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ABSTRACT

In this paper we present an MMSE (minimum mean square error)
speech feature enhancement algorithm, capitalizing on a new prob-
abilistic, nonlinear environment model that effectively incorporates
the phase relationship between the clean speech and the corrupting
noise in acoustic distortion. The MMSE estimator based on this
phase-sensitive model is derived and it achieves high efficiency by
exploiting single-point Taylor series expansion to approximate the
joint probability of clean and noisy speech as a multivariate Gaus-
sian. As an integral component of the enhancement algorithm,
we also present a new sequential MAP-based nonstationary noise
estimator. Experimental results on the Aurora2 task demonstrate
the importance of exploiting the phase relationship in the speech
corruption process captured by the MMSE estimator. The phase-
sensitive MMSE estimator reported in this paper performs signifi-
cantly better than phase-insensitive spectral subtraction (54% error
rate reduction), and also noticeably better than a phase-insensitive
MMSE estimator as our previous state-of-the-art technique reported
in [2] (7% error rate reduction), under otherwise identical experi-
mental conditions of speech recognition.

1. INTRODUCTION

This paper addresses the problem of speech feature enhancement,
and the associated problem of noise feature estimation, when the
noisy speech features alone are available as the observational infor-
mation. These are long-standing, unsolved problems, and are be-
coming increasingly important recently due to emerging commer-
cial deployment of speech recognition technology which demands
a high degree of noise robustness.Towards high-performance solu-
tions to robust speech feature enhancement and accurate noise esti-
mation, we recently developed a series of enhancement techniques
capitalizing on the availability of stereo training data [3, 4, 5] or
on a simplistic, phase-insensitive nonlinear model of the acoustic
environment [7, 1, 6, 2], both discarding the phase relationship be-
tween the clean speech and the additive noise during the speech
signal corruption process. To overcome some weaknesses of these
techniques, such as the difficulty of acquiring well-matched stereo
training data and the performance limit due to loss of the phase
information, we in more recent research have developed a new
technique requiring no stereo training data. It explicitly exploits
the novel concept of phase sensitivity and it uses a new sequential
MAP (maximum a posteriori) noise estimator to design the speech
feature enhancement algorithm.

In Section 2 of this paper, we will outline the new phase-
sensitive nonlinear model for the acoustic environment. The MMSE
estimator for noise removal based on this model is derived in Sec-
tion 3. The novel MAP noise tracking algorithm is presented in Sec-
tion 4, which provides an essential quantity required by the MMSE

estimator. Finally, in Section 5 we will present experimental evi-
dence on the Aurora2 task for the superiority of the phase-sensitive
MMSE estimator and of the MAP noise tracker over the respective
baselines.

2. A PROBABILISTIC ENVIRONMENT MODEL
INCORPORATING PHASE OF ACOUSTIC DISTORTION

Using the discrete-time, linear system model for the acoustic dis-
tortion in the linear frequency domain, we have the well-known
relationship among the noisy speech (Y'), clean speech (X), addi-
tive noise (IV), and channel transfer function (H) of

Y[k] = X[k]H[k] + N[K], )

where k is the frequency-bin index in DFT given a fixed-length
time window (frame).

Eq.1 can be shown to be equivalent, in the domain of log chan-
nel energy (y, x, n, and h), to the following relationship among
these log-domain quantities [2]:
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where the individual vector component of the random variable o is
the inner product (proportional to cosine of the phase) between Mel-
channel-energy vectors of noise and the channel-distorted clean
speech, characterizing their phase relationship. Based on the cen-
tral limit theorem and empirical evidence, « is assumed to follow
a zero-mean Gaussian: p(a) = N(a;0,%,). This makes the
model become phase sensitive, in contrast to our earlier model in
[2] where an entire term of cv/ cosh(2=2=2) is assumed to be
Gaussian and hence the phase information is seriously smeared.

