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Abstract

Modeling phonological units of speech is a critical issue in speech recognition. In

this paper, we report our recent development of an overlapping-feature based phono-

logical model that represents long-span contextual dependency in speech acoustics. In

this model, high-level linguistic constraints are incorporated in automatic construc-

tion of the patterns of feature overlapping and of the hidden Markov model (HMM)

states induced by such patterns. The main linguistic information explored includes

word and phrase boundaries, morpheme, syllable, syllable constituent categories, and

word stress. A consistent computational framework developed for the construction

of the feature-based model and the major components of the model are described.

Experimental results on the use of the overlapping-feature model in an HMM-based

system for speech recognition show improvements over the conventional triphone-based

phonological model.
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1 Introduction

Modeling phonological units of speech, also referred to as pronunciation or lexicon modeling,

is a critical issue in automatic speech recognition. Over the past several years, we have been

studying this issue from the perspective of computational phonology, motivated by some

recent versions of nonlinear phonology [2, 11]. The computational framework developed is

based on sub-phonemic, overlapping articulatory features where the rule-governed overlap

pattern is described mathematically as a �nite-state automaton. Each state in the automaton

corresponds to a feature bundle with normalized duration information speci�ed [9, 5]. In

this paper, we report our new development of the feature-based phonological model which

incorporates high-level linguistic (mainly prosodic) constraints for automatic construction of

the patterns of feature overlapping and which includes new implementation of the model.

We also report positive results of experiment on use of the feature-based model as the HMM

state topology generator for speech recognition.

In our feature-based phonological model, patterns of feature overlapping are converted to

an HMM state-transition network. Each state encodes a bundle of overlapping features and

represents a unique, symbolically-coded articulatory con�guration responsible for produc-

ing speech acoustics based on that con�guration. When the features of adjacent segments

(phonemes) overlap asynchronously in time, new states are derived which model either the

transitional phases between the segments or the allophonic alternations caused by the in-


uence of context. Since feature overlapping is not restricted to immediately neighboring
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segments, this approach is expected to show advantages over the conventional context depen-

dent modeling based on diphones or triphones. Use of diphone or triphone units necessarily

limits the context in
uence to only immediately close neighbors, and demands a large amount

of training data because of the large number of the units (especially triphone units) combi-

natorially generated. Such a drawback is completely eliminated in the overlapping-feature

based model described in this paper.

The feature-based phonological model and the conventional, triphone-based model cur-

rently most popular in speech recognition [13] are alternative ways of representing words in

the lexicon and their pronunciation using HMM states. Their di�erences can be likened to

\atomic" units versus \molecular" units | �ne versus coarse scales in representing the fun-

damental building blocks of speech utterances. Consequences of such a disparity are that the

feature-based model provides the long-span context-dependency modeling capability while

the triphone model provides only the short-span one, and that the feature-based model is

much more parsimonious and economical in lexical representation than the triphone model.

This latter advantage is due to the fact that several distinct phones may share common fea-

tures while feature overlapping concerns only the spreading of such features with no identity

changes. As a result, the triphone model has much greater training-data requirements than

the feature-based model for speech recognizer construction.

The feature-based model further permits construction of language-independent recogni-

tion units and portability of speech recognizers from one language to another in a principled
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way [7], while the triphone model is not able to do the same. This is because articulatory

features are commonly shared by di�erent languages and play important mediating roles in

mapping the underlying, perceptually de�ned phonological units to surface acoustic forms.

A feature-overlapping model de�ned by general articulatory dynamics can potentially gen-

erate all possible transitory and allophonic states given canonical articulatory descriptions

of phonemes and continuous speech contexts. The task of a training process against a par-

ticular language, on the other hand, is to determine a subset of feature-bundles employed

by the language so that the underlying units can be correctly \perceived" by the listener in

terms of feature-bundle sequences. Therefore, feature bundles derived from context-induced

overlapping can form a universal set for describing all sounds in all languages at a mediating

level between acoustic signals and the the lexical units. The main challenge for developing

the feature-based phonological model is its implementation complexity, which is the main

focus of this paper. To what extent the feature bundles obtained from one language's data

is shared by another language is both a theoretical topic as well as an empirical issue, and

demands further study beyond the scope of this paper.

In our previous work, the feature overlapping rules were constructed based only on the

information about the phoneme (i.e., segment) identity in each utterance to be modeled

[9, 8, 6]. It is well established [2, 3, 4, 11] that a wealth of linguistic factors beyond the

level of phoneme, in particular prosodic information (syllable, morpheme, stress, utterance

boundaries, etc.), directly control the low-level feature overlapping. Thus, it is desirable
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to use such high-level linguistic information to control and to constrain feature overlapping

e�ectively. As an example, in pronouncing the word display, the generally unaspirated /p/

is constrained by the condition that an /s/ precedes it in the same syllable onset. On the

other hand, in pronouncing the word displace, dis is a morphological unit of one syllable and

the /p/ in the initial position of the next syllable subsequently tends to be aspirated.

In order to systematically exploit high-level linguistic information for constructing the

overlapping feature-based phonological model in speech recognition, we need to develop a

computational framework and methodology in a principled way. Such a methodology must

be suÆciently comprehensive to cover a wide variety of utterances (including spontaneous

speech) so as to be successful in speech recognition. Development of such a methodology is

the major thrust of the research reported in this paper.

2 A General Framework of Feature Overlapping

2.1 Use of High-Level Linguistic Constraints

Our general approach to pronunciation modeling is based on the assumption that high-

level (e.g. prosodic) linguistic information controls, in a systematic and predictable way,

feature overlapping across feature dimensions through long-span phoneme sequences. The

high-level linguistic/prosodic information used in the current implementation of the feature-

based model for constraining feature overlapping includes
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� Utterance, word, morpheme and syllable boundaries. (Syllable boundaries are subject

to shifts via resyllabi�cation.)

� Syllable constituent categories: onset, nucleus and coda.

� Word stress and sentence accents.

Morpheme boundary and syllabi�cation are key factors in determining feature overlap-

ping across adjacent phonemes. For example, aspiration of voiceless stops in dis-place and in

mis-place versus non-aspiration of the stop in di-splay are largely determined by morpheme

boundary and syllabi�cation in these words. In the former case, overlapping occurs at the

Larynx tier (See Section 2.2 for the de�nition of articulatory feature tiers). Utterance and

word boundaries condition several types of boundary phenomena. Examples of the bound-

ary phenomena are glottalized word onset and breathy word ending at utterance boundaries,

and the a�rication rule at word boundaries (e.g., compare at right with try) [12]. Likewise,

association of a phoneme with its syllable constituent in
uences pronunciation in many ways.

For example, stops are often unreleased in coda but not so in onset. An example of the e�ect

of word-stress information on feature overlapping is the alveolar-
ap rule which only applies

to the contextual environment where the current syllable is unstressed and the preceding

syllable is stressed within the same word.

This kind of high-level linguistic constraints is applied to our framework through a pre-

dictive model which parses the training sentences into accent groups at the sentence level and

syllabic components at the lexical level. The accent group identi�cation is mainly through
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part-of-speech tagging information. The syllabic component identi�cation is mainly through

a context-free grammar parser based on rules of syllable composition by phonemes (see Ap-

pendix 1). After this analysis, a sentence is represented by a sequence of symbolic vectors,

each containing the phoneme symbol and its syllabic, boundary and accent information

which governs the pronunciation of each phoneme in continuous speech. For example, the

utterance \The other one is too big" will be represented as:

[dh ons ub] (ons = syllable onset, ub = utterance beginning)

[iy nuc we ust] (nuc = syllable nucleus, we = word end, ust = unstressed)

[ah nuc wb] (wb = word beginning)

[dh ons]

[ax nuc we ust]

[w ons wb]

[ah nuc ust]

[n cod we] (cod = syllable coda)

[ih nuc wb ust]

[s cod we]

[t ons wb]

[uw nuc we str] (str = stressed)

[b ons wb]

[ih nuc str]
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[g cod ue] (ue = utterance end)

The the above and throughout this paper, we use the ARPAbet symbols to represent

phonemes. In the later part of the paper we will explain how high-level information constrains

feature overlapping, and thus in
uences speech recognition model building.

