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Abstract

A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as

the speech model and serving as the theoretical basis for the construction of a speech enhancement

system, is presented in this paper. The NS-HMM is used as a compact and parametric model,

generalized from the stationary-state HMM, for describing the clean speech statistics in deriving

the minimummean square error (MMSE) estimator. The feature selection problem associated with

the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE

formulation is established where the NS-HMM is used as the clean speech model and Gaussian-

mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments

are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in

the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech

enhancement system's operation shows that the superiority arises from the ability of the NS-HMM

to �t the spectral trajectory of the signal embedded in noise more closely than the stationary-state

HMM.
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1 Introduction

Current speech enhancement techniques can be categorized into two major classes: the model-free

methods and the model-based methods. The model-free techniques are de�cient in several aspects

compared to the model-based methods. Some model-free techniques need to use two microphones

for both noise and speech recordings[1]. This is usually not possible, especially in on-line enhance-

ment applications (e.g. in hearing-aid applications). Some others use the assumed periodicity of

speech for �lter design[2, 3, 4]. This causes diÆculties in removing the noise from nonperiodic

utterances such as fricatives. The source of the problems associated with model-free methods is

the unreasonable assumption for the noise being relatively stationary. The spectral subtraction

technique[5, 6, 7] is considered as the most eÆcient model-free speech enhancement method. This

technique updates the noise estimate using the data occurring during speech-silence periods or

nonspeech segments, enabling noise nonstationarity to be handled to some extent. However, the

results of the spectral subtraction are usually unsatisfactory when noise characteristics change

relatively fast or when the nonspeech segments do not occur often enough. Further, in applying

the spectral subtraction method, the process of dynamic reduction of spectral energy necessarily

introduces the audible \musical"-like artifact acting as signal dependent interference[8]. Several

attempts have been made to deal with the problem of musical noise and to handle noise nonsta-

tionarity more eÆciently [9], with some limited success. Unlike model-free methods where musical

noise is an inherent problem requiring special techniques to overcome, it is desirable to avoid the

musical-noise problem from the very beginning and model-based methods are inherently free from

the problem.

In our previous works [8, 10], we focused on hidden Markov model (HMM) based speech

enhancement algorithms[11, 12]. We improved the minimum mean square error (MMSE) en-

hancement method presented by Ephraim[13, 14] by three major modi�cations: 1) incorporating

of mixture components in the noise HMM in order to better handle noise nonstationarity; 2) ap-

plying two eÆcient methods in the enhancement algorithm implementation that make the system

real-time implementable; and 3) devising an adaptation method to the noise type in order to

accommodate a wide variety of noise types expected under the enhancement system's operating

environment. Our experimental results on comparisons between the performance of the spectral

subtraction and HMM-based speech enhancement methods were reported in [10].

The study described in this paper represents a signi�cant step in improving the speech enhance-

ment system from that based on the conventional, stationary-state HMM[10] to that constructed

using the nonstationary-state HMM (NS-HMM) as the model for clean speech. (The latter HMM

includes the former HMM as a special, degenerate case). Although the stationary-state HMM is
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itself a generally nonstationary model (via its multiple states whose transition probabilities do not

happen to trap into a stationary distribution), it assumes that within a given state the speech data

is stationary. No mechanism is provided in the stationary-state HMM setup to handle detailed

variations of intrinsically dynamic speech signals and their temporal relationships. In the earlier

work of Deng et al., [15, 16, 17] the NS-HMM was developed and evaluated for speech recognition

applications. In this model, the dynamic nature of the acoustic signals in the speech is described

in terms of statistical nonstationarity which is hierarchically organized at two distinct levels. At

the global level, the nonstationarity is modeled when phonetic contents change over time in a

relatively slow fashion. A Markov chain is used to describe this change. The local nonstationarity,

on the other hand, is described by state-conditioned regression functions on time explicitly.

