66 | 86.15 | 80.40 | 84.80
II: Static variance only 86.95 | 87.56 | 81.62 | 86.13
III: Static/A variances 87.38 | 87.74 | 82.44 | 86.54
IV: Static/A/AZ variances || 87.34 | 87.79 | 82.45 | 86.54

A%, = Xa2%, = 0. The overall improvement in the recogni-
tion accuracy from 84.8% to 86.1% corresponds to an 8.8% digit
error rate reduction. The error rate is further reduced, totaling to
an 11.4% reduction, when the variances (X%, and 325, ) of the
dynamic feature streams are estimated by Eq.15 rather than being
set to zero (Rows III and IV). But we observed that exploiting the
variance of the acceleration feature stream (2 a25,) has not con-
tributed to any performance improvement once the variance of the
delta feature stream has been exploited.

4.2. Results on the performance limit of uncertainty decoding

To investigate the upper limit of possible performance improve-
ment by exploiting variances for feature-space uncertainty decod-
ing, we desire to eliminate biases in the variance estimation based
on Eqs.11 and 15. To achieve this, we conducted diagnostic exper-
iments where the “true” variances are computed by squaring the
differences between the estimated and true clean speech features.
The true clean speech features are computed from the clean speech
waveforms available from the Aurora2 database, and the estimated
clean speech features are computed from Eq.10. The performance
results of Table 2 are significantly better than those in Table 1. In
particular, we observe that the exploitation of the variances of both
the static and the dynamic feature streams cuts the error rate by
about half compared with using the variance for the static feature
stream only (see the performance difference in Rows I and II of
Table 2). In contrast, the corresponding performance difference is
much smaller when the estimated variances (as opposed to the true
ones) are used. These results suggest that the biases introduced
by the variance estimators Eqs.11 and 15 are undesirably large,
and that better variance estimators developed in future research
will have the potential to drastically improve the recognition per-
formance from those shown in Table 1 towards those in Table 2.

Table 2. Aurora2 performance (percent accurate) using the vari-
ances determined by squaring the differences between the estimated
and true clean speech features. This eliminates biases in the vari-
ance estimation

| [ setA | setB [ setC [ Ave. |

I: Static variance only 90.31 | 91.12 | 84.70 | 89.51
II: Static/A/A? variances || 94.87 | 95.49 | 90.75 | 94.29

5. SUMMARY AND CONCLUSION

The work described in this paper extends our earlier work in speech
feature enhancement and noise-robust recognition in two fronts.
First, it extends the uncertainty decoding technique [5] by using
a new approach, free from the use of any stereo training data, to
statistical feature enhancement. Second, it extends the Bayesian
technique for speech feature enhancement [2] by exploiting the
variance of the enhanced feature via integration over the feature
space, leading to the new recognition decision rule. A novel al-
gorithm for estimating the variance, as well as the expectation, of
enhanced speech features is developed and described. Experimen-
tal evaluation using the full Aurora2 test data sets demonstrates a
11.4% digit error rate reduction, averaged over all noisy and SNR
conditions, compared with the best result reported in [2] that did
not exploit the variance information.

We also reported the results from a set of diagnostic exper-
iments where the “true” variance is provided to the uncertainty
decoding rule so that the gap between the true and the estimated
clean speech features is fully covered. More than 50% of the digit
errors, committed when the estimated variance is used, have been
corrected. This provides a clear direction of our future research on
improving the quality of uncertainty estimation within the uncer-
tainty decoding framework presented in this paper.
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