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Abstract

Modeling phonological units of speech is a critical issue in speech recognition. In
this paper, we report our recent development of an overlapping-feature based phono-
logical model that represents long-span contextual dependency in speech acoustics. In
this model, high-level linguistic constraints are incorporated in automatic construc-
tion of the patterns of feature overlapping and of the hidden Markov model (HMM)
states induced by such patterns. The main linguistic information explored includes
word and phrase boundaries, morpheme, syllable, syllable constituent categories, and
word stress. A consistent computational framework developed for the construction
of the feature-based model and the major components of the model are described.
Experimental results on the use of the overlapping-feature model in an HMM-based
system for speech recognition show improvements over the conventional triphone-based

phonological model.



1 Introduction

Modeling phonological units of speech, also referred to as pronunciation or lexicon modeling,
is a critical issue in automatic speech recognition. Over the past several years, we have been
studying this issue from the perspective of computational phonology, motivated by some
recent versions of nonlinear phonology [2, 11]. The computational framework developed is
based on sub-phonemic, overlapping articulatory features where the rule-governed overlap
pattern is described mathematically as a finite-state automaton. Each state in the automaton
corresponds to a feature bundle with normalized duration information specified [9, 5]. In
this paper, we report our new development of the feature-based phonological model which
incorporates high-level linguistic (mainly prosodic) constraints for automatic construction of
the patterns of feature overlapping and which includes new implementation of the model.
We also report positive results of experiment on use of the feature-based model as the HMM
state topology generator for speech recognition.

In our feature-based phonological model, patterns of feature overlapping are converted to
an HMM state-transition network. Each state encodes a bundle of overlapping features and
represents a unique, symbolically-coded articulatory configuration responsible for produc-
ing speech acoustics based on that configuration. When the features of adjacent segments
(phonemes) overlap asynchronously in time, new states are derived which model either the
transitional phases between the segments or the allophonic alternations caused by the in-

fluence of context. Since feature overlapping is not restricted to immediately neighboring



segments, this approach is expected to show advantages over the conventional context depen-
dent modeling based on diphones or triphones. Use of diphone or triphone units necessarily
limits the context influence to only immediately close neighbors, and demands a large amount
of training data because of the large number of the units (especially triphone units) combi-
natorially generated. Such a drawback is completely eliminated in the overlapping-feature
based model described in this paper.

The feature-based phonological model and the conventional, triphone-based model cur-
rently most popular in speech recognition [13] are alternative ways of representing words in
the lexicon and their pronunciation using HMM states. Their differences can be likened to
“atomic” units versus “molecular” units — fine versus coarse scales in representing the fun-
damental building blocks of speech utterances. Consequences of such a disparity are that the
feature-based model provides the long-span context-dependency modeling capability while
the triphone model provides only the short-span one, and that the feature-based model is
much more parsimonious and economical in lexical representation than the triphone model.
This latter advantage is due to the fact that several distinct phones may share common fea-
tures while feature overlapping concerns only the spreading of such features with no identity
changes. As a result, the triphone model has much greater training-data requirements than
the feature-based model for speech recognizer construction.

The feature-based model further permits construction of language-independent recogni-

tion units and portability of speech recognizers from one language to another in a principled



way [7], while the triphone model is not able to do the same. This is because articulatory
features are commonly shared by different languages and play important mediating roles in
mapping the underlying, perceptually defined phonological units to surface acoustic forms.
A feature-overlapping model defined by general articulatory dynamics can potentially gen-
erate all possible transitory and allophonic states given canonical articulatory descriptions
of phonemes and continuous speech contexts. The task of a training process against a par-
ticular language, on the other hand, is to determine a subset of feature-bundles employed
by the language so that the underlying units can be correctly “perceived” by the listener in
terms of feature-bundle sequences. Therefore, feature bundles derived from context-induced
overlapping can form a universal set for describing all sounds in all languages at a mediating
level between acoustic signals and the the lexical units. The main challenge for developing
the feature-based phonological model is its implementation complexity, which is the main
focus of this paper. To what extent the feature bundles obtained from one language’s data
is shared by another language is both a theoretical topic as well as an empirical issue, and
demands further study beyond the scope of this paper.

In our previous work, the feature overlapping rules were constructed based only on the
information about the phoneme (i.e., segment) identity in each utterance to be modeled
[9, 8, 6]. It is well established [2, 3, 4, 11] that a wealth of linguistic factors beyond the
level of phoneme, in particular prosodic information (syllable, morpheme, stress, utterance

boundaries, etc.), directly control the low-level feature overlapping. Thus, it is desirable



to use such high-level linguistic information to control and to constrain feature overlapping
effectively. As an example, in pronouncing the word display, the generally unaspirated /p/
is constrained by the condition that an /s/ precedes it in the same syllable onset. On the
other hand, in pronouncing the word displace, dis is a morphological unit of one syllable and
the /p/ in the initial position of the next syllable subsequently tends to be aspirated.

In order to systematically exploit high-level linguistic information for constructing the
overlapping feature-based phonological model in speech recognition, we need to develop a
computational framework and methodology in a principled way. Such a methodology must
be sufficiently comprehensive to cover a wide variety of utterances (including spontaneous
speech) so as to be successful in speech recognition. Development of such a methodology is

the major thrust of the research reported in this paper.

2 A General Framework of Feature Overlapping

2.1 Use of High-Level Linguistic Constraints

Our general approach to pronunciation modeling is based on the assumption that high-
level (e.g. prosodic) linguistic information controls, in a systematic and predictable way,
feature overlapping across feature dimensions through long-span phoneme sequences. The
high-level linguistic/prosodic information used in the current implementation of the feature-

based model for constraining feature overlapping includes



e Utterance, word, morpheme and syllable boundaries. (Syllable boundaries are subject

to shifts via resyllabification.)

e Syllable constituent categories: onset, nucleus and coda.

e Word stress and sentence accents.

Morpheme boundary and syllabification are key factors in determining feature overlap-
ping across adjacent phonemes. For example, aspiration of voiceless stops in dis-place and in
mis-place versus non-aspiration of the stop in di-splay are largely determined by morpheme
boundary and syllabification in these words. In the former case, overlapping occurs at the
Larynx tier (See Section 2.2 for the definition of articulatory feature tiers). Utterance and
word boundaries condition several types of boundary phenomena. Examples of the bound-
ary phenomena are glottalized word onset and breathy word ending at utterance boundaries,
and the affrication rule at word boundaries (e.g., compare at right with try) [12]. Likewise,
association of a phoneme with its syllable constituent influences pronunciation in many ways.
For example, stops are often unreleased in coda but not so in onset. An example of the effect
of word-stress information on feature overlapping is the alveolar-flap rule which only applies
to the contextual environment where the current syllable is unstressed and the preceding
syllable is stressed within the same word.

This kind of high-level linguistic constraints is applied to our framework through a pre-
dictive model which parses the training sentences into accent groups at the sentence level and

syllabic components at the lexical level. The accent group identification is mainly through



part-of-speech tagging information. The syllabic component identification is mainly through
a context-free grammar parser based on rules of syllable composition by phonemes (see Ap-
pendix 1). After this analysis, a sentence is represented by a sequence of symbolic vectors,
each containing the phoneme symbol and its syllabic, boundary and accent information
which governs the pronunciation of each phoneme in continuous speech. For example, the
utterance “The other one is too big” will be represented as:

[dh ons ub] (ons = syllable onset, ub = utterance beginning)

[iy nuc we ust] (nuc = syllable nucleus, we = word end, ust = unstressed)

[ah nuc wb] (wb = word beginning)

[dh ons]

[ax nuc we ust]

[w ons wb]

[ah nuc ust]

[n cod we| (cod = syllable coda)

[ih nuc wb ust|

[s cod we]

[t ons wb]

[uw nuc we str] (str = stressed)

[b ons wb]

[ih nuc str]



[g cod ue| (ue = utterance end)
The the above and throughout this paper, we use the ARPAbet symbols to represent
phonemes. In the later part of the paper we will explain how high-level information constrains

feature overlapping, and thus influences speech recognition model building.