The experimental results published in [16, 17] show evidence that the NS-HMM �ts the de-

tailed temporal variations of the speech data much better than the stationary-state HMM. Since

an accurate estimate of the clean speech spectra from their noisy version is essential for speech

enhancement purposes, we expect that the superior data-�tting capability provided by the NS-

HMM will translate to superior performance in speech enhancement as well. Of course, compared

with the speech recognition experiments where the main concern is to solve the mismatch problem

in �tting models to speech data under disparate training and testing conditions (noise-free), the

speech enhancement task involves an additional complexity of estimating the clean speech spec-

trum from its noisy version. In this paper, we formulate a general framework for MMSE speech

enhancement incorporating the NS-HMM as the model representing statistical characteristics of

the clean speech spectra. It is an extension of the framework with use of stationary-state HMMs

published in [13]. The results of the diagnostic experiments and some limited speech enhancement

experiments (described in Sections 4.2 and 4.3) have corroborated the results of the previous stud-

ies on the superiority of the NS-HMM over the the stationary-state HMM as a more appropriate

model for speech signals. The scope of this paper, however, is mainly centered on the formulation

of the NS-HMM speech enhancement system, as well as on the design and implementation of the

formulated system. Comprehensive evaluation of the system, especially with use of subjective

criteria and with use of real-world noisy speech materials, will be our future work.

The organization of this paper is as follows. In Section 2 we �rst address the issue of speech

feature selection, which is tightly associated with use of the NS-HMM as the speech model, and

then provide a detailed description of the MMSE formulation for speech enhancement in which

NS-HMMs are employed. Section 3 contains implementation details of the speech enhancement

algorithm developed based on the above theoretical formulation. The speech enhancement system

and its evaluation are reported in Section 4, where two sets of diagnostic experiments and some

limited speech enhancement experiments are described. The experimental results show superior
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performance of the new system over the earlier version of the system with use of only the conven-

tional, stationary-state HMM (i.e., degenerate case of the NS-HMM) as the speech model. Finally,

in Section 5, a summary of the study is provided and conclusions are drawn.

2 Nonstationary-State HMM as the Speech Model in the

MMSE Enhancement System

The standard stationary-state HMM, which is widely used for speech modeling both in speech

recognition and enhancement applications, accommodates the inherent nonstationarity of speech

by introducing di�erent states within the model with the state transitions governed by the Marko-

vian property. In this model, a signal is assumed to be stationary given a state. Nonstationarity

is modeled by transition among di�erent states, thereby changing the statistical properties over

time. There are two identi�able problems with the standard HMM for speech enhancement ap-

plications. First, in order to accommodate continuously and rapidly varying characteristics of

the speech signal, it is necessary to increase the number of states in the model. This requires an

undesirably large size of the model while accepting the risk of impairing the performance when the

signal variation is slower than anticipated. Second, even with an increased number of states, the

continuity of the speech features is subject to deterioration with the standard HMM, since within

each state a constant mean is assumed for the signal and this value can be noticeably di�erent for

consecutive states.

2.1 Formulation of the Nonstationary-State HMM

The NS-HMM introduced in [17] and further investigated in [15] has been intended to overcome

the weaknesses of the standard HMM by permitting nonstationarity within the states of the HMM.

In the NS-HMM, the observation vector, yt, is composed of a deterministic trend function plus

the residual

yt = ft +Nt; (1)

where ft is the deterministic trend function at time frame t, and Nt is the stationary residual.

yt, ft, and Nt are all K � 1 vectors. Nt is taken to be an IID, zero-mean Gaussian source.

A NS-HMM is completely characterized by the following parameter set: 1) Transition proba-

bilities, a
4
= faijg, i; j = 1; 2; : : : ;M of the Markov chain; 2) Mixture weights, c

4
=

n
cmji

o
,

i = 1; 2; : : : ;M;m = 1; 2; : : : ; L of the Markov chain with a total of M states and L mixture com-

ponents; 3) Parameters �
4
= f�i;mg ; i = 1; 2; : : : ;M;m = 1; 2; : : : ; L in the deterministic trend
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function ft(�i;m), dependent on state i and mixture component m in the Markov chain; and 4)

Covariance matrices, �
4
= f�i;mg ; i = 1; 2; : : : ;M;m = 1; 2; : : : ; L, of the zero-mean Gaussian IID

residual Nt(0;�i;m) which are also state and mixture-component dependent.

