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ABSTRACT

This paper presents a technique that exploits the denoised speech’s
variance, estimated during the speech feature enhancement pro-
cess, to improve noise-robust speech recognition. This technique
provides an alternative to the Bayesian predictive classification de-
cision rule by carrying out an integration over the feature space in-
stead of over the model-parameter space, offering a much simpler
system implementation and lower computational cost. We extend
our earlier work [5] by using a new approach, based on a parametric
model of speech distortion and thus free from the use of any stereo
training data, to statistical feature enhancement, for which a novel
algorithm for estimating the variance of the enhanced speech fea-
tures is developed. Experimental evaluation using the full Aurora2
test data sets demonstrates an 11.4% digit error rate reduction av-
eraged over all noisy and SNR conditions, compared with the best
technique we have developed [2] prior to this work that did not ex-
ploit the variance information and that required no stereo training
data.

1. INTRODUCTION

Effective exploitation of variances or uncertainty is a key essence
in statistical pattern recognition. In already successful applica-
tions of HMM-based robust speech recognition, uncertainty in the
HMM parameter values has been represented by their statistical
distributions (e.g., [9, 8]). The motivation of such model-space
Bayesian approaches has been the widely varied speech properties
due to many possible sources of differences, including speakers
and acoustic environments, across and possibly within training and
test data. In order to take advantage of the model parameter un-
certainty, the decision rule for recognition or decoding has been
improved from the conventional MAP rule to the Bayesian pre-
dictive classification (BPC) rule [7]. The former, MAP rule has
been

Ŵ = arg max
W

p(X|Λ̄,W)P (W), (1)

where P (W) is the prior probability that the speaker utters a word
sequence W, and P (X|Λ̄,W) is the probability that the speaker
produces the acoustic feature sequence, X = [x1,x2, ...,xt, ...xT ]
when W is the intended word sequence. Computation of the prob-
ability P (X|Λ̄,W) uses deterministic parameters Λ̄ in the speech
model.

When the parameters Λ of the speech model are made random
to take account of their uncertainty, the new BPC rule requires
integration over all possible parameter values [7]:

Ŵ = arg max
W

[∫
Λ∈Ω

p(X|Λ,W)p(Λ|φ,W)dΛ

]
P (W), (2)
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φ is the (deterministic) hyper-parameters characterizing the
tion of the random model parameters.
alternative to the model-space characterization of uncer-
uch as the above BPC is to represent the uncertainty by

ting over the feature space instead of over the model param-
he uncertainty in the feature space can be established during

tical feature enhancement or extraction process. While most
feature enhancement algorithms developed in the past dis-
e uncertainty information [3, 4, 2], such side information
le from most of these algorithms can be taken advantage of
ove the recognition decision rule. The main advantage of
ture-space treatment of uncertainty over that in the model
s the significantly reduced implementation simplicity and
tational cost. More detailed motivations for making use of
ure-space uncertainty, called “uncertainty decoding”, can be
n our recent work [5], where positive results were reported
n a specific, stereo-based feature enhancement algorithm
E [3, 4]) under a matched training and testing condition.
relax the matched condition required of the SPLICE for ef-
uncertainty decoding, we in this paper will present a new
inty decoding technique based on a statistical enhancement
m developed using a parametric model of speech distortion
ce free from any stereo training data. In Section 2, we will
ce this technique. Detailed computation for the variances
d by the technique will be presented in Section 3. Com-
sive results obtained using the complete Autora2 task will
rted in Section 4. They demonstrate the effectiveness of

-space uncertainty decoding for noise-robust speech recog-
nder the full range of noisy and SNR conditions supplied
urora2 database.