2.2 Feature Specification for American English

We use a consistent feature specification system for transforming segment symbols to feature
bundles, which is carried out after syllable parsing and before the application of feature

overlapping rules. This system is characterized by the following key aspects:

e Five feature tiers are specified, which are: Lips, Tongue-Blade, Tongue-Dorsum, Velum,

and Larynx.

e The feature specification of segments is context independent; it shows canonical artic-
ulatory properties coded in symbolic forms. (The total repertoire of the feature values
we have designed is intended for all segments of the world languages. For a particular

language, only a subset of the repertoire is used.)

e Open (underspecified) feature values are allowed in the feature specification system.
These underspecified feature values may be partially or fully filled by temporally ad-

jacent (specified) features during the rule-controlled feature overlapping process.



The feature specification system we have worked out for American English has the fol-
lowing specific properties. A total of 45 phonemes are classified into 8 categories: stops,
fricatives, affricates, nasals, liquids, glides, (monophthong) vowels and diphthongs. Each
phoneme is specified with a five-dimensional feature bundle, corresponding to the five ar-
ticulators: Lips, Tongue-blade, Tongue-body, Velum, and Larynx. The values for each
dimension are symbolic, generally concerning the place and manner of articulation (which
are distinct from other phonemes) for the relevant articulator. The feature values for any
(canonically) irrelevant articulator are underspecified (denoted by the value “07).

Continue with the above example. After the phonemes are replaced by articulatory fea-
tures [before overlapping], the utterance “The other one is too big” becomes (the explanations
of the prosodic symbols are given in the example on Section 2.1.):

[dh(0 ClsDen 0 0 V+4) ons ub] (ClsDen = dental closure, V+ = voiced)

[iy(0 0 D.iy 0 V+) nuc we ust] (D.iy = tongue dorsum position of /iy/)

[ah(0 0 D.ah 0 V+) nuc wb]

[dh(0 ClsDen 0 0 V+) ons]

[ax(0 0 D.ax 0 V+) nuc we ust]

[w(Rnd.u 0 D.w 0 V+4) ons wb| (Rnd.u = lip rounding of /u/)

[ah(0 0 D.ah 0 V+) nuc ust]

[n(0 ClsAlv 0 N+ V+) cod we| (ClsAlv = alveolar closure, N+ = nasal)

[ih(0 0 D.ih 0 V+) nuc wb ust]



[s(0 CrtAlv 0 0 V-) cod we] (CrtAlv = alveolar critical, V- = unvoiced)

[t(0 ClsAlv 0 0 V-) ons wb]

[uw(Rnd.u 0 D.uw 0 V+) nuc we str]

[b(ClsLab 0 0 0 V+) ons wb] (ClsLab = labial closure)

[ih(0 0 D.ih 0 V+) nuc str]

[g(0 0 ClsVel 0 V+) cod ue] (ClsVel = velum closure)

Some further detail is given here on the featural representation of the segments. Generally,
we use a single feature bundle to represent a segment in its canonical state. This, to some
extent, ignores some finer structures. For example, the stops have at least two distinctive
phases: the closure phase and the release phase. To account for this, finer structures are
needed and they are modeled by the derived feature bundles. For instance, the release phase
of the stops is represented by a derived feature bundle between the stop and an adjacent
segment. The derived feature bundle for the release phase still contains such a feature as
ClsAlv (e.g. for /t/) or ClsLab (e.g. for /p/), but it is understood differently as will be

illustrated in the examples of the subsection 2.4.

2.3 A Generator of Overlapping Feature Bundles

An overlapping feature bundle generator is a program which 1) scans the input sequence
of feature bundles with high-level linguistic information; 2) matches them to corresponding

overlapping rules; 3) executes overlapping (or mixing) operations specified in the overlapping
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rules during two separate, leftward-scan and rightward-scan processes; The execution starts
from the right-most phoneme for the leftward-scan process, and it starts from the left-most
phoneme for the rightward-scan process. and 4) integrates the results of leftward-scan and
rightward-scan to produce a state-transition network. A block diagram of the overlapping
feature bundle generator is shown in Figure 1.

PLACE Figure 1 AROUND HERE

Our feature-overlapping rules contain two types of information (or instruction): pos-
sibility information and constraint information. The possibility component specifies what
features can overlap and to what extent, regardless of the context. The constraint component
specifies various contexts to constrain feature-overlapping. Below we give some examples of

possibility and constraint:

e Possibility of Velum Feature Overlapping: A velum lowering feature can spread left

and right to cause the phenomenon of nasalization in some phones, such as vowels.

e Possibility of Lip Feature Overlapping: A lip rounding feature can spread mainly to

the left to cause the phenomenon of lip-rounded allophones.

e Possibility of Tongue Body Feature Overlapping: A tongue body feature can spread

to cause such phenomenon in stops as advanced or retracted tongue body closures (as

in /g iy/ versus /g uh/).

e Possibility of Larynx Feature Overlapping: A voicing/unvoicing feature can spread to

11



cause such phenomena as voiced/unvoiced allophones.

e Possibility of Tongue Tip Feature Overlapping: The tongue tip feature of /y/ can
spread into the release phase of a stop to cause the phenomenon of palatalization (as

in “did you”).

e Constraint rule: A stop consonant blocks feature spreading of most features, such as

lip feature, larynx feature, etc.

e Constraint rule: A vowel usually blocks tongue body features from spreading through

it.

The above spreading-and-blocking model can account for many types of pronunciation
variation found in continuous speech. But there are some other common phenomena that
cannot be described by feature spreading only. The most common among these are the
reductive alternation of vowels (into schwa) and consonants (flapping, unreleasing, etc.).
Therefore, our model needs to include a control mechanism that can utilize high-level in-
formation to “impose” feature transformation in specific contexts. We give some examples

below:

e Context-controlled transformation: A stop consonant undergoes a flap transformation
in such contexts as: [V stressed] * [V unstressed] (where “*’ marks the position of the

consonant in question).

12



e Context-controlled transformation: A stop consonant deletes its release phase in a coda

position.

e Context-controlled transformation: A vowel undergoes a schwa transformation in an

unstressed syllable of an unaccented word in the utterance.

The output of the generator is a state-transition network consisting of alternative feature
bundle sequences as the result of applying feature-overlapping rules to an utterance. This
structure directly corresponds to the state topologies of hidden Markov models of speech.
Each distinctive HMM state topology can be taken as a phonological representation for a
word or for a (long-span) context-dependent phone. The HMM parameters, given the topol-
ogy, are then trained by cepstral features of the speech signal. In the following subsection,
we give two examples of applying the feature-overlapping rules (details will be presented in

Section 3), and show the results in the form of the constructed overlapping feature bundles.

2.4 Examples: Feature Bundles Generated by Applying Feature
Overlapping Rules

We present two examples to illustrate typical applications of the feature overlapping rules
utilizing high-level linguistic information before details of the rules are formally described.
The first example shows how the words display and displace are endowed with different feature
structures in the stop consonant /p/, despite the same phoneme sequence embedding the
/p/. The difference is caused by different syllable structures. After syllable parsing and

13



feature overlapping, the results in feature bundles, accompanied by the spectragrams of the
two words, are shown in Figure 2. Due to different syllable structures: (/d ihs . pley
s/ versus /d ih . s p 1 ey/), different overlapping rules are applied. This simulates the
phonological process in which the phoneme /p/ in displace tends to be aspirated but in
display unaspirated.

