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ABSTRACT

In this paper we present an MMSE (minimum mean square error)
speech feature enhancement algorithm, capitalizing on a new prob-
abilistic, nonlinear environment model that effectively incorporates
the phase relationship between the clean speech and the corrupting
noise in acoustic distortion. The MMSE estimator based on this
phase-sensitive model is derived and it achieves high efficiency by
exploiting single-point Taylor series expansion to approximate the
joint probability of clean and noisy speech as a multivariate Gaus-
sian. As an integral component of the enhancement algorithm,
we also present a new sequential MAP-based nonstationary noise
estimator. Experimental results on the Aurora2 task demonstrate
the importance of exploiting the phase relationship in the speech
corruption process captured by the MMSE estimator. The phase-
sensitive MMSE estimator reported in this paper performs signifi-
cantly better than phase-insensitive spectral subtraction (54% error
rate reduction), and also noticeably better than a phase-insensitive
MMSE estimator as our previous state-of-the-art technique reported
in [2] (7% error rate reduction), under otherwise identical experi-
mental conditions of speech recognition.

1. INTRODUCTION

This paper addresses the problem of speech feature enhancement,
and the associated problem of noise feature estimation, when the
noisy speech features alone are available as the observational infor-
mation. These are long-standing, unsolved problems, and are be-
coming increasingly important recently due to emerging commer-
cial deployment of speech recognition technology which demands
a high degree of noise robustness.Towards high-performance solu-
tions to robust speech feature enhancement and accurate noise esti-
mation, we recently developed a series of enhancement techniques
capitalizing on the availability of stereo training data [3, 4, 5] or
on a simplistic, phase-insensitive nonlinear model of the acoustic
environment [7, 1, 6, 2], both discarding the phase relationship be-
tween the clean speech and the additive noise during the speech
signal corruption process. To overcome some weaknesses of these
techniques, such as the difficulty of acquiring well-matched stereo
training data and the performance limit due to loss of the phase
information, we in more recent research have developed a new
technique requiring no stereo training data. It explicitly exploits
the novel concept of phase sensitivity and it uses a new sequential
MAP (maximum a posteriori) noise estimator to design the speech
feature enhancement algorithm.

In Section 2 of this paper, we will outline the new phase-
sensitive nonlinear model for the acoustic environment. The MMSE
estimator for noise removal based on this model is derived in Sec-
tion 3. The novel MAP noise tracking algorithm is presented in Sec-
tion 4, which provides an essential quantity required by the MMSE
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or. Finally, in Section 5 we will present experimental evi-
n the Aurora2 task for the superiority of the phase-sensitive
estimator and of the MAP noise tracker over the respective

es.

A PROBABILISTIC ENVIRONMENT MODEL
RPORATING PHASE OF ACOUSTIC DISTORTION

he discrete-time, linear system model for the acoustic dis-
in the linear frequency domain, we have the well-known
ship among the noisy speech (Y ), clean speech (X), addi-

ise (N ), and channel transfer function (H) of

Y [k] = X[k]H[k] + N [k], (1)

k is the frequency-bin index in DFT given a fixed-length
indow (frame).
.1 can be shown to be equivalent, in the domain of log chan-
rgy (y,x,n, and h), to the following relationship among
g-domain quantities [2]:

y = x + h + log[1 + en−x−h + 2αe
n−x−h

2 ]

≡ y(x,n,h, α), (2)

he individual vector component of the random variable α is
r product (proportional to cosine of the phase) between Mel-

l-energy vectors of noise and the channel-distorted clean
, characterizing their phase relationship. Based on the cen-
it theorem and empirical evidence, α is assumed to follow
mean Gaussian: p(α) = N (α;0,Σα). This makes the
become phase sensitive, in contrast to our earlier model in
ere an entire term of α/ cosh(n−x−h

2
) is assumed to be

an and hence the phase information is seriously smeared.
m Eq.2, α can be solved as a function of the remaining

es:

α =
ey−h − en−h − ex

2 e
n+x−h

2

. (3)

e nonlinear transformation from α to y in Eq.2 (for fixed
of x and n̄) allows us to obtain the conditional PDF of

p(y|x, n̄) =
p(α)

| ∂y
∂α

| , (4)

gives rise to a probabilistic model of acoustic distortion.
Eq.4, it can be shown from Eq.2 that

∂y

∂α
= 2 e

n+x+h
2 −y.

e Gaussian assumption for α gives

) = p [α(x,n,h,y)] = N [α(x,n,h,y);0,Σα] . (5)



For exposition simplicity, in the remaining of this paper we
assume: 1) The log-domain noise vector n = n̄ is deterministic, or
p(n) = δ(n − n̄) (n̄ is obtained by a point estimator described in
Section 4); and 2)h = 0; i.e., the channel distortion can be ignored.
Further, the covariance matrix Σα is assumed to be diagonal with
nonzero elements denoted by σ2

α’s. Thus, we will present the scalar
rather than vector derivation, without loss of generality, for speech
feature enhancement next.

3. MMSE ESTIMATOR FOR CLEAN SPEECH

Given the log-domain noisy speech observation y, the MMSE es-
timator x̂ for clean speech x is the conditional expectation:

x̂ = E[x|y] =

∫
xp(x|y)dx =

∫
xpn̄(y|x)p(x)dx

p(y)
, (6)

where pn̄(y|x) = p(y|x, n̄) is determined by the probabilistic en-
vironment model just presented. The prior model for clean speech,
p(x), in Eq.6 is assumed to have the Gaussian mixture PDF:

p(x) =
M∑

m=1

cm N (x; µm, σ2
m)︸ ︷︷ ︸

p(x|m)

, (7)

whose parameters are pre-trained from the log-domain clean speech
data. This allows us to write Eq.6 as

x̂ =

∑M
m=1 cm

∫
x

Jm(x)︷ ︸︸ ︷
p(x|m)p(y|x, n̄) dx

p(y)
, (8)

The main difficulty in computing x̂ above is the non-Gaussian
nature of p(y|x, n̄) of Eq.4. To overcome this difficulty, we use the
truncated second-order Taylor series expansion to approximate the
exponent of

Jm(x) = N (x; µm, σ2
m) × N (α(x, n̄, y); 0, σ2

α)

2 e
n̄+x

2 −y

=
C

σm
e−0.5(x−µm)2/σ2

m−0.5x−0.5α2(x)/σ2
α .

That is, we approximate the function
bm(x) = −0.5(x − µm)2/σ2

m − 0.5x − 0.5 α2(x)/σ2
α

by

bm(x) ≈ b(0)
m (x0)+b(1)

m (x0)(x−x0)+
b
(2)
m (x0)

2
(x−x0)

2. (9)

In Eq.9, we used a single-point expansion point x0 (i.e., x0 does
not depend on the mixture component m) to have significantly
improved computational efficiency, and x0 is iteratively updated to
increase its accuracy to the true value of clean speech x. The Taylor
series expansion coefficients have the following closed forms:

b(0)
m (x0) = bm(x) |x=x0

= − (x0 − µm)2

2σ2
m

− x0

2
− (ey − en̄ − ex0)2

8σ2
αen̄+x0

,

b(1)
m (x0) =

∂bm(x)

∂x
|x=x0= −x0 − µm

σ2
m

− 1

2
+

e2y−n̄−x0 − 2ey−x0 + en̄−x0 − ex0−n̄

8σ2
α

,

b(2)
m (x0) =

∂2bm(x)

∂2x
|x=x0= − 1

σ2
m

+

−e2y−n̄−x0 + 2ey−x0 − en̄−x0 − ex0−n̄

8σ2
α

.