W DECISION RULE EXPLOITING VARIANCE IN
FEATURE EXTRACTION

ussed above, uncertainty decoding based on the feature-
ariance information provides greater simplicity compared

e model-space uncertainty decoding strategy exemplified by
C decision rule of Eq.2. The counterpart of the BPC rule
eature space requires an integration over the uncertainty in
anced feature sequence X̂ rather than over that in the model
ter Λ:

= arg max
W

[∫
X̂∈Ψ

p(X̂|Λ̄,W)p(X̂|θ)dX̂
]

P (W), (3)

Λ̄ is the fixed model parameters (no uncertainty), and θ is
ameters characterizing the distribution, p(X̂|θ), of the en-
speech features computed from a statistical feature extrac-
orithm. Note that, unlike the model-domain uncertainty



characterization by p(Λ|φ,W) in Eq.2, p(X̂|θ) in Eq.3 can be rea-
sonably assumed to be independent of the word identities W (and
independent of model parameters Λ̄).

The main motivation for the use of the new decision rule Eq.3
is the acceptance that no noise reduction or feature enhancement
algorithm is perfect. Use of an estimated degree of the imperfec-
tion according to the distribution p(X̂|θ) provides a mechanism to
effectively mask some undesirable distortion effects. For example,
the frames with a negative instantaneous SNR which are difficult
to enhance can be automatically discounted when the variance in
p(X̂|θ) for these frames is sufficiently large. This mechanism may
also effectively extend the HMM uncertainty to cover the gap be-
tween true and estimated clean speech features.

For simplicity purposes, we in this paper use the Gaussian
assumption to characterize the uncertainty in the enhanced speech
features:

p(x̂t|θt) = N (x̂t; µx̂t
,Σx̂t), (4)

where frame (t)-specific parameters are θt = [µx̂t
,Σx̂t ]. Note

that the variance parameter Σx̂t provides a complete characteri-
zation of the uncertainty. The Gaussian distributions are assumed
independent across frames.

There are hence two key issues concerning the use of the new
decision rule Eq.3 that exploits variances in statistical feature ex-
traction or enhancement for improving noise-robust speech recog-
nition. The first issue is: given an estimate of the uncertainty
(described by p(X̂|θ) for whatever feature enhancement algorithm
in use), how to incorporate it into the recognizer’s decoding rule?
Consider an HMM system with a mixture of Gaussians as the out-
put distribution. Under the Gaussian assumption of Eq.4 for the
feature-uncertainty characterization, it can be shown that the inte-
gral (i.e., the acoustic score in uncertainty decoding):∫

X̂∈Ψ

p(X̂|Λ̄,W)p(X̂|θ)dX̂

in Eq.3 is close to the conventional acoustic score (MAP decoding in
Eq.1) when the variance of each Gaussian in the HMM is increased
by the amount equal to Σx̂t on a frame-by-frame basis. This is
significantly simpler to implement than the model-space integration
in Eq.2.

The second issue is: how to estimate the uncertainty in statisti-
cal feature enhancement? We address this issue in the next section
in the context of a specific feature enhancement algorithm based
on a specific parametric model of speech distortion.

3. COMPUTING UNCERTAINTY BASED ON A
PARAMETRIC MODEL OF SPEECH DISTORTION

3.1. Overview of a parametric model of speech distortion

The parametric model of speech distortion, similar to the ones de-
scribed earlier in [2, 6], is briefly reviewed here as the basis for
robust feature extraction from which the uncertainty (i.e., the Gaus-
sian variance Σx̂t in Eq.4) is computed. Let y,x, and n be single-
frame vectors of log Mel-filter energies for the noisy speech, clean
speech, and additive noise, respectively. These quantities can be
shown to be governed by the following relationship:

y = x + log
[
(1 + en−x)[1 + 2 λe

n−x
2 /(1 + en−x)]

]

≈ x + log(1 + en−x) + λ/ cosh(
n − x

2
) (5)
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λ is the inner product between the clean speech and noise
of Mel-filter energies in the linear domain, and the last step
oximation uses the assumption that λ � cosh(n−x

2
).