Given the above model parameters, the observation vector sequence, yt (indexed by (i;m)),

t = 0; 1; : : : ; T � 1 is generated from the model according to

y
(i;m)
t = ft(�i;m) +Nt(0;�i;m); (2)

where state i and mixture component m at a given time frame t is determined by the evolution

of the Markov chain characterized by aij and cmji.

The mixture version of the NS-HMM has the same underlying Markov chain as in the con-

ventional, stationary-state HMM. In the NS-HMM used in this study, the time-varying means are

expressed explicitly as polynomials of state-sojourn time. We thus have

y
(i;m)
t =

RX
r=0

Bi;m(r)hr(t� �i) +Nt(0;�i;m); (3)

where the �rst term is the state(i) and mixture component (m) dependent polynomial regression

function (order R) with Bi;m(r) being the polynomial coeÆcients
1 with �i registering the time when

state i in the HMM is just entered before regression on time takes place. hr(:) is an r-th order

polynomial function. In our model implementation, we choose orthogonal polynomials for their

superior stability properties in parameter estimation. The �nal term in Eqn.(3) is the residual noise

assumed to be the output of an IID, zero-mean Gaussian source with state-dependent, mixture-

component-dependent, but time-invariant covariance matrix �i;m. Note that in Eqn.(3) only the

covariance matrix �i;m, and polynomial coeÆcients Bi;m(r) (for state i, mixture componentm, and

polynomial order r) are considered as true model parameters; �i is merely an auxiliary parameter

for the purpose of obtaining maximal accuracy in estimating Bi;m(r) (over all possible �i values).

In order to automatically train the NS-HMM parameters from the clean speech data, an ef-

�cient algorithm has been developed. The algorithm is motivated by and is an extension of the

segmental k-means algorithm developed in the past for training conventional HMMs [18]. Like the

segmental k-means algorithm, the algorithm developed here also involves two iterative steps |

the segmentation step and the regression step. For speech enhancement, we use a fully-connected

(ergodic) HMM for speech. Therefore, for the segmentation step we used a modi�ed version of

the segmentation algorithm described in [19] to take into account the changes for fully-connected

HMM. The reestimation (regression) step here is identical to that of [19].

1To take account of all components of vector yt of dimension K, we have a matrix with dimension K � (R+1)

for all the polynomial coeÆcients.
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2.2 Speech Feature Selection

For every task in speech processing, including speech recognition and enhancement, selection of

suitable features to represent speech data is crucial. The features we use to represent speech

should preserve the information of the speech data that the task needs. We discuss some issues on

feature selection speci�c to the speech enhancement task using the NS-HMM approach pertaining

to this work.

Reversibility of the features is a major issue. While removing speech redundancy, some useful

information in the data may be lost and this complicates the reversibility issue. For reconstructing

the speech data the lost information may have to be estimated. Generally, for speech recognition,

reversibility is less of a consideration than for speech enhancement because the speech waveforms

are not to be reconstructed once the recognizer has selected the matching speech units. Thus for

speech recognition, it is desirable to reduce the variability of the data resulting from various speak-

ers' characteristics, accents, contexts, etc.. In contrast, for speech enhancement, we would like to

preserve these variabilities and are ultimately interested in reconstructing the speech waveform as

faithfully as possible. In the speech enhancement system described in this paper (see Section 3 for

details), the selected speech features are used to construct weighted, time-varying Wiener �lters.

The �ltering is then performed in frequency domain and the frequency-domain �ltered speech is

transformed to the time-domain signal. The feature reversibility issue is therefore translated to

the issue of transformability to spectral { or frequency { domain that enables the construction of

the Wiener �lters.