2.2 Feature Speci�cation for American English

We use a consistent feature speci�cation system for transforming segment symbols to feature

bundles, which is carried out after syllable parsing and before the application of feature

overlapping rules. This system is characterized by the following key aspects:

� Five feature tiers are speci�ed, which are: Lips, Tongue-Blade, Tongue-Dorsum, Velum,

and Larynx.

� The feature speci�cation of segments is context independent; it shows canonical artic-

ulatory properties coded in symbolic forms. (The total repertoire of the feature values

we have designed is intended for all segments of the world languages. For a particular

language, only a subset of the repertoire is used.)

� Open (underspeci�ed) feature values are allowed in the feature speci�cation system.

These underspeci�ed feature values may be partially or fully �lled by temporally ad-

jacent (speci�ed) features during the rule-controlled feature overlapping process.

8



The feature speci�cation system we have worked out for American English has the fol-

lowing speci�c properties. A total of 45 phonemes are classi�ed into 8 categories: stops,

fricatives, a�ricates, nasals, liquids, glides, (monophthong) vowels and diphthongs. Each

phoneme is speci�ed with a �ve-dimensional feature bundle, corresponding to the �ve ar-

ticulators: Lips, Tongue-blade, Tongue-body, Velum, and Larynx. The values for each

dimension are symbolic, generally concerning the place and manner of articulation (which

are distinct from other phonemes) for the relevant articulator. The feature values for any

(canonically) irrelevant articulator are underspeci�ed (denoted by the value \0").

Continue with the above example. After the phonemes are replaced by articulatory fea-

tures [before overlapping], the utterance \The other one is too big" becomes (the explanations

of the prosodic symbols are given in the example on Section 2.1.):

[dh(0 ClsDen 0 0 V+) ons ub] (ClsDen = dental closure, V+ = voiced)

[iy(0 0 D.iy 0 V+) nuc we ust] (D.iy = tongue dorsum position of /iy/)

[ah(0 0 D.ah 0 V+) nuc wb]

[dh(0 ClsDen 0 0 V+) ons]

[ax(0 0 D.ax 0 V+) nuc we ust]

[w(Rnd.u 0 D.w 0 V+) ons wb] (Rnd.u = lip rounding of /u/)

[ah(0 0 D.ah 0 V+) nuc ust]

[n(0 ClsAlv 0 N+ V+) cod we] (ClsAlv = alveolar closure, N+ = nasal)

[ih(0 0 D.ih 0 V+) nuc wb ust]
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[s(0 CrtAlv 0 0 V-) cod we] (CrtAlv = alveolar critical, V- = unvoiced)

[t(0 ClsAlv 0 0 V-) ons wb]

[uw(Rnd.u 0 D.uw 0 V+) nuc we str]

[b(ClsLab 0 0 0 V+) ons wb] (ClsLab = labial closure)

[ih(0 0 D.ih 0 V+) nuc str]

[g(0 0 ClsVel 0 V+) cod ue] (ClsVel = velum closure)

Some further detail is given here on the featural representation of the segments. Generally,

we use a single feature bundle to represent a segment in its canonical state. This, to some

extent, ignores some �ner structures. For example, the stops have at least two distinctive

phases: the closure phase and the release phase. To account for this, �ner structures are

needed and they are modeled by the derived feature bundles. For instance, the release phase

of the stops is represented by a derived feature bundle between the stop and an adjacent

segment. The derived feature bundle for the release phase still contains such a feature as

ClsAlv (e.g. for /t/) or ClsLab (e.g. for /p/), but it is understood di�erently as will be

illustrated in the examples of the subsection 2.4.

2.3 A Generator of Overlapping Feature Bundles

An overlapping feature bundle generator is a program which 1) scans the input sequence

of feature bundles with high-level linguistic information; 2) matches them to corresponding

overlapping rules; 3) executes overlapping (or mixing) operations speci�ed in the overlapping

10



rules during two separate, leftward-scan and rightward-scan processes; The execution starts

from the right-most phoneme for the leftward-scan process, and it starts from the left-most

phoneme for the rightward-scan process. and 4) integrates the results of leftward-scan and

rightward-scan to produce a state-transition network. A block diagram of the overlapping

feature bundle generator is shown in Figure 1.

PLACE Figure 1 AROUND HERE

Our feature-overlapping rules contain two types of information (or instruction): pos-

sibility information and constraint information. The possibility component speci�es what

features can overlap and to what extent, regardless of the context. The constraint component

speci�es various contexts to constrain feature-overlapping. Below we give some examples of

possibility and constraint:

� Possibility of Velum Feature Overlapping: A velum lowering feature can spread left

and right to cause the phenomenon of nasalization in some phones, such as vowels.

� Possibility of Lip Feature Overlapping: A lip rounding feature can spread mainly to

the left to cause the phenomenon of lip-rounded allophones.

� Possibility of Tongue Body Feature Overlapping: A tongue body feature can spread

to cause such phenomenon in stops as advanced or retracted tongue body closures (as

in /g iy/ versus /g uh/).

� Possibility of Larynx Feature Overlapping: A voicing/unvoicing feature can spread to
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cause such phenomena as voiced/unvoiced allophones.

� Possibility of Tongue Tip Feature Overlapping: The tongue tip feature of /y/ can

spread into the release phase of a stop to cause the phenomenon of palatalization (as

in \did you").

� Constraint rule: A stop consonant blocks feature spreading of most features, such as

lip feature, larynx feature, etc.

� Constraint rule: A vowel usually blocks tongue body features from spreading through

it.

The above spreading-and-blocking model can account for many types of pronunciation

variation found in continuous speech. But there are some other common phenomena that

cannot be described by feature spreading only. The most common among these are the

reductive alternation of vowels (into schwa) and consonants (
apping, unreleasing, etc.).

Therefore, our model needs to include a control mechanism that can utilize high-level in-

formation to \impose" feature transformation in speci�c contexts. We give some examples

below:

� Context-controlled transformation: A stop consonant undergoes a 
ap transformation

in such contexts as: [V stressed] * [V unstressed] (where `*' marks the position of the

consonant in question).
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� Context-controlled transformation: A stop consonant deletes its release phase in a coda

position.

� Context-controlled transformation: A vowel undergoes a schwa transformation in an

unstressed syllable of an unaccented word in the utterance.

The output of the generator is a state-transition network consisting of alternative feature

bundle sequences as the result of applying feature-overlapping rules to an utterance. This

structure directly corresponds to the state topologies of hidden Markov models of speech.

Each distinctive HMM state topology can be taken as a phonological representation for a

word or for a (long-span) context-dependent phone. The HMM parameters, given the topol-

ogy, are then trained by cepstral features of the speech signal. In the following subsection,

we give two examples of applying the feature-overlapping rules (details will be presented in

Section 3), and show the results in the form of the constructed overlapping feature bundles.

2.4 Examples: Feature Bundles Generated by Applying Feature

Overlapping Rules

We present two examples to illustrate typical applications of the feature overlapping rules

utilizing high-level linguistic information before details of the rules are formally described.

The �rst example shows how the words display and displace are endowed with di�erent feature

structures in the stop consonant /p/, despite the same phoneme sequence embedding the

/p/. The di�erence is caused by di�erent syllable structures. After syllable parsing and
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feature overlapping, the results in feature bundles, accompanied by the spectragrams of the

two words, are shown in Figure 2. Due to di�erent syllable structures: (/d ih s . p l ey

s/ versus /d ih . s p l ey/), di�erent overlapping rules are applied. This simulates the

phonological process in which the phoneme /p/ in displace tends to be aspirated but in

display unaspirated.