From Eq.2, o can be solved as a function of the remaining
variables:
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The nonlinear transformation from o to y in Eq.2 (for fixed
values of x and n) allows us to obtain the conditional PDF of
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which gives rise to a probabilistic model of acoustic distortion.
In Eq.4, it can be shown from Eq.2 that
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Also, the Gaussian assumption for o gives

pla) =pla(x,n h,y)] = N |a(x,n,h,y);0,2.]. ()
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For exposition simplicity, in the remaining of this paper we
assume: 1) The log-domain noise vector n = n is deterministic, or
p(n) = é(n — n) (0 is obtained by a point estimator described in
Section4); and 2) h = 0; i.e., the channel distortion can be ignored.
Further, the covariance matrix 3, is assumed to be diagonal with
nonzero elements denoted by o;,’s. Thus, we will present the scalar
rather than vector derivation, without loss of generality, for speech
feature enhancement next.

3. MMSE ESTIMATOR FOR CLEAN SPEECH
Given the log-domain noisy speech observation y, the MMSE es-
timator Z for clean speech x is the conditional expectation:

& = Elaly) = /xp(x\y)dx _ W

where pr (y|z) = p(y|x, 71) is determined by the probabilistic en-
vironment model just presented. The prior model for clean speech,
p(z), in Eq.6 is assumed to have the Gaussian mixture PDF:

, (6)

M
p(l’) = Z CmN(fL';/lm,U?,L), (7)
m= _/_/
! p(alm)

whose parameters are pre-trained from the log-domain clean speech
data. This allows us to write Eq.6 as
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———
Sy em [ @ plzlm)p(y|z, n) dx

; p(y) ’ ®

The main difficulty in computing & above is the non-Gaussian
nature of p(y|x, ) of Eq.4. To overcome this difficulty, we use the
truncated second-order Taylor series expansion to approximate the

exponent of
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That is, we approximate the function
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In Eq.9, we used a single-point expansion point ¢ (i.e., zo does
not depend on the mixture component m) to have significantly
improved computational efficiency, and x is iteratively updated to
increase its accuracy to the true value of clean speech x. The Taylor
series expansion coefficients have the following closed forms:
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Fitting Eq.9 into a standard quadratic form, we obtain
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This then allows us to compute the integral of Eq.8 in a closed form:
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The denominator of Eq.8 is computed according to
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Substituting Eqs.10 and 11 into Eq.8, we obtain the final MMSE
estimator:
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Note that Y, by’ (z0), and b (z0) in Eq.12 are all dependent on
the noise estimate 7.

4. SEQUENTIAL MAP ESTIMATOR OF NOISE

In this section, we present a sequential MAP estimator (tracker)
for log-domain nonstationary noise 7, which is used in computing
quantities v, b’ (z0), and bgﬁ)(aso) in the iterative MMSE esti-
mation of clean speech according to Eq.12. This algorithm is gener-
alized from the earlier ML estimator but within the same recursive-
EM framework presented in [1] based on a relatively simple phase-
insensitive acoustic distortion model (not the phase-sensitive model
described in Section 2).

4.1. E-step

In the E-step, we compute the MAP auxiliary function of

Quapr(ne) = Qur(ne) + plog p(nye),
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where

Qur(ne)
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In Eq.13, € is the forgetting factor, M} is the sequence of the
speech model’s mixture components up to frame ¢, and £, (m) =
p(m|y-,n-—1) is the posterior probability. It is computed using
Bayes rule by computing the likelihood p(y-|m,n-—1). This is
approximated by a Gaussian with mean and variance of

)log p(yr | m,ms)

/’Lgn ~ MTIn + gm + [1 - Gm](nt - no)
Y (14 Gn)’SE 4+ (1 — Gp)?S™. (14)
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where g, and GG, are computable quantities used to approximate
the linear relationship among noisy speech y, clean speech x, and
noise n (all in the log-domain) [1]. X" is the variance (hyper-
parameter) of the prior noise PDF p(n:), which is assumed to be
Gaussian (with mean p,,). And ng is the Taylor series expansion
point for the noise, which will be iteratively updated by the MAP
estimate in the M-step described below.