Aside from the reversibility issue, another constraint in selecting a suitable feature for a speci�c

speech processing task is the additivity of the features as required by the formulation of the noisy

speech model. The assumption of speech-noise additivity and lack of correlation between the

speech and the noise degrading the speech impose strong constraints on the speech features being

fed to the model. The selected feature has to preserve such additivity properties in order to be

consistent with the problem formulation.

The discrete Fourier transform (DFT) represents speech characteristics in frequency-domain

in a direct manner. Using the short time Fourier transform (STFT) the variations in time can

be captured directly. For further compressing the STFT data, mel-frequency representations may

seem to be appropriate. By passing the squared spectral magnitude of the signal through the

mel-frequency triangular �lter-banks and calculating the log energy output of each �lter, the mel-

frequency spectral coeÆcients (MFSC)[20] are obtained. Carrying out a cosine transform on the

MFSC yields the mel-frequency cepstral coeÆcients (MFCC)[20]. The MFSC, MFCC, and delta

MFCC have resulted in good performance and have become virtually standard features in speech
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recognition. For enhancement, unfortunately, the reversibility issue becomes a serious problem

for either MFSC or MFCC/delta-MFCC since the averaging e�ect of the triangular �lters makes

the reversibility problematic. Moreover, MFSC and MFCC/delta-MFCC are not consistent with

speech-noise additivity assumption, because the log operation makes the transformation nonlinear

and consequently the noisy speech cannot be a simple sum of speech and noise in the MFSC or

the MFCC domain even if it is so in the time domain.

Another common representation of speech is the linear predictive coeÆcients (LPC)[21] where

it is assumed that speech is an auto-regressive (AR) process produced by feeding a Gaussian noise

process as input to an all-pole transfer function. The magnitude of the speech spectrum can be

easily found from the AR coeÆcients and the time-domain data can be reconstructed using the

original phase of the signal (noisy signal phase for the enhancement case), but the LPC coeÆcients

do not have the additivity property. Since autocorrelation coeÆcients (Rxx) are transformable to

AR coeÆcients and vice-versa, the autocorrelation coeÆcients are considered faithfully reversible,

too. Experiments we have performed to test the reversibility of autocorrelation coeÆcients have

con�rmed this reversibility.

Finally, the smoothness of the selected feature versus time is also an important issue when

that feature is to be modeled using the NS-HMM. Nonstationary-state hidden Markov modeling

is based on the assumption of smooth variation of the mean of the speech data trajectories in a way

that can be represented by a deterministic trend function. Since the AR coeÆcients do not have

the smoothness property assumed in speech features for NS-HMM, the concept of the deterministic

trend function added to a Gaussian random process does not match the AR coeÆcients, whereas

for autocorrelation coeÆcients this continuity is a strong inherent property. Due to their nonlinear

transformation, AR coeÆcients do not preserve the time-domain additivity. Line spectrum pair

(LSP) parameters are a linear function of the LPC polynomial and thus have the same properties

as AR coeÆcients; i.e., they are non-smooth and non-additive. For the features discussed earlier,

their smoothness property is brie
y described here. The DFT magnitude is a smooth function of

time (frame). Similarly, MFSC and MFCC are also smooth enough to be modeled by the NS-

HMM. The re
ection coeÆcients k's are smooth and reversible like autocorrelation coeÆcients,

but they are not additive due to the nonlinear functions involved in their calculation. However,

this non-additivity is not a serious problem because the reversibility allows the power spectrum

to be calculated uniquely from the re
ection coeÆcients. Since the spectrum domain features are

additive, Wiener �lter computations can be performed in the spectrum domain. This means that

the k coeÆcients in principle can also be used as a feature in our NS-HMM speech enhancement
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system due to their smoothness and reversibility. 2

A summary of the properties of the di�erent features discussed above for the representation

of speech data is provided in Table 1. The above discussion and the properties shown in Table 1

suggest that a number of features are suitable for the NS-HMM representation in use for speech

enhancement; such features include autocorrelation coeÆcients. In this paper, we will describe

the speech enhancement system employing only DFT magnitudes as the feature, with the results

to be presented in Section 4.