PLACE Figure 2 AROUND HERE

The two relevant feature bundles are shown in the �gure by the dashed vertical lines. The

di�erence lies in the voicing feature at the larynx feature tier. The aspiration is indicated by

a V- feature in the feature bundle of the word displace between /p/ and /l/. Phonologically,

this is called delayed voicing in the onset of /l/. In the model, this is realized through

asynchronous leftward spreading of the tongue blade and larynx features of /l/, which overlap

with the features of /p/.

The second example (Figure 3) shows the word strong, which contains several feature

overlaps and mixes. (Feature mixes are de�ned as feature overlaps at the same feature

tier). Some of them have variable durations (in lip-rounding and nasalization), represented

by the dashed boxes. Such variability in the duration of feature overlapping gives rise to

alternative feature bundle sequences. By merging identical feature bundles, a network can

be constructed, which we call the \state transition network". Each state in the network

corresponds to a feature bundle. The network constructed by the overlapping feature bundle

generator for the word strong is shown in Figure 4, where each state is associated with a
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set of symbolic features. The branches in the network result from alternative overlapping

durations speci�ed in the feature overlapping rules.

PLACE Figures 3 and 4 AROUND HERE

Generally, a derived feature bundle with overlapping features from adjacent segments

represents a transitional phase (coarticulation) between phonemes in continuous speech.

Overlapping in real speech can pass several phonemes and our feature-overlapping model

e�ectively simulates this phenomenon. For example, in strong /s t r ao ng/, the lip rounding

feature of /r/ can spread through /t/ to /s/, and the nasal feature of /ng/ can also pass

through /ao/ to /r/, as is shown in Figure 3. This ability to model long-span phonetic

context is one of the key characteristics of this model.

3 Implementation of the Feature-Overlapping Engine

3.1 The Demi-Syllable as the Organizational Unit in Formulating

Feature-Overlapping Rules

Based on the information obtained by the syllable parser and the feature speci�cation (in-

cluding underspeci�cation) of phonemes, demi-syllables are constructed, which are operated

upon by the feature-overlapping rules (formally de�ned below) to generate transition net-

works of feature bundles. A demi-syllable in our system is a sequence of broad phoneme

categories encompassing the phonemes in either syllable-onset plus nucleus, or nucleus plus
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syllable-coda formations, together with high-level linguistic information. When a syllable has

no onset or coda consonants, that demi-syllable will be only a vowel. The broad phonetic

categories we have used are de�ned as follows:

� V { vowel,

� GLD { glide,

� LQD { liquid,

� NAS { nasal,

� AFR { a�ricate,

� FRI1 { voiced fricative,

� FRI2 { voiceless fricative,

� STP1 { voiced stop,

� STP2 { voiceless stop.

Other elements included in a demi-syllable are related to the higher-level linguistic informa-

tion. These include:

� ons { syllable onset,

� nuc { syllable nucleus,
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� cod { syllable coda,

� ub { utterance beginning,

� ue { utterance end,

� wb { word beginning,

� we { word end,

� str { stressed syllable in the utterance,

� ust { unstressed syllable.

For instance, the demi-syllables of the utterance \The other one is too big", including high-

level linguistic information, are as follows:

[FRI1 ons ub] [V nuc we ust] ( dh-iy )

[[V, nuc, wb]] (ah)

[FRI1 ons] [V nuc we ust] ( dh-ax )

[GLD ons wb] [V nuc ust]] ( w-ah )

[V nuc ust] [NAS cod we]] ( ah-n )

[V nuc wb ust] [FRI2 cod we] ( ih-s )

[STP2 ons wb] [V nuc we str] ( t-uw )

[STP1 ons wb] [V nuc str]] ( b-ih )

[V nuc str] [STP1 cod ue] ( ih-g )
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Demi-syllables split a full syllable (one with both onset and coda consonants) into two

halves. The purpose of this splitting is to make a small set of units for practical rule

development. Contextual constraints speci�ed in the phonological rules are de�ned on the

demi-syllables. After parsing all the 6110 words in the TIMIT corpus dictionary, we obtained

291 distinct word-based demi-syllables (that is, without specifying utterance boundaries and

utterance accents, which can be included in later rule development). This is a compact set,

facilitating the development of the overlapping rule system which we now describe in detail.

3.2 Overlapping Phonological Rule Formulation

This subsection gives a detailed description of the phonological rules for articulatory feature

overlapping. Appendix 2 presents a logical basis of our feature-overlapping system in the form

of a temporal logic. This logic is based on autosegmental and computational phonological

theories, presented in [1, 2, 11] and elsewhere. The phonological rules have been formulated

systematically based on the behavior of articulatory features, especially under the in
uence

of high-level linguistic structures. The phonological rules are used to map any utterance

from its demi-syllable representation into its corresponding feature bundle network (i.e. the

state transition graph).

The data structure of feature-overlapping rules consists of \overlapping patterns" and

\overlapping operators". Each overlapping pattern is de�ned with respect to a demi-syllable

and contains the names of a number of overlapping operators. The demi-syllable, as illus-
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trated in the last subsection, contains both segmental information (broad phonetic cate-

gories) and high-level linguistic information (boundaries, accents and syllable constituents).

The construction of overlapping patterns starts from the 291 word-based demi-syllables.

Based on the temporal logic and particular phonological knowledge concerning coarticulation

and phonetic alternations, necessary boundary and accent requirements are added. Further,

a number of overlapping operators' names are added to form an overlapping pattern. Each

operator corresponds to a broad phonetic category in the demi-syllable.

The overlapping operators are de�ned on the phonemes based on phonological theory,

describing how their articulatory features may overlap in speech. When an overlapping

pattern is applied, an operator name will point to the actual de�nition, which then is applied

to the corresponding phoneme matching a broad phonetic category. One de�nition of an

operator may be pointed to by more than one overlapping pattern. Thus, the overlapping

operators realize the possibilities while the overlapping patterns realize the constraints on

the possibilities. (The concepts of possibility and constraint were discussed in subsection

2.3.)

Let us denote a broad phone category in a demi-syllable by DSC (standing for demi-

syllable constituent), then a phonological rule is described by a list of DSC's in a demi-

syllable, together with all possible operators allowed to operate on each DSC. The overall

data structure of a phonological rule is in this form:

[DSC-1: operator1.1, operator1.2, operator1.3 . . . (high-level information)]
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[DSC-2: operator2.1, operator2.2, operator2.3 . . . (high-level information)]

[DSC-3: operator3.1, operator3.2, operator3.3 . . . (high-level information)]

. . .

An operator describes how feature overlapping could happen on di�erent articulatory

tiers, as is described in phonological theory, such as \lip rounding", \jaw lowering", \palatal-

ization", etc. Each operator consists of four components: 1) action, 2) tier-speci�cation, 3)

feature-value constraint, and 4) relative-timing. Below we discuss each of these components.

First, there are three choices for describing an action:

� L or R: For leftward (look-ahead) or rightward (carry-over) feature spread from an

adjacent phoneme onto an underspeci�ed tier of the phoneme.

� M or N: For leftward or rightward mixture of a feature from an adjacent phoneme on

the same tier.

� S: For substitution of a feature value by a di�erent feature value.

Second, a tier-indicator speci�es at which feature tier an action takes place. A tier

indicator is given by an integer as follows:

� 1: the Lips tier,

� 2: the Tongue-Blade tier,

� 3: the Tongue-Dorsum tier,
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� 4: the Velum tier,

� 5: the Larynx tier.