rder to avoid complicated evaluation of the small prediction
l in Eq.5:

r = λ/ cosh(
n − x

2
), (6)

resented by an “ignorance” model as a zero-mean, Gaussian
vector. This thus gives a parametric model of

y = x + g(n − x) + r, (7)

g(z) = log
(
1 + ez

)
, and r ∼ N (r;0,Ψ).

e Gaussian assumption for the residual r in model of Eq.8
straightforward computation of the likelihood for the noisy
vector according to

p(y|x,n) = N (y;x + g(n − x),Ψ) (8)

omputing expectations of enhanced speech features

discuss the computation of expectations of enhanced speech
s as the MMSE estimate of clean speech given the speech
on model Eq.8. The computation of the MMSE estimate
ed here uses a prior clean-speech model for the joint static
xt and delta feature ∆xt ≡ xt − xt−1 according to the
ng Gaussian-mixture distribution:

, ∆xt) =

M∑
m=1

cmN (xt; µ
x
m,Σx

m)N (∆xt; µ
∆x
m ,Σ∆x

m ).

plicity purposes, the prior model for noise is assumed to be
varying Dirac delta function:

p(nt) = δ(nt − n̄t), (9)

n̄t is computed by a noise tracking algorithm described in
is assumed to be known in the following description of the

e MMSE estimation for the clean speech vectors.
me derivation steps for the MMSE estimate described below
en given in [2]. First, train and fix all parameters in the clean
model: cm, µx

m, µ∆x
m ,Σx

m, and Σ∆x
m . Then, compute the

stimates, n̄t, and compute the weighting matrices:

(m) = (Σx
m + Ψ)−1Ψ(Σx

m + Σ∆x
m )−1(Σ∆x

m ),

(m) = (Σx
m + Ψ)−1Ψ(Σx

m + Σ∆x
m )−1Σx

m,

(m) = (Σx
m + Ψ)−1Σx

m,

x the total number, J , of intra-frame iterations. (Iterations
d to approximate the nonlinear function g(n − x) in Eq.7
aylor series expansion). For each frame t = 2, 3, ..., T in
utterance yt, set iteration number j = 1, and initialize the

peech estimator by

x̂
(1)
t = arg max

µx
m

N [yt; µ
x
m + g(n̄t − µx

m),Ψ].

xecute the following steps sequentially over time frames:

Step 1: Compute

γ
(j)
t (m) =

cmN (yt; µ
x
m + g(j),Σx

m + Ψ)∑M
m=1 cmN (yt; µx

m + g(j),Σx
m + Ψ)

,

where g(j) = log
(
1 + en̄t−x̂

(j)
t

)
.



• Step 2: Update the estimator:

x̂
(j+1)
t =

∑
m

γ
(j)
t (m)[V1(m)µx

m + V2(m)µ∆x
m ]

+ [
∑
m

γ
(j)
t (m)V2(m)]x̂

(J)
t−1

+ [
∑
m

γ
(j)
t (m)V3(m)](y − g(n̄ − x̂

(j)
t )).

• Step 3: If j < J , increment j++, and continue the iteration
by returning to Step 1. If j = J , then increment t++ and
start the algorithm again by re-setting j = 1 to process the
next time frame until the end of the utterance t = T .

The expectation of the enhanced speech feature vector is ob-
tained as the final iteration of the estimate above for each time
frame:

µx̂t
= x̂

(J)
t (10)

3.3. Computing variances of enhanced speech features

Given the expectation for the enhanced speech feature computed
above, the variance can now be computed according to

Σx̂t = E[x2
t |yt] − µ2

x̂t
, (11)

where

E[x2
t |yt] ≈

∑M
m=1 cm

Im(yt)︷ ︸︸ ︷∫
x2

t p(xt|m, x̂t−1)p(yt|xt, n̄t)dxt

p(yt)
.