PLACE Figure 2 AROUND HERE

The two relevant feature bundles are shown in the figure by the dashed vertical lines. The
difference lies in the voicing feature at the larynx feature tier. The aspiration is indicated by
a V- feature in the feature bundle of the word displace between /p/ and /1/. Phonologically,
this is called delayed voicing in the onset of /l1/. In the model, this is realized through
asynchronous leftward spreading of the tongue blade and larynx features of /1/, which overlap
with the features of /p/.

The second example (Figure 3) shows the word strong, which contains several feature
overlaps and mixes. (Feature mixes are defined as feature overlaps at the same feature
tier). Some of them have variable durations (in lip-rounding and nasalization), represented
by the dashed boxes. Such variability in the duration of feature overlapping gives rise to
alternative feature bundle sequences. By merging identical feature bundles, a network can
be constructed, which we call the “state transition network”. Each state in the network
corresponds to a feature bundle. The network constructed by the overlapping feature bundle

generator for the word strong is shown in Figure 4, where each state is associated with a

14



set of symbolic features. The branches in the network result from alternative overlapping
durations specified in the feature overlapping rules.

PLACE Figures 3 and 4 AROUND HERE

Generally, a derived feature bundle with overlapping features from adjacent segments
represents a transitional phase (coarticulation) between phonemes in continuous speech.
Overlapping in real speech can pass several phonemes and our feature-overlapping model
effectively simulates this phenomenon. For example, in strong /s t r ao ng/, the lip rounding
feature of /r/ can spread through /t/ to /s/, and the nasal feature of /ng/ can also pass
through /ao/ to /r/, as is shown in Figure 3. This ability to model long-span phonetic

context is one of the key characteristics of this model.

3 Implementation of the Feature-Overlapping Engine

3.1 The Demi-Syllable as the Organizational Unit in Formulating
Feature-Overlapping Rules

Based on the information obtained by the syllable parser and the feature specification (in-
cluding underspecification) of phonemes, demi-syllables are constructed, which are operated
upon by the feature-overlapping rules (formally defined below) to generate transition net-
works of feature bundles. A demi-syllable in our system is a sequence of broad phoneme

categories encompassing the phonemes in either syllable-onset plus nucleus, or nucleus plus
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syllable-coda formations, together with high-level linguistic information. When a syllable has
no onset or coda consonants, that demi-syllable will be only a vowel. The broad phonetic

categories we have used are defined as follows:

e V — vowel,

e GLD - glide,

o LQD - liquid,

e NAS - nasal,

e AFR - affricate,

e FRI1 — voiced fricative,

e RI2 — voiceless fricative,

e STP1 — voiced stop,

e STP2 — voiceless stop.

Other elements included in a demi-syllable are related to the higher-level linguistic informa-

tion. These include:

e ons — syllable onset,

e nuc — syllable nucleus,
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e cod — syllable coda,

e ub — utterance beginning,

e ue — utterance end,

e wb — word beginning,

e we — word end,

e str — stressed syllable in the utterance,

e ust — unstressed syllable.

For instance, the demi-syllables of the utterance “T'he other one is too big”, including high-
level linguistic information, are as follows:

[FRIL ons ub] [V nuc we ust] ( dh-iy )

[V, nuc, wb]] (ah)

[FRI1 ons] [V nuc we ust] ( dh-ax )

[GLD ons wb] [V nuc ust]] ( w-ah )

[V nuc ust| [NAS cod we]| ( ah-n )

[V nuc wb ust] [FRI2 cod we] ( ih-s )

[STP2 ons wb] [V nuc we str] ( t-uw )

[STP1 ons wb] [V nuc str|] ( b-ih )

[V nuc str] [STP1 cod ue] ( ih-g )

17



Demi-syllables split a full syllable (one with both onset and coda consonants) into two
halves. The purpose of this splitting is to make a small set of units for practical rule
development. Contextual constraints specified in the phonological rules are defined on the
demi-syllables. After parsing all the 6110 words in the TIMIT corpus dictionary, we obtained
291 distinct word-based demi-syllables (that is, without specifying utterance boundaries and
utterance accents, which can be included in later rule development). This is a compact set,

facilitating the development of the overlapping rule system which we now describe in detail.

3.2 Overlapping Phonological Rule Formulation

This subsection gives a detailed description of the phonological rules for articulatory feature
overlapping. Appendix 2 presents a logical basis of our feature-overlapping system in the form
of a temporal logic. This logic is based on autosegmental and computational phonological
theories, presented in [1, 2, 11] and elsewhere. The phonological rules have been formulated
systematically based on the behavior of articulatory features, especially under the influence
of high-level linguistic structures. The phonological rules are used to map any utterance
from its demi-syllable representation into its corresponding feature bundle network (i.e. the
state transition graph).

The data structure of feature-overlapping rules consists of “overlapping patterns” and
“overlapping operators”. Each overlapping pattern is defined with respect to a demi-syllable

and contains the names of a number of overlapping operators. The demi-syllable, as illus-
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trated in the last subsection, contains both segmental information (broad phonetic cate-
gories) and high-level linguistic information (boundaries, accents and syllable constituents).
The construction of overlapping patterns starts from the 291 word-based demi-syllables.
Based on the temporal logic and particular phonological knowledge concerning coarticulation
and phonetic alternations, necessary boundary and accent requirements are added. Further,
a number of overlapping operators’ names are added to form an overlapping pattern. Each
operator corresponds to a broad phonetic category in the demi-syllable.

The overlapping operators are defined on the phonemes based on phonological theory,
describing how their articulatory features may overlap in speech. When an overlapping
pattern is applied, an operator name will point to the actual definition, which then is applied
to the corresponding phoneme matching a broad phonetic category. One definition of an
operator may be pointed to by more than one overlapping pattern. Thus, the overlapping
operators realize the possibilities while the overlapping patterns realize the constraints on
the possibilities. (The concepts of possibility and constraint were discussed in subsection
2.3.)

Let us denote a broad phone category in a demi-syllable by DSC (standing for demi-
syllable constituent), then a phonological rule is described by a list of DSC’s in a demi-
syllable, together with all possible operators allowed to operate on each DSC. The overall

data structure of a phonological rule is in this form:

[DSC-1: operatorl.1, operatorl.2, operatorl.3 ... (high-level information)]
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[DSC-2: operator2.1, operator2.2, operator2.3 ... (high-level information)]

[DSC-3: operator3.1, operator3.2, operator3.3 ... (high-level information)]

An operator describes how feature overlapping could happen on different articulatory
tiers, as is described in phonological theory, such as “lip rounding”, “jaw lowering”, “palatal-
ization”, etc. Each operator consists of four components: 1) action, 2) tier-specification, 3)
feature-value constraint, and 4) relative-timing. Below we discuss each of these components.

First, there are three choices for describing an action:

e L or R: For leftward (look-ahead) or rightward (carry-over) feature spread from an

adjacent phoneme onto an underspecified tier of the phoneme.

e M or N: For leftward or rightward mixture of a feature from an adjacent phoneme on

the same tier.

e S: For substitution of a feature value by a different feature value.

Second, a tier-indicator specifies at which feature tier an action takes place. A tier

indicator is given by an integer as follows:

e 1: the Lips tier,

e 2: the Tongue-Blade tier,

e 3: the Tongue-Dorsum tier,
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e 4: the Velum tier,

e 5: the Larynx tier.