Fit
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4.1. E

In the E
ting Eq.9 into a standard quadratic form, we obtain

(x) ≈ b
(2)
m (x0)

2

[
x − (x0 − b

(1)
m (x0)

b
(2)
m (x0)

)

]2

+ wm(x0),

0) = b
(0)
m (x0) +

b
(2)
m (x0)

2

[
x2
0 − 2b

(1)
m

b
(2)
m

x0 − (x0 − b
(1)
m

b
(2)
m

)2

]
.

en allows us to compute the integral of Eq.8 in a closed form:

(x0) =

∫
xJm(x)dx =

C

σm

∫
xebm(x)dx (10)

≈ C′

σm

√
b
(2)
m

ewm(x0) ×
(

x0 − b
(1)
m (x0)

b
(2)
m (x0)

)
.

e denominator of Eq.8 is computed according to

=

M∑
m=1

cm

∫
Jm(x)dx =

M∑
m=1

cm
C

σm

∫
ebm(x)dx

≈
M∑

m=1

cm
C′

σm

√
b
(2)
m

ewm(x0). (11)

uting Eqs.10 and 11 into Eq.8, we obtain the final MMSE
or:

x̂ ≈
M∑

m=1

γm(x0, n̄)

(
x0 − b

(1)
m (x0)

b
(2)
m (x0)

)
, (12)

the weighting factors are

γm(x0, n̄) =

cm

σm

√
b
(2)
m

ewm(x0)

∑M
m=1

cm

σm

√
b
(2)
m

ewm(x0)
.

at γm, b
(1)
m (x0), and b

(2)
m (x0) in Eq.12 are all dependent on

se estimate n̄.

. SEQUENTIAL MAP ESTIMATOR OF NOISE

section, we present a sequential MAP estimator (tracker)
-domain nonstationary noise n̄, which is used in computing
ies γm, b

(1)
m (x0), and b

(2)
m (x0) in the iterative MMSE esti-

of clean speech according to Eq.12. This algorithm is gener-
rom the earlier ML estimator but within the same recursive-
mework presented in [1] based on a relatively simple phase-
tive acoustic distortion model (not the phase-sensitive model
ed in Section 2).

-step

-step, we compute the MAP auxiliary function of

QMAP (nt) = QML(nt) + ρ log p(nt),



where

QML(nt) = E
[
log p(yt

1,Mt
1|nt)|yt

1, n
t−1
1

]
=

t∑
τ=1

εt−τ
M∑

m=1

ξτ (m) log p(yτ | m, nt)

= −
t∑

τ=1

εt−τ
M∑

m=1

ξτ (m)
(yτ − µy

m)2

2 Σy
m

. (13)

In Eq.13, ε is the forgetting factor, Mt
1 is the sequence of the

speech model’s mixture components up to frame t, and ξτ (m) =
p(m|yτ , nτ−1) is the posterior probability. It is computed using
Bayes rule by computing the likelihood p(yτ |m, nτ−1). This is
approximated by a Gaussian with mean and variance of

µy
m ≈ µx

m + gm + [1 − Gm](nt − n0)

Σy
m ≈ (1 + Gm)2Σx

m + (1 − Gm)2Σn. (14)

where gm and Gm are computable quantities used to approximate
the linear relationship among noisy speech y, clean speech x, and
noise n (all in the log-domain) [1]. Σn is the variance (hyper-
parameter) of the prior noise PDF p(nt), which is assumed to be
Gaussian (with mean µn). And n0 is the Taylor series expansion
point for the noise, which will be iteratively updated by the MAP
estimate in the M-step described below.

4.2. M-step

In the M-step, we estimate nt by setting ∂QMAP (nt)
∂nt

= 0. Noting
from Eq.14 that µy

m is a linear function of nt, we obtain

t∑
τ=1

εt−τ
M∑

m=1

ξτ (m)
(yτ − µy

m)

Σy
m

(1 − Gm) − ρ(nt − µn)

Σn
= 0.