Third, a value constraint can optionally be given to stipulate that a feature spread from

an adjacent phoneme must have a speci�ed value. If this value constraint is not given, the

default requirement is that on this tier of an adjacent phoneme there must be a speci�ed

feature in order for the operator to be applicable.

Fourth, a relative-timing indicator is used to specify the temporal extent of a feature

spreading. In the current implementation of the model, we use four relative-timing levels:

25%, 50%, 75%, and 100% (full) with respect to the entire duration of the phoneme.

The reader may wonder how long-span e�ects are realized in this model. This is realized

by full (100%) feature spreading. Once an adjacent phoneme's feature is spread to the entire

duration of the current phoneme, that feature is visible to the adjacent phoneme on the other

side and may spread further. For example, a nasal feature from a right adjacent phoneme

may be allowed to spread to the full duration of a vowel. The phoneme to the left of the

vowel can \see" this feature and may allow it to spread into itself. This is the mechanism

used by the model to pass a feature over several phonemes until it is blocked.

The naming of an operator follows a syntax which re
ects its internal de�nition. The

syntax for an operator name is given as:

Operator-Name := Op N+ [ @ N+ ]

N := 1 j 2 j 3 j 4 j 5
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where the numbers after 'Op' re
ect the tier-indicators in the de�nition, and the optional

numbers after the symbol @ stands for the tiers at which feature-value constraints are im-

posed.

A phoneme can be given a number of operators. Whether an operator is allowed to

apply to a phoneme depends on whether it is listed in a DSC of an overlapping pattern.

Furthermore, whether an operator listed in an DSC can be �red or not depends on if the

conditions in the operator de�nition are met. For example, for the operator with the name

Op2 to �re, the second tier of the adjacent phoneme must have a speci�ed feature value.

As another example, for the operator of the name Op12@2 to �re, the adjacent phoneme

(whether it is to the left or right depends on the action type of the operator) must have

speci�ed features at tier 1 and 2 and the feature value at tier 2 must match the value

speci�ed in its de�nition.

As an illustration, Figure 5 shows the result of applying an operator named Op125@15

to the feature bundle of /t/ when it is followed by /r/. The operator is de�ned as

(125@15, tier 1.L.rnd, tier 2.M, tier 5.L.V+, time:(.5,.25,.25; 1,.25,.25)).

According to this de�nition, the three tiers of the phoneme { Lips (1), Tongue-Blade (2) and

Larynx (5) have actions M or L. Tiers 1 and 5 constrain the spreading feature values as rnd

and V+ that come from a right neighbor. There are two alternative timing speci�cations

(.5,.25,.25) and (1,.25,.25). Feature spreading at the three tiers will enter the feature bundle

of /t/ in two possible ways: 1) Lips feature spreading to 50% of the entire duration, and
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Tongue-Blade and Larynx features spreading to 25%, or 2) Lips feature spreading to the en-

tire duration and the Tongue-Blade and Larynx feature spreading to 25%. As a consequence,

two new feature bundles are derived. The two possible ways for state transitions are shown

in Figure 5, which is automatically derived by a node-merging algorithm accepting parallel

state sequences. Note how long-distance feature overlapping can be realized by the rule

mechanism: Once a feature spreading covers an entire duration, this feature will be visible

to the next phoneme. Now we give an example of a phonological rule, which is de�ned on

the demi-syllable with high-level linguistic structure:

[FRI2 ons wb] [STP2 ons] [LQD ons] [V nuc str]

This demi-syllable can match the �rst four phonemes of the word strong. This rule is

expressed as:

[FRI2 (Op2, Op3, Op13@1) ons wb]

[STP2 (Op2, Op125@15) ons]

[LQD (Op3, Op34@4) ons]

[V (Op3, Op34@4) nuc str]

Each DSC in this rule is given a number of operators which can operate on the phonemes

that are matched by the demi-syllable. Notice the high-level linguistic structures (ons, wb,

etc.) which constrain the application of the rule to certain prosodic context. In the current

implementation of the feature-based model, we have the following operator inventory which
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consists of a total of 26 operators de�ned for the 44 English phonemes for the leftward

scanning. A corresponding set of operators for rightward scanning are similarly de�ned. We

list the leftward operators as follows:

1. (Op1,1.M,(.25)) (transitional phase)

2. (Op1,1.L,(.25))

3. (Op2,2.M,(.25))

4. (Op2,2.L,(.25))

5. (Op3,3.M,(.25))

6. (Op3,3.L,(.25))

7. (Op5,5.S,()) (glottal substitution)

8. (Op2,2.S,()) (tongue blade substitution)

9. (Op4,4.L.N+,(.5;1)) (nasalization)

10. (Op12@1,1.L.rnd,2.M,(.5,.25;1,.25)) (transition with lip rounding)

11. (Op13@1,1.M.rnd,3.L,(.5,.25;.25,.25))

12. (Op13@1,1.L.rnd,3.M,(.5,.25;1,.25))

13. (Op13@1,1.L.rnd,3.L,(.5,.25;1,.25))
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14. (Op14@4,1.L,4.L.N+,(.25,.5;.25,1)) (transition with nasalization)

15. (Op24@4,2.L,4.L.N+,(.25,.5;.25,1))

16. (Op34@4,3.M,4.L.N+,(.25,.5;.25,1))

17. (Op23@2,2.S.TapAlv,3.L,(.25,.75;1,.25))

18. (Op34@4,3.M,4.l.N+,(.25,.5;.25,1))

19. (Op34@4,3.L,4.L.N+,(.25,.5;.25,1))

20. (Op35@5,3.M,5.L.V+,(.25,.25)) (transition with unaspiration)

21. (Op35@5,3.L,5.L.V+,(.25,.25))

22. (Op125@15,1.L.rnd,2.M,5.L.V+,(.5,.25,.25;1,.25,.25)) (more combinations)

23. (Op134@14,1.M.rnd,3.L,4.L.N+,(.5,.25,.5;.5,.25,1;1,.25,.5) )

24. (Op134@14,1.L.rnd,3.L,4.L.N+,(.5,.25,.5;.5,.25,1;1,.25,.5) )

25. (Op135@15,1.M.rnd,3.L,5.L.V+,(.5,.25,.25;1,.25,.25))

26. (Op135@15,1.L.rnd,3.L,5.L.V+,(.5,.25,.25;1,.25,.25))

PLACE Figure 5 AROUND HERE

To illustrate the use of overlapping phonological rules and how high-level linguistic infor-

mation is incorporated, we demonstrate with the example utterance \a tree at right" (the
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corresponding phoneme sequence is /ax t r iy ae t r ay t/). After prosodic processing, where

part-of-speech tagging and shallow syntactic parsing is used for deriving the boundary and

accent information, and following syllable parsing, the utterance is represented by a sequence

of demi-syllables:

1. [V nuc ub ust] (ax)

2. [STP2 ons wb] [FRI1 ons] [V nuc we str] (t-r-iy)

3. [V nuc wb ust] [STP2 cod we] (ae-t)

4. [FRI1 ons wb] [V nuc str] (r-ay)

5. [V nuc str] [STP2 cod ue] (ay-t)

Each demi-syllable is matched by a phonological rule. The overlapping operators in each

DSC are tried for �ring. If the conditions are met, an operator is �red to derive feature

bundles. During the derivation process, segment and word boundaries are recorded to \cut

up" the derived network into word networks or phone networks, which are used to build

word or phone-based hidden Markov models.

In this example, we illustrate the use of syllable information to realize the \a�rication

rule" discussed earlier in subsection 2.1. The utterance's wave form, spectragram and rel-

evant features concerning the use of the a�rication rule are shown in Figure 6. To realize

the a�rication rule, the phonological rule matching the second demi-syllable: [STP2 ons

wb] [FRI1 ons] [V nuc we str] will have its �rst DSC assigned an operator: (Op2,2.L,(.25))

which allows feature overlapping on the tongue blade tier. The overlapping phonological
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rule matching the third demi-syllable, on the other hand, will not assign this operator to the

second DSC: [STP2 cod we], blocking a�rication.