Third, a value constraint can optionally be given to stipulate that a feature spread from
an adjacent phoneme must have a specified value. If this value constraint is not given, the
default requirement is that on this tier of an adjacent phoneme there must be a specified
feature in order for the operator to be applicable.

Fourth, a relative-timing indicator is used to specify the temporal extent of a feature
spreading. In the current implementation of the model, we use four relative-timing levels:
25%, 50%, 75%, and 100% (full) with respect to the entire duration of the phoneme.

The reader may wonder how long-span effects are realized in this model. This is realized
by full (100%) feature spreading. Once an adjacent phoneme’s feature is spread to the entire
duration of the current phoneme, that feature is visible to the adjacent phoneme on the other
side and may spread further. For example, a nasal feature from a right adjacent phoneme
may be allowed to spread to the full duration of a vowel. The phoneme to the left of the
vowel can “see” this feature and may allow it to spread into itself. This is the mechanism
used by the model to pass a feature over several phonemes until it is blocked.

The naming of an operator follows a syntax which reflects its internal definition. The

syntax for an operator name is given as:
Operator-Name := Op NT [@ N |
N:=1]2]3|4]5
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where the numbers after ’Op’ reflect the tier-indicators in the definition, and the optional
numbers after the symbol @ stands for the tiers at which feature-value constraints are im-
posed.

A phoneme can be given a number of operators. Whether an operator is allowed to
apply to a phoneme depends on whether it is listed in a DSC of an overlapping pattern.
Furthermore, whether an operator listed in an DSC can be fired or not depends on if the
conditions in the operator definition are met. For example, for the operator with the name
Op2 to fire, the second tier of the adjacent phoneme must have a specified feature value.
As another example, for the operator of the name Op12@2 to fire, the adjacent phoneme
(whether it is to the left or right depends on the action type of the operator) must have
specified features at tier 1 and 2 and the feature value at tier 2 must match the value
specified in its definition.

As an illustration, Figure 5 shows the result of applying an operator named Opl125@15

to the feature bundle of /t/ when it is followed by /r/. The operator is defined as

(125@15, tier_1.L.rnd, tier 2.M, tier 5.L.V+, time:(.5,.25,.25; 1,.25,.25)).

According to this definition, the three tiers of the phoneme — Lips (1), Tongue-Blade (2) and
Larynx (5) have actions M or L. Tiers 1 and 5 constrain the spreading feature values as rnd
and V+ that come from a right neighbor. There are two alternative timing specifications
(.5,.25,.25) and (1,.25,.25). Feature spreading at the three tiers will enter the feature bundle

of /t/ in two possible ways: 1) Lips feature spreading to 50% of the entire duration, and
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Tongue-Blade and Larynx features spreading to 25%, or 2) Lips feature spreading to the en-
tire duration and the Tongue-Blade and Larynx feature spreading to 25%. As a consequence,
two new feature bundles are derived. The two possible ways for state transitions are shown
in Figure 5, which is automatically derived by a node-merging algorithm accepting parallel
state sequences. Note how long-distance feature overlapping can be realized by the rule
mechanism: Once a feature spreading covers an entire duration, this feature will be visible
to the next phoneme. Now we give an example of a phonological rule, which is defined on

the demi-syllable with high-level linguistic structure:

[FRI2 ons wb] [STP2 ons] [LQD ons] [V nuc str]

This demi-syllable can match the first four phonemes of the word strong. This rule is

expressed as:

[FRI2 (Op2, Op3, Opl3@1) ons wb]
[STP2 (Op2, Opl125@15) ons]
[LQD (Op3, Op34@4) ons|

[V (Op3, Op34@4) nuc str]

Each DSC in this rule is given a number of operators which can operate on the phonemes
that are matched by the demi-syllable. Notice the high-level linguistic structures (ons, wb,
etc.) which constrain the application of the rule to certain prosodic context. In the current

implementation of the feature-based model, we have the following operator inventory which
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consists of a total of 26 operators defined for the 44 English phonemes for the leftward
scanning. A corresponding set of operators for rightward scanning are similarly defined. We

list the leftward operators as follows:

1. (Op1,1.M,(.25)) (transitional phase)

2. (Op1,1.L,(.25))

3. (0p2,2.M,(.25))

4. (0p2,2.L,(.25))

5. (0p3,3.M, (.25))

6. (0p3,3.L,(.25))

7. (0p5,5.S,0)) (glottal substitution)

8. (0p2,2.S,()) (tongue blade substitution)

9. (0p4,4.L.N+,(.5;1)) (nasalization)

10. (0Op12@1,1.L.rnd,2.M,(.5,.25;1,.25)) (transition with lip rounding)

11. (0Op13@1,1.M.rnd,3.L,(.5,.25;.25,.25))

12. (Op13@1,1.L.rnd,3.M,(.5,.25;1,.25))

13. (Op13@1,1.L.rnd,3.L,(.5,.25;1,.25))
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14. (Op1404,1.L,4.L.N+,(.25,.5;.25,1)) (transition with nasalization)

15. (0p2404,2.L,4.L.N+,(.25,.5;.25,1))

16. (0Op34@4,3.M,4.L.N+,(.25,.5;.25,1))

17. (0p23@2,2.S.TapAlv,3.L,(.25,.75;1,.25))

18. (0p34@4,3.M,4.1.N+,(.25,.5;.25,1))

19. (0Op34@4,3.L,4.L.N+,(.25,.5;.25,1))

20. (0Op3505,3.M,5.L.V+,(.25,.25)) (transition with unaspiration)

21. (0p3505,3.L,5.L.V+,(.25,.25))

22. (Op125@15,1.L.rnd,2.M,5.L.V+,(.5,.25,.25;1,.25,.25)) (more combinations)

23. (Op134@14,1.M.rnd,3.L,4.L.N+,(.5,.25,.5;.5,.25,1;1,.25,.5) )

24. (Op134@14,1.L.rnd,3.L,4.L.N+,(.5,.25,.5;.5,.25,1;1,.25,.5) )

25. (0p135@15,1.M.rnd,3.L,5.L.V+,(.5,.25,.25;1,.25,.25))

26. (0Op135@15,1.L.rnd,3.L,5.L.V+,(.5,.25,.25;1,.25,.25))

PLACE Figure 5 AROUND HERE
To illustrate the use of overlapping phonological rules and how high-level linguistic infor-

mation is incorporated, we demonstrate with the example utterance “a tree at right” (the
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corresponding phoneme sequence is /ax t r iy ae t r ay t/). After prosodic processing, where
part-of-speech tagging and shallow syntactic parsing is used for deriving the boundary and
accent information, and following syllable parsing, the utterance is represented by a sequence
of demi-syllables:

1. [V nuc ub ust] (ax)

2. [STP2 ons wb] [FRIL ons] [V nuc we str] (t-r-iy)

3. [V nuc wb ust] [STP2 cod we] (ae-t)

4. [FRIL ons wb] [V nuc str] (r-ay)

5. [V nuc str|] [STP2 cod ue| (ay-t)

Each demi-syllable is matched by a phonological rule. The overlapping operators in each
DSC are tried for firing. If the conditions are met, an operator is fired to derive feature
bundles. During the derivation process, segment and word boundaries are recorded to “cut
up” the derived network into word networks or phone networks, which are used to build
word or phone-based hidden Markov models.

In this example, we illustrate the use of syllable information to realize the “affrication
rule” discussed earlier in subsection 2.1. The utterance’s wave form, spectragram and rel-
evant features concerning the use of the affrication rule are shown in Figure 6. To realize
the affrication rule, the phonological rule matching the second demi-syllable: [STP2 ons
wb] [FRI1 ons] [V nuc we str| will have its first DSC assigned an operator: (Op2,2.L,(.25))

which allows feature overlapping on the tongue blade tier. The overlapping phonological
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rule matching the third demi-syllable, on the other hand, will not assign this operator to the
second DSC: [STP2 cod we], blocking affrication.