(15)
Substituting Eq.14 into Eq.15 and solving for nt, we obtain the

MAP estimate of noise

n̂t =
st + ρµn/Σn + Ktn0

Kt + ρ/Σn
,

where

st =

t∑
τ=1

εt−τ
M∑

m=1

ξτ (m)(yτ − µx
m − gm)

(1 − Gm)

Σy
m

,

and

Kt =

t∑
τ=1

εt−τ
M∑

m=1

ξτ (m)
(1 − Gm)2

Σy
m

.

The st and Kt above can be efficiently computed using recursions
based on the previous computation for st−1 and Kt−1, as in our
earlier work for the recursive ML noise estimate [1].

5. ROBUST SPEECH RECOGNITION EXPERIMENTS

In applying the MMSE estimator Eq.12 to perform speech feature
enhancement, we first use the result of another enhancement algo-
rithm (published in [2]) to initialize x0 at the right hand side of
Eq.12. The estimated clean speech x̂ is then used to update x0 and
the iteration continues until a fixed number of iterations is reached
or convergence occurs.
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e MMSE estimator for clean speech features and the sequen-
P noise estimate described in this paper have been evalu-
the Aurora2 database, using the standard recognition tasks
d for this database. The database consists of English con-
digits recorded in clean environments. Three sets of digit
ces (setsA, B, and C) are prepared as the test material. These
ces are artificially contaminated by adding noise recorded

number of conditions and for different noise levels (sets
nd C), and also by passing them through different distortion
ls (for set C only). The HMMs used in our evaluation ex-
nts are specified by the Aurora2 task and trained using the
peech training set.

esults using phase-removed vectors of true noise

set of experiments, we use the MFCCs and their inverse co-
nsform computed from true noise (available in the Aurora2
e) as the deterministic noise n̄ in Eq.12 to evaluate the ef-
various factors on the MMSE estimator’s performance for

obust speech recognition. Other objectives of these experi-
re to set the upper limit for the possible performance, and

onstrate the effectiveness of incorporating the phase infor-
in the speech distortion process.
le 1 shows percent accuracy results on the full set ofAurora2
a, when clean-speech HMMs are used, as a function of the
r of iterations (L) for the MMSE estimator of Eq.12. When
, the initial clean-speech estimate, obtained from the algo-
ublished in [2] that largely discards the phase information
peech corruption process, is used for recognition. When the
estimator of Eq.12 is applied iteratively to update the initial
e, dramatic performance improvement is observed consis-
cross all three data sets. Performance convergence occurs

nd seven iterations.

. Effects of the total number of iterations (L) on the MMSE
or’s performance (percent accurate) for the Aurora2 task.
emoved MFCC vectors of true noise are used for n̄ in Eq.12.

L 0 1 2 4 7 12

SetA 85.7 94.1 96.8 97.8 98.1 98.1
SetB 86.2 94.8 97.3 98.1 98.5 98.6
SetC 80.4 91.0 94.5 96.5 97.9 98.0

Ave. 84.8 93.8 96.5 97.7 98.2 98.3

further demonstrate benefits of the MMSE estimator of
in modeling the phase information, we use the same true
or log-domain spectral subtraction (SS) and perform the
urora2 evaluation. The SS algorithm is obtained by set-
= 0 in Eq.2 (as well as h = 0), which gives

x̂ = log(ey − en) = y + log(1 − en−y).

d the possibility of taking logarithm of negative values (when
due to statistical variation), we introduce the floor parameter
rding to:

x̂ = y + log
[
max(1 − en−y, F )

]
, or (16)

x̂ = y + log
[
max(| 1 − en−y |, F )

]
. (17)



These two ways of using the floor, in combination of applying the
SS in the domains of direct Mel-scaled log-channel energies and of
MFCCs as smoothed log-channel energies, result in four versions
of the SS algorithm. Their respective recognition accuracies (%)
as a function of the floor level are listed in Table 2 for Set A of the
Aurora2 test data. Note that the best accuracy, 95.9%, still con-
tains 54% more errors than that achieved by the converged MMSE
estimator (98.1% accuracy).