PLACE Figure 6 AROUND HERE

As another example of applying high-level linguistic information, consider the use of

a substitution action in an operator at utterance beginning. For the above utterance, a

rule matching the �rst demi-syllable: [V nuc ub ust] can have an operator with a glottal

substitution action: (Op5, 5.S.?, ()). This simulates an utterance with a glottal stop at the

outset. Similarly, an un-released stop consonant at the end of a word or an utterance can

be simulated by the phonological rule mechanism as well.

We have illustrated how \possibilities" and \constraints" can be implemented by the

overlapping patterns and operators. With each DSC within a rule there may be a number

of operators available for �ring. When more than one operator can be �red, it is the more

speci�c ones that are �red �rst. Depending on how complex we expect the generated network

to be, the system is able to control how many operators to be �red.

4 Speech Recognition Experiments

In this section we describe the speech recognition experiments using the phonological rules

and the generator of overlapping feature bundles described earlier in this paper. Our experi-

ments are carried out using the TIMIT speech database and the tasks are both (continuous)

word and phone recognition. Our preliminary experimental results show that this feature-
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based approach is a promising one with a number of new directions for future research.

4.1 Automatic Creation of HMM Topology with Feature-Bundle

States

The feature-based speech recognizer we have constructed uses a special HMM topology

to represent pronunciation variability in continuous speech. The variability is modeled by

parallel feature-bundle state sequences as a result of applying the phonological rules to the

canonical phoneme representations. The HMM topology is created automatically by rules,

one for each word. Details of this process have been provided in Section 3 and we summarize

this process as the following six steps for the TIMIT corpus:

1. Parse each phoneme string in a sentence into a syllable sequence, and

further into a demi-syllable sequence with prosodic structure;

2. Match the demi-syllable sequence to a sequence of corresponding feature-overlapping

patterns;

3. Select the relevant feature-overlapping operators (de�ned in the feature-overlapping

pattern) for each phoneme according to its featural context in the sentence;

4. Apply the operators in the order from most speci�c to most general, with complexity

control;
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5. Generate a full set of overlapped or mixed feature bundles (and use them as the HMM

states), as the result of the applications of feature-overlapping rules;

6. Generate state-transition graphs for all the words (and sentences) in the TIMIT database

based on the parallel feature-bundle transition paths.

The last step creates the feature-based pronunciation models in the form of word-HMM's

for all 6110 TIMIT words. To show the parsimony of the feature-based approach, only 901

distinct HMM states (i.e. 901 distinct feature bundles) were derived and used to represent

these 6110 words, in contrast to tens of thousands generated by the conventional triphone

approach. Furthermore, long-span context dependence has been incorporated due to the

application of long-span feature-overlapping rules.

Given the HMM topology automatically created for each word in TIMIT, we used the

HTK tools to compute the speech features (MFCC) and to train the continuous-density

HMM output-distribution parameters (means, variances, and mixture weights) for all 901

unique feature bundles (HMM states) using the training data in TIMIT. The HMM's trained

were then used to automatically recognize the TIMIT test-set sentences, using HTK Viterbi

decoder (HVite tool).

The training and recognition with network HMM's (see Figure 4), which contain multi-

path graphs, is allowed by the HTK tool as it is designed for experimenting with di�erent

model structures including multi-path topologies. We use the global mean and variance

from the entire data set to initialize the models, and then use Baum-Welsh re-estimation to
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compute the parameters speci�c to each state. The re-estimation procedure (HERest tool)

applied to the models avoids the alignment problem as may occur with multi-path structures

because of the following two reasons. First, all the states which are derived from the same

feature bundle are tied from the beginning. Second, when a branch occurs in some model,

the alignment between data and alternative states is resolved when there is similar data

elsewhere in the corpus aligned with a non-branching state which is tied with one of the

alternative states.

4.2 Statistics in Training and Testing Data

The TIMIT database used in our experiments consists of 630 speakers in 8 dialect regions,

of which 462 are in the training set and 168 are in the testing set. The sentences in the

training and the testing sets are disjoint, except for two sentences which were spoken once

by every speaker. The training set contains 4620 sentences and the testing set 1680. The

training set contains 4890 distinct words and the testing set 2375. Among the total 6110

words in TIMIT, 1155 words occur in both the training and testing sets and 1220 words are

unique to the testing set (i.e., distinct from all words in training).

The entire set of TIMIT words (training and testing sets) gives rise to a total of 901 HMM

states after the application of the overlapping rules described in Section 3. Among all the

901 states, the testing set contains 754 states, of which 717 states also occur in the training

set. This shows the advantage of the feature-based approach: in contrast to around 48%
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sharing of words (1155 out of 2375), the sub-phonemic, feature-bundle sharing is over 95%

(717 out of 754) for the testing set. This means that with about 52% of the words unseen in

the training model, when it comes to feature-bundle based states, the unseen portion in the

training set drops to only about 5%. For the 37 states occurring uniquely in the testing set,

we synthesized them with the parameters of the states obtained from the training set which

have similar features as the \unseen" states, using a feature vector similarity metric.

In short, in contrast to words, the training and testing sets di�er less in terms of feature

bundles. The 4890 words in the training set account for 95% of feature bundles in the words

of the testing set, although they only account for 48% of the words in the testing set.

4.3 Speech Recognition Results

Using the embedded estimation tool HERest in the HTK, we trained the word-HMM's by

direct tying. This means that the 901 states were used for all the words from the very

beginning. Unlike the triphone training procedure which undergoes a separate state-tying

process, the direct tying training was eÆcient in terms of both training time and memory

space requirements. We estimated single-Gaussian state models twice. Then the mixture

number was increased gradually to �ve, with one re-estimation for each increase.

This amounts to using the feature-overlapping model to construct the word-level HMM's.

Since the testing set has half of the words distinct from that of the training-set, these

\unseen" word HMM models are synthesized with state macros (symbolic names pointing to
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the trained states). We have carried out speech recognition (decoding) experiments using the

HMM's, obtained by the above training procedure. Details of the recognition performance

are shown in Table 1, where the word error rate (WER) and sentence error rate (Sent.ER),

as well as the word substitution (Sub), deletion (Del), and insertion (Ins) rates, are shown as

a function of the dialect regions (Dial.Reg.) in the TIMIT database. The size of the testing

set in terms of the total number of test words and sentences in each of the dialect regions

is also listed. These results are obtained on all the 1680 sentences in the TIMIT testing set

covering all eight dialect regions of American English accents. A bigram language model

was used, which was derived from the whole set of TIMIT prompt sentences, with one-gram

probabilities lowered to -99. A �ve-Gaussian mixture was used as the output distribution

for each of the 901 feature bundle-based HMM states.

PLACE Table 1 AROUND HERE

The eÆciency of the feature-based system was evident in the experiments. For example,

the state set from the very beginning was compact and the training time was also much less

compared to the triphone system, at the ratio of about 1/20.

In a further experiment, we used the data-driven state clustering functionality provided

by the HTK toolkit in the overlapping feature framework with uni�ed model topologies. We

performed the TIMIT phone recognition task by using 39 three-state, left-to-right, no-skip

phone models trained as quinphones. Compared with triphones, a quinphone incorporates

contexts of up to two phones to its left and right. This gives the possibility of utilizing
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the predictions made by the feature-overlapping model. The predictions were used to form

decision tree questions for state tying.

The training set of TIMIT database resulted in 64230 context-dependent quinphones.