PLACE Figure 6 AROUND HERE

As another example of applying high-level linguistic information, consider the use of
a substitution action in an operator at utterance beginning. For the above utterance, a
rule matching the first demi-syllable: [V nuc ub ust] can have an operator with a glottal
substitution action: (Opb, 5.5.7, ()). This simulates an utterance with a glottal stop at the
outset. Similarly, an un-released stop consonant at the end of a word or an utterance can
be simulated by the phonological rule mechanism as well.

We have illustrated how “possibilities” and “constraints” can be implemented by the
overlapping patterns and operators. With each DSC within a rule there may be a number
of operators available for firing. When more than one operator can be fired, it is the more
specific ones that are fired first. Depending on how complex we expect the generated network

to be, the system is able to control how many operators to be fired.

4 Speech Recognition Experiments

In this section we describe the speech recognition experiments using the phonological rules
and the generator of overlapping feature bundles described earlier in this paper. Our experi-
ments are carried out using the TIMIT speech database and the tasks are both (continuous)

word and phone recognition. Our preliminary experimental results show that this feature-
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based approach is a promising one with a number of new directions for future research.

4.1 Automatic Creation of HMM Topology with Feature-Bundle

States

The feature-based speech recognizer we have constructed uses a special HMM topology
to represent pronunciation variability in continuous speech. The variability is modeled by
parallel feature-bundle state sequences as a result of applying the phonological rules to the
canonical phoneme representations. The HMM topology is created automatically by rules,
one for each word. Details of this process have been provided in Section 3 and we summarize

this process as the following six steps for the TIMIT corpus:

1. Parse each phoneme string in a sentence into a syllable sequence, and

further into a demi-syllable sequence with prosodic structure;

2. Match the demi-syllable sequence to a sequence of corresponding feature-overlapping

patterns;

3. Select the relevant feature-overlapping operators (defined in the feature-overlapping

pattern) for each phoneme according to its featural context in the sentence;

4. Apply the operators in the order from most specific to most general, with complexity

control;
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5. Generate a full set of overlapped or mixed feature bundles (and use them as the HMM

states), as the result of the applications of feature-overlapping rules;

6. Generate state-transition graphs for all the words (and sentences) in the TIMIT database

based on the parallel feature-bundle transition paths.

The last step creates the feature-based pronunciation models in the form of word-HMM's
for all 6110 TIMIT words. To show the parsimony of the feature-based approach, only 901
distinct HMM states (i.e. 901 distinct feature bundles) were derived and used to represent
these 6110 words, in contrast to tens of thousands generated by the conventional triphone
approach. Furthermore, long-span context dependence has been incorporated due to the
application of long-span feature-overlapping rules.

Given the HMM topology automatically created for each word in TIMIT, we used the
HTK tools to compute the speech features (MFCC) and to train the continuous-density
HMM output-distribution parameters (means, variances, and mixture weights) for all 901
unique feature bundles (HMM states) using the training data in TIMIT. The HMM’s trained
were then used to automatically recognize the TIMIT test-set sentences, using HTK Viterbi
decoder (HVite tool).

The training and recognition with network HMM’s (see Figure 4), which contain multi-
path graphs, is allowed by the HTK tool as it is designed for experimenting with different
model structures including multi-path topologies. We use the global mean and variance
from the entire data set to initialize the models, and then use Baum-Welsh re-estimation to
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compute the parameters specific to each state. The re-estimation procedure (HERest tool)
applied to the models avoids the alignment problem as may occur with multi-path structures
because of the following two reasons. First, all the states which are derived from the same
feature bundle are tied from the beginning. Second, when a branch occurs in some model,
the alignment between data and alternative states is resolved when there is similar data
elsewhere in the corpus aligned with a non-branching state which is tied with one of the

alternative states.

4.2 Statistics in Training and Testing Data

The TIMIT database used in our experiments consists of 630 speakers in 8 dialect regions,
of which 462 are in the training set and 168 are in the testing set. The sentences in the
training and the testing sets are disjoint, except for two sentences which were spoken once
by every speaker. The training set contains 4620 sentences and the testing set 1680. The
training set contains 4890 distinct words and the testing set 2375. Among the total 6110
words in TIMIT, 1155 words occur in both the training and testing sets and 1220 words are
unique to the testing set (i.e., distinct from all words in training).

The entire set of TIMIT words (training and testing sets) gives rise to a total of 901 HMM
states after the application of the overlapping rules described in Section 3. Among all the
901 states, the testing set contains 754 states, of which 717 states also occur in the training

set. This shows the advantage of the feature-based approach: in contrast to around 48%
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sharing of words (1155 out of 2375), the sub-phonemic, feature-bundle sharing is over 95%
(717 out of 754) for the testing set. This means that with about 52% of the words unseen in
the training model, when it comes to feature-bundle based states, the unseen portion in the
training set drops to only about 5%. For the 37 states occurring uniquely in the testing set,
we synthesized them with the parameters of the states obtained from the training set which
have similar features as the “unseen” states, using a feature vector similarity metric.

In short, in contrast to words, the training and testing sets differ less in terms of feature
bundles. The 4890 words in the training set account for 95% of feature bundles in the words

of the testing set, although they only account for 48% of the words in the testing set.

4.3 Speech Recognition Results

Using the embedded estimation tool HERest in the HTK, we trained the word-HMM’s by
direct tying. This means that the 901 states were used for all the words from the very
beginning. Unlike the triphone training procedure which undergoes a separate state-tying
process, the direct tying training was efficient in terms of both training time and memory
space requirements. We estimated single-Gaussian state models twice. Then the mixture
number was increased gradually to five, with one re-estimation for each increase.

This amounts to using the feature-overlapping model to construct the word-level HMM’s.
Since the testing set has half of the words distinct from that of the training-set, these

“unseen” word HMM models are synthesized with state macros (symbolic names pointing to
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the trained states). We have carried out speech recognition (decoding) experiments using the
HMM'’s, obtained by the above training procedure. Details of the recognition performance
are shown in Table 1, where the word error rate (WER) and sentence error rate (Sent.ER),
as well as the word substitution (Sub), deletion (Del), and insertion (Ins) rates, are shown as
a function of the dialect regions (Dial.Reg.) in the TIMIT database. The size of the testing
set in terms of the total number of test words and sentences in each of the dialect regions
is also listed. These results are obtained on all the 1680 sentences in the TIMIT testing set
covering all eight dialect regions of American English accents. A bigram language model
was used, which was derived from the whole set of TIMIT prompt sentences, with one-gram
probabilities lowered to -99. A five-Gaussian mixture was used as the output distribution
for each of the 901 feature bundle-based HMM states.

PLACE Table 1 AROUND HERE

The efficiency of the feature-based system was evident in the experiments. For example,
the state set from the very beginning was compact and the training time was also much less
compared to the triphone system, at the ratio of about 1/20.

In a further experiment, we used the data-driven state clustering functionality provided
by the HTK toolkit in the overlapping feature framework with unified model topologies. We
performed the TIMIT phone recognition task by using 39 three-state, left-to-right, no-skip
phone models trained as quinphones. Compared with triphones, a quinphone incorporates

contexts of up to two phones to its left and right. This gives the possibility of utilizing

32



the predictions made by the feature-overlapping model. The predictions were used to form
decision tree questions for state tying.