(12)
After using the zero-th order Taylor series to approximate the

nonlinear function g(nt−xt) (contained in p(yt|xt, n̄t); rf. Eq.8)
by g0(n̄t − x0), the integral in Eq.12 becomes:

Im =

∫
x2

tN (xt; µm,Σm)N (yt;xt + g0,Ψ)dxt

=

∫
x2

tN
[
xt; θm(t), (Σm + Ψ)−1ΣmΨ

]
dxt × Nm(yt)

=
[
(Σm + Ψ)−1ΣmΨ + θ2

m

] × Nm(yt) (13)

where

µm = (Σx
m+Σ∆x

m )−1Σ∆x
m µx

m+(Σx
m+Σ∆x

m )−1Σx
m(x̂t−1+µ∆x

m ),

Σm = (Σx
m + Σ∆x

m )−1Σx
mΣ∆x

m ,

θm(t) = (Σm + Ψ)−1 [Ψµm + Σm(yt − g0)] ,

Nm(yt) = N [yt; µm + g0,Σm + Ψ] .

Substituting the result of Eq.13 into Eq.12, we obtain

E[x2
t |yt] =

M∑
m=1

γm(yt)
[
(Σm + Ψ)−1ΣmΨ + θ2

m(t)
]
,

where

γm(yt) =
cmNm(yt)∑M

m=1 cmNm(yt)
.

Eq.11 then gives the final variance estimate for the (static) enhanced
feature. In our implementation, an iterative procedure similar to the
computation of the expectations described in Section 3.2 is used
to estimate the variance also in order to reduce errors caused by
approximating g(n − x) by g0(n̄ − x0).
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implementation, the differentials of the enhanced features,
erred to as the delta or dynamic features, are computed in
e manner as those for the clean speech features:

x̂t =

K∑
τ=−K

wτ x̂t+τ , ∆2x̂t =

L∑
τ=−L

vτ∆x̂t+τ , (14)

= 3, L = 2, and the weights wτ and vτ are fixed. Under
mption of temporal independence, we can easily determine

iances for these differentials according to

x̂t =

K∑
τ=−K

w2
τΣx̂t , Σ∆2x̂t

=
L∑

τ=−L

v2
τΣ∆x̂t , (15)

Σx̂t is already computed according to Eq.11.

PEECH RECOGNITION EXPERIMENTS ON THE
AURORA2 TASK

e described the mean and variance estimators (Eqs.10 and
t fully characterize the statistical distribution (Eq.4) of the
ed speech features. Given this distribution, the feature-space
inty decoding rule (Eq.3) can be used to perform speech
ition. In the current work, the rule Eq.3 is implemented in
ventional HMM recognizer by adding Σx̂t to the variances

aussians (about 500 in total for the Aurora2 task using
digit units) in the HMMs at each frame t, while using µx̂t

observation vector. We have evaluated this new decoding
on the Aurora2 database. The task is to recognize strings

ected English digits embedded in several types of artificially
distortion environments with a range of SNRs from 0-20dB.
ets of digit utterances (sets A, B, and C) are prepared as the
terial. The original HMMs used for decoding (before adding
iance estimator Σx̂t ) are trained using all clean speech files
aining set of the Aurora2 database. The noise estimate used
puting both the expectations and variances of the enhanced

s in the experiments below is based on the iterative stochastic
imation algorithm described in [1].

esults comparing the uses of uncertainty in different sets
ure streams

presents the percent-accurate performance results on all
ts of the Aurora2 test data, averaged over all SNRs from 0
and over four (setsA/B) or two (set C) distortion conditions

ondition and SNR contains 1101 digit strings). Row I gives
eline results using the conventional MAP rule Eq.1 (i.e.,
decoding), where the expectations of the enhanced speech
vectors µx̂t

’s computed according to Eq.10 described in
3.2 (jointly with ∆x̂t and ∆2x̂t computed by Eq.14) are
the observational feature vector sequence X in Eq.1, and

iances for all feature streams (static and dynamic) are set to
x̂t = Σ∆x̂t = Σ∆2x̂t

= 0.
w II in Table 1 shows the recognizer’s performance using
ture-space uncertainty decoding rule Eq.3 where the vari-

the static feature stream is computed according to Eq.11
he variances of the dynamic feature streams are set to zero:



Table 1. Aurora2 performance (percent accurate) exploiting differ-
ent sets of feature streams. Uncertainty or variances are computed
using the estimation formulas described in Section 3.

set A set B set C Ave.