4.2. M-step

In the M-step, we estimate n; by setting %}D("t) = 0. Noting
from Eq.14 that p?, is a linear function of n;, we obtain

t M
Z 6tf‘r Z f‘r(m
=1 m=1 (15)

Substituting Eq.14 into Eq.15 and solving for n, we obtain the
MAP estimate of noise

PO + ppn /E™ + King
’ Ki + p/Sn ’

where

I (1-Gm)
_; Z ‘gT(m _gm)T>

m=1

and

2

_ Z t—1 Z 57 G ) .
T=1 m=1

The s and K above can be efficiently computed using recursions

based on the previous computation for s;—; and Ky_1, as in our

earlier work for the recursive ML noise estimate [1].

5. ROBUST SPEECH RECOGNITION EXPERIMENTS

In applying the MMSE estimator Eq.12 to perform speech feature
enhancement, we first use the result of another enhancement algo-
rithm (published in [2]) to initialize xo at the right hand side of
Eq.12. The estimated clean speech Z is then used to update x¢ and
the iteration continues until a fixed number of iterations is reached
O COnvergence occurs.

The MMSE estimator for clean speech features and the sequen-
tial MAP noise estimate described in this paper have been evalu-
ated on the Aurora2 database, using the standard recognition tasks
designed for this database. The database consists of English con-
nected digits recorded in clean environments. Three sets of digit
utterances (sets A, B, and C) are prepared as the test material. These
utterances are artificially contaminated by adding noise recorded
under a number of conditions and for different noise levels (sets
A, B, and C), and also by passing them through different distortion
channels (for set C only). The HMMs used in our evaluation ex-
periments are specified by the Aurora2 task and trained using the
clean-speech training set.

5.1. Results using phase-removed vectors of true noise

In this set of experiments, we use the MFCCs and their inverse co-
sine transform computed from true noise (available in the Aurora2
database) as the deterministic noise 7 in Eq.12 to evaluate the ef-
fects of various factors on the MMSE estimator’s performance for
noise-robust speech recognition. Other objectives of these experi-
ments are to set the upper limit for the possible performance, and
to demonstrate the effectiveness of incorporating the phase infor-
mation in the speech distortion process.

Table 1 shows percent accuracy results on the full set of Aurora2
test data, when clean-speech HMMs are used, as a function of the
number of iterations (L) for the MMSE estimator of Eq.12. When
L = 0, the initial clean-speech estimate, obtained from the algo-
rithm published in [2] that largely discards the phase information
in the speech corruption process, is used for recognition. When the
MMSE estimator of Eq.12 is applied iteratively to update the initial
estimate, dramatic performance improvement is observed consis-
tently across all three data sets. Performance convergence occurs
at around seven iterations.

Table 1. Effects of the total number of iterations (L) on the MMSE
estimator’s performance (percent accurate) for the Aurora2 task.
Phase-removed MFCC vectors of true noise are used for 72 in Eq.12.

LL o v [2]47]7]12]
SetA || 85.7 || 94.1 | 96.8 [ 97.8 | 98.1 | 98.1
SetB || 862 || 948 | 97.3 | 98.1 | 985 | 986
SetC || 804 || 91.0 | 945 | 96.5 | 97.9 | 98.0

[Ave. || 848 [[ 93.8 [ 96.5 [ 97.7 | 982 [ 983 |

To further demonstrate benefits of the MMSE estimator of
Eq.12 in modeling the phase information, we use the same true
noise for log-domain spectral subtraction (SS) and perform the
same Aurora2 evaluation. The SS algorithm is obtained by set-
ting @ = 0in Eq.2 (as well as h = 0), which gives

=log(e¥ —e") =y +log(l —e"7Y).

1S3

To avoid the possibility of taking logarithm of negative values (when
n > y due to statistical variation), we introduce the floor parameter
F according to:

& =y+log [max(1—¢""Y, F)|, or (16)

T =1y + log [max(| 1—e"Y \,F)] a7
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These two ways of using the floor, in combination of applying the
SS in the domains of direct Mel-scaled log-channel energies and of
MFCCs as smoothed log-channel energies, result in four versions
of the SS algorithm. Their respective recognition accuracies (%)
as a function of the floor level are listed in Table 2 for Set A of the
Aurora? test data. Note that the best accuracy, 95.9%, still con-
tains 54% more errors than that achieved by the converged MMSE
estimator (98.1% accuracy).