The training set of TIMIT database resulted in 64230 context-dependent quinphones.
The overlapping features germinating from five-phone contexts were used in designing decision-
tree questions for state tying. The contexts that affect the central phones through feature
overlapping, as predicted by the model, form questions for separating a state pool (a tech-
nique of state tying with decision trees). For example, the nasal release of stop consonants
in such contexts as /k aa t ax n/ and /1 ao g ih ng/ (the /t/ in the first context and /g/
in the second context, influenced by /n/ and /ng/) will induce questions for tying the third
state of the three-state model with the conditions expressed as *+ax2n, *+ax2ng, etc. (’2’
is used here to separate the first and the second right context phones). With the aid of such
decision-tree questions, the quinphone states were tied and re-estimated. The testing result
is compared with the triphone baseline results for the 39-phone recognition defined in the
TIMIT database. This comparison is shown in Table 2, where both systems are used to
recognize the same 1680 test utterances that consists of a total of 53484 phone tokens. The
results in Table 2 show that the feature-overlapping model outperforms the conventional tri-
phone model. The feature-overlapping model is able to make meaningful predictions, which
lead to increase of the efficiency of model organization and training process. Without this

predictive model, it would have been impossible to form meaningful state tying questions.

PLACE Table 2 AROUND HERE
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Our third experiment used phone-level HMM’s to perform word recognition. This is done
via a pronunciation dictionary in which each word is represented by one or more sequences
of phone HMM models. We used four basic types of predefined phone models, representing
stop consonants, other consonants, single vowels and diphthongs respectively. The design
of the HMM topologies is based on the assumption that high-level linguistic structures can
influence the acoustic properties of the pronounced phonemes and this is reflected in the

model structures. The design of each of the four types of phone models is given below:

1. Stop Consonants: Three HMM states, one skip from the second state to the exit
dummy state, modeling non-release of stop consonants, one skip from the first state
to the exit state, modeling a very short duration without release. The loss of release

phase is expected to occur mainly in the coda position.

2. Other Consonants: Three HMM states, one skip from the first state to the third state,
modeling a short duration in which the central state has no acoustic data, such as in
fast spontaneous speech when the whole duration is influenced by the left and right

contexts.

3. Monophthongs (single vowels): Four HMM states. The middle two states are in par-
allel. These two middle states model stressed and unstressed phones respectively,
depending on the sentential accent of the phone. One skip from the first to the fourth

state, modeling (optionally) faster speech.
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4. Diphthongs: Five HMM states. The second and third states are in parallel, modeling
the stressed and unstressed phones respectively, depending on the sentential accent of

the phone. One skip from the first to the fifth state, modeling fast speech.

These models were first trained as monophones. Then they were expanded into quin-
phones and re-estimated in their individual contexts. Next, their boundary states were tied
by decision-tree based state tying. The decision tree questions were formed again by feature-
based model predictions. Finally, the models were re-estimated with increased mixtures.
The unseen quinphones were synthesized by the HTK state tying algorithm.

The difference of this framework from a triphone baseline word recognition system lies in
the topology design for utilizing high-level linguistic information and the state tying questions
used by decision trees. The results of testing with the TIMIT database are shown in Table 3.
These results demonstrate superior performance of the overlapping-feature based approach
over the triphone based one.

In this experiment, we used a bigram language model similar to the one used in the first
experiment. The only difference is that the one-gram word probabilities were not lowered,
which accounted for the lower accuracy compared to the first experiment.

PLACE Table 3 AROUND HERE
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5 Summary and Discussion

We have reported our recent theoretical development of an overlapping-feature based phono-
logical model which includes long-span contextual dependencies. Our most recent implemen-
tation of the model and some speech recognition experiments using the TIMIT data have
been described. We extended our earlier work [9, 5] by incorporating high-level linguistic
structure constraint in the automatic construction of feature-based speech units. The lin-
guistic information explored includes utterance and word boundaries, syllable constituents
and word stress. A consistent computational framework, based on temporal feature logic,
has been developed for the construction of the phonological model.

One use of the feature-based phonological model in automatic speech recognition, which,
as reported in this paper, is to provide an HMM state topology for the conventional recog-
nizers, serving as a pronunciation model that directly characterizes phonological variability.
We have built a feature-based speech recognizer using the HTK toolkit for this purpose, and
the implemented recognizer is reported in detail in this paper.

The overlapping-feature based phonological model described in this paper is a signif-
icant improvement upon a number of earlier versions of the model. The earliest version
of the model automatically created an HMM topology based on simple, heuristic rules to
constrain feature overlaps [9]. A total of 1143 distinct HMM states are created for the
TIMIT sentences. When that model was used for the task of phonetic classification (TIMIT

database), the phone classification accuracy of 72% was achieved using as few as one-tenth
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of the full training data. The next version of the model improved the phonological rules
for constraining feature overlaps, and interfaced the feature-bundles with the HMM states
which are nonstationary (polynomial) [8, 6]. The new rules created a total of 1209 distinct
HMM states for the TIMIT sentences. Evaluation on TIMIT phonetic recognition (N-best)
gave 74% phonetic recognition accuracy (and 79% correct rate excluding insertion errors). A
further version of the model abandoned all rules to constrain feature overlaps, and allowed
all features to freely overlap across the feature tiers [10]. This created an unmanageable
number of distinct feature-bundles which rendered the HMM recognizer untrainable. The
solution to this problem as reported in [10] was to use an automatic decision-tree clustering
or tying algorithm (based on the acoustic clustering criterion) to reduce the total number
of distinct HMM states needed for reliable HMM training. Evaluation on TIMIT pho-
netic recognition showed the same performance as the decision-tree clustered triphone units.
This demonstrated the weaknesses of using acoustic information only without incorporating
phonological information.

The current version of the model presented in this paper re-focused on the phonological
rules, and it differs from all the previous versions of the model in the following significant
aspects: 1) It incorporates high-level (above phoneme level) linguistic information which
is used to control, in a systematic and predictable way, the feature overlaps across feature
tiers through long-span phoneme sequences; 2) It formulates the phonological rules in terms

of actions of operators which determine detailed behavior of feature overlaps; and 3) It
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has been completely re-implemented in Prolog (all the previous versions of the model were
implemented in C).

The work reported in this paper initiates new efforts of systematic development of feature-
based pronunciation modeling for automatic speech recognition. In this first stage of the
work, we successfully implemented the theoretical constructs in terms of rule formalisms
and programs generating state-transition graphs. The experimental results demonstrated
feasibility of the model in speech recognition applications. In our future work, intensive
efforts will be devoted to automatically acquiring more effective feature overlapping rules
and to developing more effective ways of building speech recognition systems using feature-
overlapping models. A data-driven feature-overlapping rule modification system will also
be developed to test precision of the feature overlapping predictions and to automatically
adjust the predicted articulatory feature bundles during the recognizer training and decoding

phases.
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Appendix 1. A Parser for English Syllable Structure

The syllable structures of words are obtained by a recursive transition network-based phono-
logical parser [3], using a pronunciation dictionary. The transition network is derived from a
set of context-free grammar (CFQG) rules describing the syllable structure of English words.
The CFG rules are obtained by reorganizing and supplementing several lists found in [12].
These rules have been tested for all 6110 words in the TIMIT dictionary. The CFG rules

used for constructing the transition network are as follows:
Word — [Init-Onset] V [CvCluster| [Final-Coda]

Init-Onset — C | p,l [ p,r [ p,w [ py | bl | br [ bw [by | tr|tw [ty [dr|[dw]|dy|
kllkr|kw|ky|egllgr|egwl|gy|fl[fr[fy[v][vr|vy[thr|thw|thy
| s,p | s,pyy | st | sty | s,k | sky |sf|sm]|sn|sl]|sw]|s,y|shm]|shl]|shr|

sh,w | hh,y | hhyw | m,y | n,y | Ly | s,p,l | s,p,r | s,t,r | s,k | sk, | s,k,w
CvCluster — [MidC] V [CvCluster]
MidC — MidC41 | MidC31 | MidC32 | MidC20 | MidC21 | C
MidC41 — C, s, C, C