Table 2. Performance (percent accurate) for the Aurora2 task (Set-
A only) using four versions of spectral subtraction (SS).

Floor e−20 e−10 e−5 e−3 e−2

SS1 93.57 94.26 95.90 92.18 90.00
SS2 12.50 44.00 65.46 88.69 84.44
SS3 88.52 89.26 93.19 90.75 88.00
SS4 10.00 42.50 63.08 87.41 84.26

In Table 2, Phase-removed, Mel-scaled log-channel energies
(SS1 and SS2) or MFCCs (SS3 and SS4) are computed from true
noise waveforms. SS1 and SS3 make use of Eq.17. SS2 and SS4
make use of Eq.16.

5.2. Results using ML and MAP noise estimators

In contrast to using the true noise vector as n̄ in Eq.12 when ap-
plying the MMSE estimator to speech feature enhancement just
described, in this section are presented the results using the esti-
mated noise vectors. The best technique we have developed so
far is the sequential MAP noise estimator described in Section 4,
where the prior distribution of the noise is assumed to be diagonal
Gaussian. In the current implementation and in the evaluation on
the Aurora2 task, the mean and variance of the Gaussian change
from utterance to utterance in the test data. They are fixed to be
the sample mean and sample variance of the first 20 frames in each
separate test utterance, which are assumed to be free of any speech
material.

Applying the MAP noise estimator to the MMSE estimator
(one iteration) for clean speech, we obtain the percent-accuracy
performance results for all three sets of the Aurora2 test data. The
results are shown in the last column of Table 3, using x̂ in Eq.12
(with MAP-tracked noise as n̄) to score the pre-trained clean-speech
HMMs. This gives significant improvement over the baseline per-
formance (established in the work of [2] and shown in Column 2
in Table 3), where the initial clean speech vector x0 in Eq.12 (i.e.,
without using the MMSE estimator) is used to score the HMMs.
Compared with the performance shown in Column 3 in Table 3,
the MAP-tracked noise (as described in Section 4) also provides
moderate improvement (7% error rate reduction) over the use of
the sequential maximum likelihood (ML) noise estimator in the
otherwise identical experimental setup (i.e., using x̂ in Eq.12 with
the ML-tracked noise as n̄). The algorithm for computing the ML-
tracked noise estimator can be found in [1], which gave the state-of-
the-art performance in our earlier noise-robust recognition system
[5].

6. SUMMARY AND CONCLUSION

The earlier log-domain environmental models for speech distortion
either did not incorporate any random variation [7], or, if so, did not
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3. MMSE estimator’s performance (percent accurate) for
rora2 task using sequential ML and MAP noise estimates

of true noise).

Baseline ML-tracked MAP-tracked
(x0 in Eq.12) noise noise

etA 85.66 86.34 86.39
etB 86.15 86.24 86.30
etC 80.40 82.50 83.35

ve. 84.80 85.53 85.74

the phase relationship between the clean speech and noise
the process of speech distortion [2, 6]. The new environ-
model presented in this paper explicitly represents this phase
ship by modeling the inner product of the clean speech and
ectors (in the frequency domain) as a random variable. This
offers the advantage of automatically capturing the effects
nstantaneous SNR on speech distortion. Experimental re-
tained from theAurora2 task demonstrate the importance of

ing the phase relationship. The phase-sensitive MMSE es-
based on this new model performs significantly better than

l subtraction, which discards the phase information, using
al noise estimates. It also outperforms our earlier algorithm
ch is largely phase-insensitive also.
further improve the phase-sensitive modeling technique for
feature enhancement, we are currently working on sequen-
ating of the noise prior for improved point estimate of noise,
incorporating posterior noise distributions into a new version
hase-sensitive MMSE estimator.
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