I: MAP-rule 85.66 86.15 80.40 84.80
II: Static variance only 86.95 87.56 81.62 86.13
III: Static/∆ variances 87.38 87.74 82.44 86.54
IV: Static/∆/∆2 variances 87.34 87.79 82.45 86.54

Σ∆x̂t = Σ∆2x̂t
= 0. The overall improvement in the recogni-

tion accuracy from 84.8% to 86.1% corresponds to an 8.8% digit
error rate reduction. The error rate is further reduced, totaling to
an 11.4% reduction, when the variances (Σ∆x̂t and Σ∆2x̂t

) of the
dynamic feature streams are estimated by Eq.15 rather than being
set to zero (Rows III and IV). But we observed that exploiting the
variance of the acceleration feature stream (Σ∆2x̂t

) has not con-
tributed to any performance improvement once the variance of the
delta feature stream has been exploited.

4.2. Results on the performance limit of uncertainty decoding

To investigate the upper limit of possible performance improve-
ment by exploiting variances for feature-space uncertainty decod-
ing, we desire to eliminate biases in the variance estimation based
on Eqs.11 and 15. To achieve this, we conducted diagnostic exper-
iments where the “true” variances are computed by squaring the
differences between the estimated and true clean speech features.
The true clean speech features are computed from the clean speech
waveforms available from the Aurora2 database, and the estimated
clean speech features are computed from Eq.10. The performance
results of Table 2 are significantly better than those in Table 1. In
particular, we observe that the exploitation of the variances of both
the static and the dynamic feature streams cuts the error rate by
about half compared with using the variance for the static feature
stream only (see the performance difference in Rows I and II of
Table 2). In contrast, the corresponding performance difference is
much smaller when the estimated variances (as opposed to the true
ones) are used. These results suggest that the biases introduced
by the variance estimators Eqs.11 and 15 are undesirably large,
and that better variance estimators developed in future research
will have the potential to drastically improve the recognition per-
formance from those shown in Table 1 towards those in Table 2.

Table 2. Aurora2 performance (percent accurate) using the vari-
ances determined by squaring the differences between the estimated
and true clean speech features. This eliminates biases in the vari-
ance estimation

set A set B set C Ave.

I: Static variance only 90.31 91.12 84.70 89.51
II: Static/∆/∆2 variances 94.87 95.49 90.75 94.29
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5. SUMMARY AND CONCLUSION

rk described in this paper extends our earlier work in speech
enhancement and noise-robust recognition in two fronts.

t extends the uncertainty decoding technique [5] by using
approach, free from the use of any stereo training data, to
al feature enhancement. Second, it extends the Bayesian
ue for speech feature enhancement [2] by exploiting the
e of the enhanced feature via integration over the feature
leading to the new recognition decision rule. A novel al-

for estimating the variance, as well as the expectation, of
ed speech features is developed and described. Experimen-
uation using the full Aurora2 test data sets demonstrates a
digit error rate reduction, averaged over all noisy and SNR
ons, compared with the best result reported in [2] that did
loit the variance information.
also reported the results from a set of diagnostic exper-

where the “true” variance is provided to the uncertainty
g rule so that the gap between the true and the estimated

peech features is fully covered. More than 50% of the digit
committed when the estimated variance is used, have been
ed. This provides a clear direction of our future research on
ing the quality of uncertainty estimation within the uncer-
ecoding framework presented in this paper.
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