MidC31 — s, C, C | C, s, C | Nas, Fri, Lqd | Nas, Stp, Gld, | Nas, Obs, r | Lqd, Fri, Lqd |
Lqd, Obs, r | Gld, Fri, Lqd | Gld, Obs, r | Stp, Stp, Lad | Stp, Stp, GId | Stp, Fri, Lqd
| Fri, Stp, Lqd | Fri, Stp, Gld
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MidC32 — Nas, Stp, Lqd | Nas, Stp, Nas | Nas, Stp, Fri | Nas, Stp, Stp | Nas, Stp, Afr |
Lqd, Fri, Stp | Lqd, Fri, Nas | Lqd, Fri, Fri | Lqd, Stp, Stp | Lqd, Stp, Laqd | Lqd, Stp,

Fri | Lqd, Stp, Gld | Lqd, Stp, Afr | Fri, Fri, hh | r, C, C

MidC20 — p,l [ p,r [ p,w [ p,y [ bl br|[bw [by[tr[tw]|ty|dr|[dw]|[dy]|kl]|kr
| kwlky[gl|grfegw|g.,y|[fl[fr|[Ly|vI|vr|v, y[thr|thw|th y][sp]
s,t | s,k |sf|sm|sn|sl]|sw]|s y]|shp|shm]shl]|shr|shw|hhy |hhw |

m,y | ny | Ly
MidC21 — C, C

Final-Coda — C | p, th | t, th | d, th | d,s,t
| ks | kt|ksth|g d|g,z|ch t|jhd|fit|fth]|s,p|s t]|s, k|z d]|m,p|
m, f|n,t|n,d|n,ch|n,jh|n th|n,s|n z|ng k|ng th|ng,z|Lp]|lb]|l
t|Ld|[Lk|Lch|l,jh|LEf]Lv|Lth|Ls|Lz|l,sh|lL,m|Ln|Lp]lks|

Lfth | r, Stp | r,ch | rjh | rf|r,v | rth |rs |z | rsh [ rm | rn |1l

The phoneme type categories are C (consonants), V (vowels), Nas (nasals), Gld (glides),
Fri (fricatives), Afr (affricates), Obs (obstruents), Stp (stops), Lqd (liquids). The MidC
categories are used for assigning word-internal consonant clusters to either the previous

syllable’s coda or the next syllable’s onset according to one of the following four possibilities:

MidC41 — 1 coda consonants, 3 onset consonants,
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MidC31 — 1 coda consonants, 2 onset consonants,

MidC32 — 2 coda consonants, 1 onset consonants,

MidC20 — 0 coda consonants, 2 onset consonants,

MidC21 — 1 coda consonants, 1 onset consonants.

This grammar in its current state is not fully deterministic. The fifth rule of MidC31
and the first rule of MidC32, for example, can result in ambiguous analyses for certain input
sequences. For example, the phoneme sequence in Andrew can be parsed either by rule
MidC31 (Nas Obs r) or by rule MidC32 (Nas Stp Lqd). How to deal with this problem is a
practical issue. For parsing a large number of words automatically, our solution is to use this
parser to first parse a pronunciation dictionary and then resolve the ambiguities through hand
checking. The parsed pronunciation dictionary is then used to provide syllable structures
of the words. We carried out this procedure on the TIMIT pronunciation dictionary. The
results showed that the rules are a fairly precise model of English syllable and phonotactic
structures: Out of 7905 pronunciations, only 135 or 1.7% generated multiple parses. The
ambiguities were hand-checked and the parsed dictionary was used for transferring phoneme
sequences into syllable structures in our TIMIT-based experiments.

As an illustration, Figure 7 shows the parse tree for word display, which denotes that
word display consists of 2 syllables. The category ‘CvCluster’ is used for dealing with

multiple syllables recursively; ‘MidC’ and ‘MidC31’ are categories of intervocalic consonant
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clusters. The category ‘Init-Onset’ denotes the word-initial syllable onset. The separation of
syllable-internal consonants into coda and onset is based on the consonant types according
to phonotactic principles [12].

PLACE Figures 7 and 8 AROUND HERE

The parser output of an unambiguous tree is transformed into subsegmental feature
vectors [1, 4, 9] with high-level linguistic information. This is illustrated in Figure 8. Here
the word display is parsed as a single word utterance with ub standing for utterance beginning
and ue for utterance end. Stress is denoted by 0 (unstressed syllable) and 1 (stressed syllable)
at the syllable node. The subsegmental feature structure is viewed as an autosegmental
structure [1, 11] with skeletal and articulatory feature tiers and a prosodic structure placed
on top of it. There is a resyllabification by which /s/ is moved to the second syllable.
Currently this is done in the lexicon on the word by word basis.

Feature overlapping is carried out by the phonological rules we have implemented compu-
tationally, incorporating high-level linguistic information. We have used a temporal feature
logic [1] as the theoretical framework for imposing constraints and in the formulation of the

phonological rules.
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Appendix 2. A Temporal Feature Logic

A temporal feature logic for the constraint-based approach to feature overlapping is a lan-
guage L(X,P,T,C) where
X is a set of variables: a,b,c..x,y, z.., etc.

P is a prosodic structure: {syl, sylconst, seg, boundary, stress}.

T is a tier structure: {seg, articulator, feature}.

C is a set of logical connectors: {9, <,0,M, = = V,A,V, 3, — = (,), T, L}, where §, <, o,

and M are “dominance”, “precedence”, “overlap”, and “mix”, respectively.

The prosodic structure

1. Vay, syl(z) Nz dy — sylconst(y) V boundary(y)

Syllables can dominate syllable constituents and boundaries.

2. Yy, sylconst(x) Nz oy — seg(y) V stress(y)

Syllable constituents can dominate segments and stresses.

3. VY, boundary(x) — = € {ub, ue, wb, we, mb, me}
where the boundary symbols stand for utterance beginning, utterance end, word be-

ginning, word end, morpheme beginning, morpheme end, respectively.
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4. Yz, sylconst(x) — x € {onset, nucleus, coda}

5. Vx, stress(z) — x € {0,1}

The tier structure

1. Vz, seg(z) — Jy, © 0y A articulator(y)

Every segment dominates one or more articulators.

2. Y, articulator(x) — Jy, xSy A feature(y)

Every articulator dominates one or more features.

3. Vz, articulator(z) — x € {lip,tbld,tdsm,vel,lyz} where the articulator symbols

stands for lip, tongue-blade, tongue-dorsum, velum and larynx, respectively.

4. Vz, feature(x) — poa(x)Vedg(x)V shape(x) where poa stands for place of articulation;
cdg stands for constriction degree and shape stands for the shape of the lips. (Fig-
ure 8 shows how prosodic and tier structures are motivated by subsegmental feature

structures.)

Dominance, Precedence, Overlap, and Mix

The basic properties of §, <, o are described in [1]. When some B is a component of some
A, we say A dominates B, or A 6 B. When two events A and B overlap in time, we denote
this by A o B; otherwise, either A precedes B or B precedes A: A < BV B < A. In Bird’s
temporal feature logic, dominance implies overlap. This is called the locality constraint:
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Yoy, tdy — xoy

Precedence, on the other hand, implies no overlap and vice versa. This is described as the

mutual exclusion of < and o:

Voy, v <y — -z oy and

Yoy, toy — x <Yy

There is an important property related to the above two fundamental properties which is
called the transitivity of < through o: Ywxyz, w <z Axoy Ay <z — w < z. Logically it
is hard to prove this. However, this property can be visualized in the following way. To see
that w < z, we note that the left boundary of x is to the right of w and the right boundary
of y is also to the right of w (since z o y) and the left boundary of z is to the right of the
right boundary of y, therefore, the left boundary of z is also to the right of w. This situation

can be illustrated by the following diagram:

Referring to Figure 8, these operators can be illustrated in the following:

Syllabley 6 Nucleus; ¢ /ih/ § Larynx 6 V+,
Syllable, o Nucleus; o /ih/ o Larynz o V+,
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[d/ < [ih/ < [s/ < [p/ < /1] < [ey/.