2.3 MMSE Formulation with Nonstationary-State HMM as the Model

for Clean Speech

Assume the clean speech signal in a chosen feature domain y
4
= fyt; t = 0; : : : ; T � 1g is corrupted

with independent additive noise v
4
= fvt; t = 0; : : : ; T � 1g, resulting in the noisy speech signal

z
4
= fzt = yt + vt; t = 0; : : : ; T � 1g. Let yt0;v

t
0; and zt0 denote the vectors of clean speech,

noise, and noisy speech processes, respectively, from time frame 0 to t. Let �y; �v, and �z denote

the model parameters for the clean speech, noise and noisy speech, respectively. Further, let

ŷ
4
= fŷt; t = 0; : : : ; T � 1g denote the MMSE estimate of the clean speech sequence. For the mean

square error

Error = E[(ŷt � yt)
Tr(ŷt � yt)] (4)

to be minimized, ŷt should be:

ŷt = Efyt j zt0g; (5)

according to the well-established estimation theory, where Ef� j �g denotes conditional expectation.
We are interested in estimating a function g of the clean speech. The optimal estimate3 is

^g(yt) = Efg(yt) j zt0g
=

Z 1

�1
g(yt)f�yj�z(yt j zt0)dyt; (6)

where f�y j�z denotes the conditional probability density function de�ned according to the model

parameters �y and �z. Using Bayes' rule we can write:

f�yj�z(yt j zt0) =
f�zj�y(z

t
0 j yt)f�y(yt)
f�z(z

t
0)

: (7)

2We have not explored such a possibility in the current study.
3Note that ^g(y

t
) is an estimate of function g(yt), and is dependent on noisy speech z

t
0.
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Substituton of Eqn.(7) into Eqn.(6) gives:

Efg(yt) j zt0g =
R1
�1 g(yt)f�zj�y(z

t
0 j yt)f�y(yt)dyt

f�z(z
t
0)

: (8)

For two independent random variables y and v, the pdf of their sum z equals the convolution

of their respective pdf's.4 Hence,

f�z j�y(z
t
0 j yt) =

Z 1

�1
f�y(y

t
0 j yt)f�v j�y(zt0 � yt0 j yt)dyt0

=
Z 1

�1
f�y(y

t�1
0 )f�v(v

t
0)dy

t
0

= f�v(vt)
Z 1

�1
f�y(y

t�1
0 )f�v(v

t�1
0 )dyt0

= f�v(vt)f�z(z
t�1
0 ); (9)

Note that in the above we assume f�y(y
t
0 j yt) = f�y(y

t�1
0 ). This implies independence5 of vectors

yt for di�erent time frame t (given the model parameters �y), as assumed in all types of HMMs

including our NS-HMM.6 However, the key di�erence between the NS-HMM and the conventional

HMM is the di�erent parameter sets �y, one de�ning smoothly-varying trajectories and the other

does not. Given such parameterization, the yt vectors necessarily exhibit the dynamic behavior

in the NS-HMM despite the independence assumption on the residual noise sequence (and hence

independence assumption on yt given �y).

By substituting Eqn.(9) into Eqn.(8), we obtain:

Efg(yt) j zt0g =
R1
�1 g(yt)f�v(vt)f�z(z

t�1
0 )f�y(yt)dyt

f�z(z
t
0)

: (10)

Note that Eqn.(10) above is a general result with no assumptions on any particular models used

to describe the statistics of the speech and noise signals. In order to devise a practical speech

enhancement algorithm, some modeling assumptions are needed. In this work, the NS-HMM is

assumed for the short-time DFT (magnitude) sequences of clean speech, and the stationary-state

4While in the DFT magnitude domain the additivity and statistical independence do not hold mathematically

for general signals y and v, as a good approximation they are practically valid for the signals consisting of speech in

noise. The evidence for this validity comes from the reasonable success of the popular spectral subtraction method

which works in the DFT magnitude domain.
5Note that f�y (y

t
0 j yt) = f�y (y

t�1

0
;yt j yt) = f�y (y

t�1

0
;yt)=f�y (yt), and hence independence.