The overlapping features germinating from �ve-phone contexts were used in designing decision-

tree questions for state tying. The contexts that a�ect the central phones through feature

overlapping, as predicted by the model, form questions for separating a state pool (a tech-

nique of state tying with decision trees). For example, the nasal release of stop consonants

in such contexts as /k aa t ax n/ and /l ao g ih ng/ (the /t/ in the �rst context and /g/

in the second context, in
uenced by /n/ and /ng/) will induce questions for tying the third

state of the three-state model with the conditions expressed as *+ax2n, *+ax2ng, etc. ('2'

is used here to separate the �rst and the second right context phones). With the aid of such

decision-tree questions, the quinphone states were tied and re-estimated. The testing result

is compared with the triphone baseline results for the 39-phone recognition de�ned in the

TIMIT database. This comparison is shown in Table 2, where both systems are used to

recognize the same 1680 test utterances that consists of a total of 53484 phone tokens. The

results in Table 2 show that the feature-overlapping model outperforms the conventional tri-

phone model. The feature-overlapping model is able to make meaningful predictions, which

lead to increase of the eÆciency of model organization and training process. Without this

predictive model, it would have been impossible to form meaningful state tying questions.

PLACE Table 2 AROUND HERE
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Our third experiment used phone-level HMM's to perform word recognition. This is done

via a pronunciation dictionary in which each word is represented by one or more sequences

of phone HMM models. We used four basic types of prede�ned phone models, representing

stop consonants, other consonants, single vowels and diphthongs respectively. The design

of the HMM topologies is based on the assumption that high-level linguistic structures can

in
uence the acoustic properties of the pronounced phonemes and this is re
ected in the

model structures. The design of each of the four types of phone models is given below:

1. Stop Consonants: Three HMM states, one skip from the second state to the exit

dummy state, modeling non-release of stop consonants, one skip from the �rst state

to the exit state, modeling a very short duration without release. The loss of release

phase is expected to occur mainly in the coda position.

2. Other Consonants: Three HMM states, one skip from the �rst state to the third state,

modeling a short duration in which the central state has no acoustic data, such as in

fast spontaneous speech when the whole duration is in
uenced by the left and right

contexts.

3. Monophthongs (single vowels): Four HMM states. The middle two states are in par-

allel. These two middle states model stressed and unstressed phones respectively,

depending on the sentential accent of the phone. One skip from the �rst to the fourth

state, modeling (optionally) faster speech.
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4. Diphthongs: Five HMM states. The second and third states are in parallel, modeling

the stressed and unstressed phones respectively, depending on the sentential accent of

the phone. One skip from the �rst to the �fth state, modeling fast speech.

These models were �rst trained as monophones. Then they were expanded into quin-

phones and re-estimated in their individual contexts. Next, their boundary states were tied

by decision-tree based state tying. The decision tree questions were formed again by feature-

based model predictions. Finally, the models were re-estimated with increased mixtures.

The unseen quinphones were synthesized by the HTK state tying algorithm.

The di�erence of this framework from a triphone baseline word recognition system lies in

the topology design for utilizing high-level linguistic information and the state tying questions

used by decision trees. The results of testing with the TIMIT database are shown in Table 3.

These results demonstrate superior performance of the overlapping-feature based approach

over the triphone based one.

In this experiment, we used a bigram language model similar to the one used in the �rst

experiment. The only di�erence is that the one-gram word probabilities were not lowered,

which accounted for the lower accuracy compared to the �rst experiment.

PLACE Table 3 AROUND HERE
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5 Summary and Discussion

We have reported our recent theoretical development of an overlapping-feature based phono-

logical model which includes long-span contextual dependencies. Our most recent implemen-

tation of the model and some speech recognition experiments using the TIMIT data have

been described. We extended our earlier work [9, 5] by incorporating high-level linguistic

structure constraint in the automatic construction of feature-based speech units. The lin-

guistic information explored includes utterance and word boundaries, syllable constituents

and word stress. A consistent computational framework, based on temporal feature logic,

has been developed for the construction of the phonological model.

One use of the feature-based phonological model in automatic speech recognition, which,

as reported in this paper, is to provide an HMM state topology for the conventional recog-

nizers, serving as a pronunciation model that directly characterizes phonological variability.

We have built a feature-based speech recognizer using the HTK toolkit for this purpose, and

the implemented recognizer is reported in detail in this paper.

The overlapping-feature based phonological model described in this paper is a signif-

icant improvement upon a number of earlier versions of the model. The earliest version

of the model automatically created an HMM topology based on simple, heuristic rules to

constrain feature overlaps [9]. A total of 1143 distinct HMM states are created for the

TIMIT sentences. When that model was used for the task of phonetic classi�cation (TIMIT

database), the phone classi�cation accuracy of 72% was achieved using as few as one-tenth
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of the full training data. The next version of the model improved the phonological rules

for constraining feature overlaps, and interfaced the feature-bundles with the HMM states

which are nonstationary (polynomial) [8, 6]. The new rules created a total of 1209 distinct

HMM states for the TIMIT sentences. Evaluation on TIMIT phonetic recognition (N-best)

gave 74% phonetic recognition accuracy (and 79% correct rate excluding insertion errors). A

further version of the model abandoned all rules to constrain feature overlaps, and allowed

all features to freely overlap across the feature tiers [10]. This created an unmanageable

number of distinct feature-bundles which rendered the HMM recognizer untrainable. The

solution to this problem as reported in [10] was to use an automatic decision-tree clustering

or tying algorithm (based on the acoustic clustering criterion) to reduce the total number

of distinct HMM states needed for reliable HMM training. Evaluation on TIMIT pho-

netic recognition showed the same performance as the decision-tree clustered triphone units.

This demonstrated the weaknesses of using acoustic information only without incorporating

phonological information.

The current version of the model presented in this paper re-focused on the phonological

rules, and it di�ers from all the previous versions of the model in the following signi�cant

aspects: 1) It incorporates high-level (above phoneme level) linguistic information which

is used to control, in a systematic and predictable way, the feature overlaps across feature

tiers through long-span phoneme sequences; 2) It formulates the phonological rules in terms

of actions of operators which determine detailed behavior of feature overlaps; and 3) It
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has been completely re-implemented in Prolog (all the previous versions of the model were

implemented in C).

The work reported in this paper initiates new e�orts of systematic development of feature-

based pronunciation modeling for automatic speech recognition. In this �rst stage of the

work, we successfully implemented the theoretical constructs in terms of rule formalisms

and programs generating state-transition graphs. The experimental results demonstrated

feasibility of the model in speech recognition applications. In our future work, intensive

e�orts will be devoted to automatically acquiring more e�ective feature overlapping rules

and to developing more e�ective ways of building speech recognition systems using feature-

overlapping models. A data-driven feature-overlapping rule modi�cation system will also

be developed to test precision of the feature overlapping predictions and to automatically

adjust the predicted articulatory feature bundles during the recognizer training and decoding

phases.
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Appendix 1. A Parser for English Syllable Structure

The syllable structures of words are obtained by a recursive transition network-based phono-

logical parser [3], using a pronunciation dictionary. The transition network is derived from a

set of context-free grammar (CFG) rules describing the syllable structure of English words.

The CFG rules are obtained by reorganizing and supplementing several lists found in [12].