Feature overlapping in this temporal logic framework is defined as a process of dynamic
realization of segmental tier structure synchrony (i.e. articulatory features are synchronous
within segments). In dynamic realization, a feature on some articulator tier may spread
temporally and may overlap with features of neighboring segments. If we use a predicate
“possib” to denote possibility of realizing a planned segment sequence, this can be expressed

as follows:

seg, o articulator, o feature; A\ seg, < segy, — possib(segy, o feature;)

When feature; overlaps with seg,, it has a chance to overlap with the features dominated
by segy.

We abandon the “linearity constraint” which requires that events of the same sort be in
precedence relation only (i.e. features on the same articulator tier can only be in precedence
relation). Instead, we allow features at the same tier (therefore, of same sort) to overlap and

we call this “feature mixing”, denoted by X. This relation is expressed as

Vay, tier;(x) A tier;(y) Nz oy <>z X y.

That is, if events on the same tier are in the same dominant group and overlap in time,
they are said to mix with each other. As an overlap can be either partial or full, so is the
mix relation. This mix relation is used to describe coarticulation involving the same tier
in the articulatory feature space (i.e., co-production). Articulatory mix is a very general
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phenomenon. Whenever consecutive phonemes involve the same articulator, there is often a
feature mix in the transition phase.

The temporal feature logic described above is motivated by empirical observations of
speech data including articulatory data and speech spectrograms. In particular, the subseg-
mental, articulatory features are components in forming a phoneme, and at the same time
these features can spread beyond the conventional boundaries of phonemes, exerting influ-
ence on the articulatory or acoustic properties of neighboring phonemes up to some distance
away. If we consider such spreading as independent events, these events can take the form
of temporal overlap or temporal mix. Overlap refers to simultaneous events occurring at
different tiers, while mix refers to simultaneous events occurring on the same tier. A combi-
nation of overlapping and mixing accounts for a great part of transitions between phonemes.
In descriptive terms, these transitional phases in speech can be modeled by a set of feature
bundles constructed from interactions between phonemes via the mechanisms of overlap and
mix. These overlapped and mixed feature bundles derived from the pre-defined, canonical,
context independent feature bundles are then taken as the basic units of speech to form the
HMM state topology for speech recognition.

In Figure 9, the spectrogram shows some acoustic properties of the utterance “step in”
which can be described by feature overlapping in accounting for the transitional phases. The
vowel /eh/ in word step contains two transitional phases. One has a carry-over tongue-tip

feature spread from the previous phoneme /t/; this overlapped feature from /t/ to /eh/
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accounts for the initial formant transition in /eh/. The second transitional phase contains
a look-ahead lips feature spread from the following phoneme /p/. The acoustic effect is
a conspicuous formant transition over a major length of /eh/ with the formant transition
targets towards those of /p/. The stop /p/, due to its coda position, has a very weak
release phase. The spectral shape of the release burst in /p/ is affected by the look-ahead
tongue-dorsum feature of the following vowel /ih/. The vowel /ih/ is partially nasalized due
to the velum feature spread from the following phoneme /n/. At the same time, both the
lips feature of /p/ and the tongue-tip feature of /n/ are overlapped into /ih/, creating the
obvious formant transition throughout the entire vowel.

PLACE Figure 9 AROUND HERE
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Appendix 3. Abbreviations Used In Figures

ASP

B.e

B.1

C/V
ClsAlv.Br
ClsAlv
ClsLab
CrtAlv
CvCluster
Fri
Init-Onset
MidC

Nas

Rnd.o
Rnd.r

seg

Stp

syl

T.Blade

aspiration

tongue-blade
tongue-blade
consonant or

(feature mix

of /e/
of /1/
vowel

of) closure-alveolar and tongue blade of /r/

closure-alveolar

closure-labial

critical-alveolar

consonant vowel cluster

fricative (consonant)

word initial

onset

word-middle consonant

nasal (feature)

lip-rounding
lip-rounding

segment

of /o/

of /xr/

stop (consonant)

syllable

tongue blade

ol



T .Dorsum

ub

ue

V+

tongue dorsum
utterance begin
utterance end
unvoiced

voiced
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Figure 9:

61



Speech Recognition Decoding Results

Dial.Reg. | No.Sents | No.Words | Corr% | Sub | Del | Ins | WER% | Sent.ER%
1 110 964 89 48 | 55 | 10 12 36
2 260 2281 92 97 | 71 | 17 9 33
3 260 2271 92 94 | 77 | 20 9 31
4 320 2714 90 141 | 114 | 21 11 33
5 280 2438 88 175 | 116 | 25 13 40
6 110 966 91 51 | 27 | 14 10 35
7 230 1967 91 107 62 | 9 10 33
8 110 956 91 61 | 23 | 2 10 29
Total/Ave. 1680 14557 90 752 | 567 | 120 10 34
Table 1:

Phone Recognition Decoding Results

System Correct % | Accuracy %
Triphone (baseline) 73.90 70.86
Overlapping Feature 74.70 72.95

Table 2:
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Speech Recognition Decoding Results: Word Correction and Accuracy

Dial.Reg. || No.Sents | No.Words || Baseline Corr | Baseline Acc | Feature Corr | Feature Acc
1 110 964 81.98 80.42 82.92 81.88
2 260 2281 86.10 85.44 86.58 85.62
3 260 2271 85.78 85.16 86.35 85.78
4 320 2714 83.05 81.80 83.35 82.09
5 280 2438 80.31 79.16 80.84 79.61
6 110 966 85.92 85.51 85.20 84.47
7 230 1967 88.66 87.90 89.22 88.66
8 110 956 86.61 85.67 87.13 86.51

Total/Ave. 1680 14557 84.61 83.69 85.04 84.13

Table 3:
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Figure and Table Captions

Figure 1: The overlapping feature bundle generator.

Figure 2: Feature overlaps for words display (upper panel) and displace(lower panel).
Figure 3: Feature overlaps and mixes for word strong.

Figure 4: State-transitional graph for word strong.

Figure 5: Results of applying operator Op125@15 to /t/ before /r/ and the corresponding

state transition graph of /t/.

Figure 6: Use of phonological rules and high-level linguistic information.
Figure 7: Parse tree for word display.

Figure 8: Subsegmental feature structure for word display.

Figure 9: An example spectrogram for step in illustrating acoustic properties associated

with feature overlaps.

Table 1: Continuous speech recognizer performance on words and tested on all 1680 sen-
tences in the TIMIT testing set. Feature-based phonological model is used to construct the
word-level HMM’s and bigram language model is used for word recognition. Each feature-

defined HMM state was trained with a five-Gaussian mixture using HTK.

Table 2: TIMIT phone recognition results: Triphone baseline versus feature-overlapping
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model. The latter uses the feature overlapping rules in the decision-tree based state tying

process of phone-level HMM’s.

Table 3: TIMIT word recognition results: triphone baseline versus feature-overlapping
model. The latter uses the feature overlapping rules to construct context-dependent phone-

level HMM’s incorporating high-level linguistic constraints.
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