6The reason for such independence comes from the assumption of i.i.d. residual noise in the de�nition of the

trajectory as in Eqn.(2). This i.i.d. assumption does not a�ect the essence of the model which uses deterministic

trajectories to describe the speech dynamics.
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HMM used for the short-time DFT sequences of noise. Given such modeling assumptions, the

pdf's in Eqn.(10) can be written out in detail as follows. f�y(yt) and f�v(vt) can be written,

according the law of total probability, as

f�y(yt) =
MX
�=1

LX

=1

tX
d=1

f�y(yt j st = �;mt = 
; dt = d) �

f�y(st = �;mt = 
; dt = d) (11)

f�v(vt) =
NX
�=1

PX
Æ=1

f�v(vt j nt = �; pt = Æ) � f�v(nt = �; pt = Æ); (12)

where st and mt denote the speech state and mixture component at time t, respectively, dt is the

duration of state st from the time of entry into that state to time t, and nt and pt denote the noise

state and mixture component at time t, respectively. Similarly, f�z(z
t
0) can be written as:

f�z(z
t
0) =

X
St
0

X
Mt

0

X
N t
0

X
Pt
0

f(St
0;Mt

0;N t
0;P t

0; z
t
0)

=
X
St
0

X
Mt

0

X
N t
0

X
Pt
0

fs(St
0)fm(Mt

0 j St
0)fn(N t

0 j Mt
0;St

0)

fp(P t
0 j N t

0 ;Mt
0;St

0)f�z(z
t
0 j P t

0;N t
0 ;Mt

0;St
0); (13)

where fs(St
0) is the probability of the clean speech state sequence St

0, fm(Mt
0 j St

0) is the probability

of the sequence of clean speech mixture-component sequenceMt
0 given the state sequence of clean

speech St
0, fn(N t

0 j Mt
0;St

0) (which, due to independence of the clean speech and noise sequences,

equals fn(N t
0)) is the probability of the noise state sequence, fp(P t

0 j N t
0 ;Mt

0;St
0) = fp(P t

0 j N t
0) is

the probability of the noise mixture-component sequence given noise state sequence, and f�z(z
t
0 j

P t
0;N t

0;Mt
0;St

0) is the pdf of the noisy speech output sequence zt0 given fP t
0;N t

0 ;Mt
0;St

0g.
The components of the product on the right-hand side of Eqn.(13) are found according to

fs(St
0) =

tY
�=0

as��1s� (14)

fm(Mt
0 j St

0) =
tY

�=0

fm(m� j s� ) =
tY

�=0

cm� js� (15)

fn(N t
0 j Mt

0;St
0) = fn(N t

0) =
tY

�=0

a0n��1n� (16)

fp(P t
0 j N t

0 ;Mt
0;St

0) = fp(P t
0 j N t

0)

=
tY

�=0

fp(p� j n� ) =
tY

�=0

c0p� jn� (17)
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f�z(z
t
0 j P t

0;N t
0 ;Mt

0;St
0) =

tY
�=0

f�z(z� j s� ; m� ; n� ; p� ; d�)