These rules have been tested for all 6110 words in the TIMIT dictionary. The CFG rules

used for constructing the transition network are as follows:

Word ! [Init-Onset] V [CvCluster] [Final-Coda]

Init-Onset ! C j p,l j p,r j p,w j p,y j b,l j b,r j b,w j b,y j t,r j t,w j t,y j d,r j d,w j d,y j

k,l j k,r j k,w j k,y j g,l j g, r j g,w j g,y j f,l j f,r j f,y j v,l j v,r j v,y j th,r j th,w j th,y

j s,p j s,p,y j s,t j s,t,y j s,k j s,k,y j s,f j s,m j s,n j s,l j s,w j s, y j s h,m j sh,l j sh,r j

sh,w j hh,y j hh,w j m,y j n,y j l,y j s,p,l j s,p,r j s,t,r j s,k,l j s,k,r j s,k,w

CvCluster ! [MidC] V [CvCluster]

MidC ! MidC41 j MidC31 j MidC32 j MidC20 j MidC21 j C

MidC41 ! C, s, C, C

MidC31 ! s, C, C j C, s, C j Nas, Fri, Lqd j Nas, Stp, Gld, j Nas, Obs, r j Lqd, Fri, Lqd j

Lqd, Obs, r j Gld, Fri, Lqd j Gld, Obs, r j Stp, Stp, Lqd j Stp, Stp, Gld j Stp, Fri, Lqd

j Fri, Stp, Lqd j Fri, Stp, Gld
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MidC32 ! Nas, Stp, Lqd j Nas, Stp, Nas j Nas, Stp, Fri j Nas, Stp, Stp j Nas, Stp, Afr j

Lqd, Fri, Stp j Lqd, Fri, Nas j Lqd, Fri, Fri j Lqd, Stp, Stp j Lqd, Stp, Lqd j Lqd, Stp,

Fri j Lqd, Stp, Gld j Lqd, Stp, Afr j Fri, Fri, hh j r, C, C

MidC20 ! p,l j p,r j p,w j p,y j b,l j b,r j b,w j b,y j t,r j t,w j t,y j d,r j d,w j d,y j k,l j k,r

j k,w j k,y j g,l j g,r j g,w j g ,y j f,l j f,r j f,y j v,l j v,r j v, y j th,r j th,w j th, y j s,p j

s,t j s,k j s,f j s,m j s,n j s,l j s,w j s, y j sh,p j sh,m j sh,l j sh,r j sh,w j hh,y j hh,w j

m,y j n,y j l,y

MidC21 ! C, C

Final-Coda ! C j p, th j t, th j d, th j d,s,t

j k,s j k,t j k,s,th j g, d j g , z j ch, t j jh, d j f, t j f, th j s, p j s, t j s, k j z, d j m, p j

m, f j n, t j n, d j n, ch j n, jh j n, th j n, s j n, z j ng, k j ng, th j ng , z j l, p j l, b j l,

t j l, d j l, k j l, ch j l , jh j l, f j l, v j l, th j l, s j l, z j l , sh j l, m j l, n j l,p j l,k,s j

l,f,th j r, Stp j r,ch j r,jh j r,f j r,v j r,th j r,s j r,z j r,sh j r,m j r,n j r,l

The phoneme type categories are C (consonants), V (vowels), Nas (nasals), Gld (glides),

Fri (fricatives), Afr (a�ricates), Obs (obstruents), Stp (stops), Lqd (liquids). The MidC

categories are used for assigning word-internal consonant clusters to either the previous

syllable's coda or the next syllable's onset according to one of the following four possibilities:

MidC41 { 1 coda consonants, 3 onset consonants,
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MidC31 { 1 coda consonants, 2 onset consonants,

MidC32 { 2 coda consonants, 1 onset consonants,

MidC20 { 0 coda consonants, 2 onset consonants,

MidC21 { 1 coda consonants, 1 onset consonants.

This grammar in its current state is not fully deterministic. The �fth rule of MidC31

and the �rst rule of MidC32, for example, can result in ambiguous analyses for certain input

sequences. For example, the phoneme sequence in Andrew can be parsed either by rule

MidC31 (Nas Obs r) or by rule MidC32 (Nas Stp Lqd). How to deal with this problem is a

practical issue. For parsing a large number of words automatically, our solution is to use this

parser to �rst parse a pronunciation dictionary and then resolve the ambiguities through hand

checking. The parsed pronunciation dictionary is then used to provide syllable structures

of the words. We carried out this procedure on the TIMIT pronunciation dictionary. The

results showed that the rules are a fairly precise model of English syllable and phonotactic

structures: Out of 7905 pronunciations, only 135 or 1.7% generated multiple parses. The

ambiguities were hand-checked and the parsed dictionary was used for transferring phoneme

sequences into syllable structures in our TIMIT-based experiments.

As an illustration, Figure 7 shows the parse tree for word display, which denotes that

word display consists of 2 syllables. The category `CvCluster' is used for dealing with

multiple syllables recursively; `MidC' and `MidC31' are categories of intervocalic consonant
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clusters. The category `Init-Onset' denotes the word-initial syllable onset. The separation of

syllable-internal consonants into coda and onset is based on the consonant types according

to phonotactic principles [12].

PLACE Figures 7 and 8 AROUND HERE

The parser output of an unambiguous tree is transformed into subsegmental feature

vectors [1, 4, 9] with high-level linguistic information. This is illustrated in Figure 8. Here

the word display is parsed as a single word utterance with ub standing for utterance beginning

and ue for utterance end. Stress is denoted by 0 (unstressed syllable) and 1 (stressed syllable)

at the syllable node. The subsegmental feature structure is viewed as an autosegmental

structure [1, 11] with skeletal and articulatory feature tiers and a prosodic structure placed

on top of it. There is a resyllabi�cation by which /s/ is moved to the second syllable.

Currently this is done in the lexicon on the word by word basis.

Feature overlapping is carried out by the phonological rules we have implemented compu-

tationally, incorporating high-level linguistic information. We have used a temporal feature

logic [1] as the theoretical framework for imposing constraints and in the formulation of the

phonological rules.
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Appendix 2. A Temporal Feature Logic

A temporal feature logic for the constraint-based approach to feature overlapping is a lan-

guage L(X ;P; T ; C) where

X is a set of variables: a; b; c:: x; y; z::, etc.

P is a prosodic structure: fsyl; sylconst; seg; boundary; stressg.

T is a tier structure: fseg; articulator; featureg.

C is a set of logical connectors: fÆ;�; Æ;1;=;:;_;^; 8; 9;!;�; (; );>;?g, where Æ, �, Æ,

and 1 are \dominance", \precedence", \overlap", and \mix", respectively.

The prosodic structure

1. 8xy; syl(x) ^ x Æ y ! sylconst(y) _ boundary(y)

Syllables can dominate syllable constituents and boundaries.

2. 8xy; sylconst(x) ^ x Æ y ! seg(y) _ stress(y)

Syllable constituents can dominate segments and stresses.

3. 8x; boundary(x)! x 2 fub; ue; wb; we;mb;meg

where the boundary symbols stand for utterance beginning, utterance end, word be-

ginning, word end, morpheme beginning, morpheme end, respectively.
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4. 8x; sylconst(x)! x 2 fonset; nucleus; codag

5. 8x; stress(x)! x 2 f0; 1g

The tier structure

1. 8x; seg(x)! 9y; x Æ y ^ articulator(y)

Every segment dominates one or more articulators.

2. 8x; articulator(x)! 9y; x Æ y ^ feature(y)

Every articulator dominates one or more features.

3. 8x; articulator(x) ! x 2 flip; tbld; tdsm; vel; lyxg where the articulator symbols

stands for lip, tongue-blade, tongue-dorsum, velum and larynx, respectively.

4. 8x; feature(x)! poa(x)_cdg(x)_shape(x) where poa stands for place of articulation;

cdg stands for constriction degree and shape stands for the shape of the lips. (Fig-

ure 8 shows how prosodic and tier structures are motivated by subsegmental feature

structures.)