Table 2. Performance (percent accurate) for the Aurora2 task (Set-
A only) using four versions of spectral subtraction (SS).

20 —10

l Floor “ e [ e [ e [ e
SS1 93.57 | 94.26 | 95.90 | 92.18 | 90.00
SS2 12.50 | 44.00 | 65.46 | 88.69 | 84.44
SS3 88.52 | 89.26 | 93.19 | 90.75 | 88.00
SS4 10.00 | 42.50 | 63.08 | 87.41 | 84.26

-

In Table 2, Phase-removed, Mel-scaled log-channel energies
(SS1 and SS2) or MFCCs (SS3 and SS4) are computed from true
noise waveforms. SS1 and SS3 make use of Eq.17. SS2 and SS4
make use of Eq.16.

5.2. Results using ML and MAP noise estimators

In contrast to using the true noise vector as 7 in Eq.12 when ap-
plying the MMSE estimator to speech feature enhancement just
described, in this section are presented the results using the esti-
mated noise vectors. The best technique we have developed so
far is the sequential MAP noise estimator described in Section 4,
where the prior distribution of the noise is assumed to be diagonal
Gaussian. In the current implementation and in the evaluation on
the Aurora2 task, the mean and variance of the Gaussian change
from utterance to utterance in the test data. They are fixed to be
the sample mean and sample variance of the first 20 frames in each
separate test utterance, which are assumed to be free of any speech
material.

Applying the MAP noise estimator to the MMSE estimator
(one iteration) for clean speech, we obtain the percent-accuracy
performance results for all three sets of the Aurora2 test data. The
results are shown in the last column of Table 3, using £ in Eq.12
(with MAP-tracked noise as 1) to score the pre-trained clean-speech
HMMs. This gives significant improvement over the baseline per-
formance (established in the work of [2] and shown in Column 2
in Table 3), where the initial clean speech vector x¢ in Eq.12 (i.e.,
without using the MMSE estimator) is used to score the HMMs.
Compared with the performance shown in Column 3 in Table 3,
the MAP-tracked noise (as described in Section 4) also provides
moderate improvement (7% error rate reduction) over the use of
the sequential maximum likelihood (ML) noise estimator in the
otherwise identical experimental setup (i.e., using Z in Eq.12 with
the ML-tracked noise as 7). The algorithm for computing the ML-
tracked noise estimator can be found in [1], which gave the state-of-
the-art performance in our earlier noise-robust recognition system

[5].

6. SUMMARY AND CONCLUSION

The earlier log-domain environmental models for speech distortion
either did not incorporate any random variation [7], or, if so, did not

Table 3. MMSE estimator’s performance (percent accurate) for
the Aurora? task using sequential ML and MAP noise estimates
(instead of true noise).

Baseline ML-tracked | MAP-tracked
(xo in Eq.12) noise noise
SetA 85.66 86.34 86.39
SetB 86.15 86.24 86.30
SetC 80.40 82.50 83.35
[Ave. [ 8480 | 8553 [ 8574 |

capture the phase relationship between the clean speech and noise
during the process of speech distortion [2, 6]. The new environ-
mental model presented in this paper explicitly represents this phase
relationship by modeling the inner product of the clean speech and
noise vectors (in the frequency domain) as a random variable. This
model offers the advantage of automatically capturing the effects
of the instantaneous SNR on speech distortion. Experimental re-
sults obtained from the Aurora2 task demonstrate the importance of
exploiting the phase relationship. The phase-sensitive MMSE es-
timator based on this new model performs significantly better than
spectral subtraction, which discards the phase information, using
identical noise estimates. It also outperforms our earlier algorithm
[2] which is largely phase-insensitive also.

To further improve the phase-sensitive modeling technique for
speech feature enhancement, we are currently working on sequen-
tial updating of the noise prior for improved point estimate of noise,
and on incorporating posterior noise distributions into a new version
of the phase-sensitive MMSE estimator.
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