=
tY

�=0

b(z� j s� ; m� ; n� ; p� ; d� ); (18)

where aij denotes the speech state transition probability from state i to state j and cmjj is the

probability of choosing speech mixture componentm given speech state j. a0ij and c
0
mjj are similarly

de�ned for the noise model. b(zt j st; mt; nt; pt; dt) denotes the pdf of noisy observation zt at time

t given the quadruple of speech state, speech mixture component, noise state, and noise mixture

component (st; mt; nt; pt) and the duration of the speech state up to time t, dt. Given (st; mt; dt),

the clean speech pdf at time t is Gaussian and so is the noise pdf at time t given (nt; pt). Due to

the independence of the clean speech and noise processes, the noisy speech pdf (Gaussian) can be

written as:

b(zt j st; mt; nt; pt; dt) = Nt[�(st; mt; nt; pt; dt);�st;mt
+ �nt;pt]: (19)

where �st;mt
denotes the covariance matrix of the clean speech for (st; mt) and �0nt;pt denotes the

noise covariance matrix for (nt; pt). In Eqn.(19), the mean of the Gaussian, �(st; mt; nt; pt; dt), is

de�ned as

�(st; mt; nt; pt; dt) =

"
zt �

RX
r=0

Br(st; mt; nt; pt)hr(dt)

#
; (20)

where hr(dt) is the value of the Legendre orthogonal polynomial of order r for the duration dt, and

where Br(st; mt; nt; pt) is the r-th order trend polynomial coeÆcient of the noisy speech model.

These polynomial coeÆcients are found from:

B0(st; mt; nt; pt) = B0(st; mt) + �(nt; pt)

Br(st; mt; nt; pt) = Br(st; mt) for r > 0: (21)

In Eqn.(21), Br(st; mt) denotes the r-th order polynomial coeÆcients of the clean speech NS-HMM

for the state and mixture-component pair (st; mt), and �(nt; pt) is the mean of the noise standard

HMM for the state and mixture-component pair (nt; pt).

Now returning to the computation of the MMSE estimate speci�ed in Eqn.(10). Use of

Eqns.(13)-(18) results in

f�z(z
t�1
0 ) =

X
St�1

0

X
Mt�1

0

X
N t�1

0

X
Pt�1

0

t�1Y
�=0

as��1s� cm� js�a
0
n��1n� c

0
p� jn� b(z� j s� ; m� ; n� ; p� ; d� ): (22)

Eqn. (22) can now be used to calculate f�z(z
t
0) in the denominator of Eqn.(10) by replacing t� 1

with t.
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In order to write the computation of the MMSE estimate in a clean form, we �rst de�ne

Gt(�; 
; �; Æ; d; z
t
0)

4
= f�z(z

t
0 j st = �;mt = 
; nt = �; pt = Æ; dt = d) (23)

=
X

fSt0:st=�g
X

fMt
0
:mt=
g

X
fN t

0
:nt=�g

X
fPt

0
:pt=Æg

tY
�=0

as��1s� � cm� js� � a0n��1n�
� c0p� jn� � b(z� j s� ; m� ; n� ; p� ; d� ):

The denominator of Eqn.(10) can then be written as

f�z(z
t
0) =

MX
�=1

LX

=1

NX
�=1

PX
Æ=1

tX
d=1

Gt(�; 
; �; Æ; d; z
t
0): (24)

Further, the product of the three pdf's in the integrand of numerator in Eqn.(10) can be written

in a compact form derived from Eqn.(11), Eqn.(12), Eqn.(22), and Eqn.(24):

f�z(z
t�1
0 )f�y(yt)f�v(vt) =
MX
�=1

LX

=1

NX
�=1

PX
Æ=1

tX
d=1

Gt(�; 
; �; Æ; d; z
t
0)

f�y(yt j st = �;mt = 
; nt = �; pt = Æ; dt = d): (25)

On substitution of Eqn.(22) and Eqn.(25) in Eqn.(10), we �nally obtain the MMSE estimate

Efg(yt) j zt0g =
MX
�=1

LX

=1

NX
�=1

PX
Æ=1

tX
d=1

Wt(�; 
; �; Æ; d; z
t
0) �

Z 1

�1
g(yt)f�y(yt j st = �;mt = 
; nt = �; pt = Æ; dt = d)dyt

=
MX
�=1

LX

=1

NX
�=1

PX
Æ=1

tX
d=1

Wt(�; 
; �; Æ; d; z
t
0) �

Efg(yt) j st = �;mt = 
; nt = �; pt = Æ; dt = dg (26)

where the weights Wt(�; 
; �; Æ; d; z
t
0) are de�ned as

Wt(�; 
; �; Æ; d; z
t
0)