Dominance, Precedence, Overlap, and Mix

The basic properties of Æ;�; Æ are described in [1]. When some B is a component of some

A, we say A dominates B, or A Æ B. When two events A and B overlap in time, we denote

this by A Æ B; otherwise, either A precedes B or B precedes A: A � B _ B � A. In Bird's

temporal feature logic, dominance implies overlap. This is called the locality constraint:

46



8xy; x Æ y ! x Æ y

Precedence, on the other hand, implies no overlap and vice versa. This is described as the

mutual exclusion of � and Æ:

8xy; x � y ! : x Æ y and

8xy; x Æ y ! : x � y

There is an important property related to the above two fundamental properties which is

called the transitivity of � through Æ: 8wxyz; w � x ^ x Æ y ^ y � z ! w � z. Logically it

is hard to prove this. However, this property can be visualized in the following way. To see

that w � z, we note that the left boundary of x is to the right of w and the right boundary

of y is also to the right of w (since x Æ y) and the left boundary of z is to the right of the

right boundary of y, therefore, the left boundary of z is also to the right of w. This situation

can be illustrated by the following diagram:

w x

|-------|------|

y z

|----|-------|

Referring to Figure 8, these operators can be illustrated in the following:

Syllable1 Æ Nucleus1 Æ /ih/ Æ Larynx Æ V+,

Syllable1 ÆNucleus1 Æ /ih/ Æ Larynx Æ V+,
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/d/ � /ih/ � /s/ � /p/ � /l/ � /ey/.

Feature overlapping in this temporal logic framework is de�ned as a process of dynamic

realization of segmental tier structure synchrony (i.e. articulatory features are synchronous

within segments). In dynamic realization, a feature on some articulator tier may spread

temporally and may overlap with features of neighboring segments. If we use a predicate

\possib" to denote possibility of realizing a planned segment sequence, this can be expressed

as follows:

sega Æ articulatorp Æ featurel ^ sega � segb ! possib(segb Æ featurel)

When featurel overlaps with segb, it has a chance to overlap with the features dominated

by segb.

We abandon the \linearity constraint" which requires that events of the same sort be in

precedence relation only (i.e. features on the same articulator tier can only be in precedence

relation). Instead, we allow features at the same tier (therefore, of same sort) to overlap and

we call this \feature mixing", denoted by 1. This relation is expressed as

8xy; tieri(x) ^ tieri(y) ^ x Æ y $ x 1 y:

That is, if events on the same tier are in the same dominant group and overlap in time,

they are said to mix with each other. As an overlap can be either partial or full, so is the

mix relation. This mix relation is used to describe coarticulation involving the same tier

in the articulatory feature space (i.e., co-production). Articulatory mix is a very general
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phenomenon. Whenever consecutive phonemes involve the same articulator, there is often a

feature mix in the transition phase.

The temporal feature logic described above is motivated by empirical observations of

speech data including articulatory data and speech spectrograms. In particular, the subseg-

mental, articulatory features are components in forming a phoneme, and at the same time

these features can spread beyond the conventional boundaries of phonemes, exerting in
u-

ence on the articulatory or acoustic properties of neighboring phonemes up to some distance

away. If we consider such spreading as independent events, these events can take the form

of temporal overlap or temporal mix. Overlap refers to simultaneous events occurring at

di�erent tiers, while mix refers to simultaneous events occurring on the same tier. A combi-

nation of overlapping and mixing accounts for a great part of transitions between phonemes.

In descriptive terms, these transitional phases in speech can be modeled by a set of feature

bundles constructed from interactions between phonemes via the mechanisms of overlap and

mix. These overlapped and mixed feature bundles derived from the pre-de�ned, canonical,

context independent feature bundles are then taken as the basic units of speech to form the

HMM state topology for speech recognition.

In Figure 9, the spectrogram shows some acoustic properties of the utterance \step in"

which can be described by feature overlapping in accounting for the transitional phases. The

vowel /eh/ in word step contains two transitional phases. One has a carry-over tongue-tip

feature spread from the previous phoneme /t/; this overlapped feature from /t/ to /eh/
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accounts for the initial formant transition in /eh/. The second transitional phase contains

a look-ahead lips feature spread from the following phoneme /p/. The acoustic e�ect is

a conspicuous formant transition over a major length of /eh/ with the formant transition

targets towards those of /p/. The stop /p/, due to its coda position, has a very weak

release phase. The spectral shape of the release burst in /p/ is a�ected by the look-ahead

tongue-dorsum feature of the following vowel /ih/. The vowel /ih/ is partially nasalized due

to the velum feature spread from the following phoneme /n/. At the same time, both the

lips feature of /p/ and the tongue-tip feature of /n/ are overlapped into /ih/, creating the

obvious formant transition throughout the entire vowel.

PLACE Figure 9 AROUND HERE
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Appendix 3. Abbreviations Used In Figures

ASP aspiration

B.e tongue-blade of /e/

B.l tongue-blade of /l/

C/V consonant or vowel

ClsAlv.Br (feature mix of) closure-alveolar and tongue blade of /r/

ClsAlv closure-alveolar

ClsLab closure-labial

CrtAlv critical-alveolar

CvCluster consonant vowel cluster

Fri fricative (consonant)

Init-Onset word initial onset

MidC word-middle consonant

Nas nasal (feature)

Rnd.o lip-rounding of /o/

Rnd.r lip-rounding of /r/

seg segment

Stp stop (consonant)

syl syllable

T.Blade tongue blade
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T.Dorsum tongue dorsum

ub utterance begin

ue utterance end

V- unvoiced

V+ voiced
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Speech Recognition Decoding Results

Dial.Reg. No.Sents No.Words Corr% Sub Del Ins WER% Sent.ER%

1 110 964 89 48 55 10 12 36

2 260 2281 92 97 71 17 9 33

3 260 2271 92 94 77 20 9 31

4 320 2714 90 141 114 21 11 33

5 280 2438 88 175 116 25 13 40

6 110 966 91 51 27 14 10 35

7 230 1967 91 107 62 9 10 33

8 110 956 91 61 23 2 10 29

Total/Ave. 1680 14557 90 752 567 120 10 34

Table 1:

Phone Recognition Decoding Results

System Correct % Accuracy %

Triphone (baseline) 73.90 70.86

Overlapping Feature 74.70 72.95

Table 2:
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Speech Recognition Decoding Results: Word Correction and Accuracy

Dial.Reg. No.Sents No.Words Baseline Corr Baseline Acc Feature Corr Feature Acc

1 110 964 81.98 80.42 82.92 81.88

2 260 2281 86.10 85.44 86.58 85.62

3 260 2271 85.78 85.16 86.35 85.78

4 320 2714 83.05 81.80 83.35 82.09

5 280 2438 80.31 79.16 80.84 79.61

6 110 966 85.92 85.51 85.20 84.47

7 230 1967 88.66 87.90 89.22 88.66

8 110 956 86.61 85.67 87.13 86.51

Total/Ave. 1680 14557 84.61 83.69 85.04 84.13

Table 3:
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Figure and Table Captions

Figure 1: The overlapping feature bundle generator.

Figure 2: Feature overlaps for words display (upper panel) and displace(lower panel).

Figure 3: Feature overlaps and mixes for word strong.

Figure 4: State-transitional graph for word strong.

Figure 5: Results of applying operator Op125@15 to /t/ before /r/ and the corresponding

state transition graph of /t/.

Figure 6: Use of phonological rules and high-level linguistic information.

Figure 7: Parse tree for word display.

Figure 8: Subsegmental feature structure for word display.

Figure 9: An example spectrogram for step in illustrating acoustic properties associated

with feature overlaps.

Table 1: Continuous speech recognizer performance on words and tested on all 1680 sen-

tences in the TIMIT testing set. Feature-based phonological model is used to construct the

word-level HMM's and bigram language model is used for word recognition. Each feature-

de�ned HMM state was trained with a �ve-Gaussian mixture using HTK.

Table 2: TIMIT phone recognition results: Triphone baseline versus feature-overlapping
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model. The latter uses the feature overlapping rules in the decision-tree based state tying

process of phone-level HMM's.

Table 3: TIMIT word recognition results: triphone baseline versus feature-overlapping

model. The latter uses the feature overlapping rules to construct context-dependent phone-

level HMM's incorporating high-level linguistic constraints.
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