4
=

Gt(�; 
; �; Æ; d; z
t
0)PM

�=1

PL

=1

PN
�=1

PP
Æ=1

Pt
d=1Gt(�; 
; �; Æ; d; zt0)

(27)

for 1 � � �M; 1 � 
 � L; 1 � � � N; 1 � Æ � P; 1 � d � t:

A most interesting interpretation emerges from an examination of Eqn.(26): the MMSE es-

timate of the speech signal can be expressed as a weighted average of the state- and mixture-

component-conditioned signal expectations over all possible combinations of speech and noise

12



HMM states and mixture-components. The main burden for computing the MMSE estimate is

now reduced to the calculation of these state- and mixture-component-conditioned expectations:

Efg(yt) j st = �;mt = 
; nt = �; pt = Æ; dt = dg =Z 1

�1
g(yt)f�y(yt j st = �;mt = 
; nt = �; pt = Æ; dt = d)dyt; (28)

which we address below.

To compute Eqn.(28), function g(�) has to be speci�ed �rst. For the stationary-state HMM (a

special case of the NS-HMM presented in this paper), the conditional expectation Eqn.(28) has

been evaluated by Ephraim [13]. Di�erent choices of the g(�) function incur varying computational
costs. The least amount of computation happens with the choice of

g(yt) = fYt(k); k = 0; : : : ; K � 1g ; (29)

where Yt(k) is the k-th DFT (magnitude) component of yt. In addition to the motivations discussed

in detail in Section 2.2, this computational consideration gives another motivation for use of DFT

as the speech feature in this work; that is, we choose g(�) according to Eqn.(29) in the computation
of the MMSE estimate.

In determining the integral in Eqn.(28), we generalize a result of [13] from stationary-state

HMMs to NS-HMMs. The generalized result is that the linear estimate using the MMSE criterion

for the k-th component of g (denoted by g(k)) given by

Efg(k) j zt; st; mt; nt; dtg =
Z
Yt(k)f�y�v(Yt(k) j zt; st; mt; nt; dt)dYt(k) (30)

is Gaussian distributed with mean
�
Hst;mt;nt;pt;dt (k)Zt(k). Here, Zt(k) is the k-th component of

the DFT of zt, and
�
Hst;mt;nt;pt;dt (k) is the k-th component of the DFT of the frequency-domain

Wiener �lter output (given state st, mixture component mt, and duration dt in the clean speech

model, and given state nt and mixture component pt in the noise model). Note that this Wiener

�lter changes its transfer function over every single time frame because the transfer function is

determined by the polynomial trend function in the NS-HMM which changes smoothly over time

frames by design.

Returning to the computation of the sum in Eqn.(24) which determines the weights in Eqn.(27)

contributing to the aggregate Wiener �lter, we are able to write down an eÆcient recursive form.

The recursive formula for the calculation is

Gt(�; 
; �; Æ; 0; z
t
0) =

2
4 MX
�0=1

LX

0=1

NX
�0=1

PX
Æ0=1

tX
d0=0

Gt�1(�
0; 
0; �0; Æ0; d0; zt�10 ) � a�0� � a0�0�

3
5 �

13



c
j� � c0Æj� � b(zt j �; 
; �; Æ; 0)

Gt(�; 
; �; Æ; d; z
t
0) =

2
4 NX
�0=1

PX
Æ0=1

Gt�1(�; 
; �
0; Æ0; d� 1; zt�10 ) � a�� � a0�0�

3
5 �

c
j� � c0Æj� � b(zt j �; 
; �; Æ; 0); for 0 < d � t: (31)

Note that the above recursion has an additional dimension of state-sojourn time (d0) which results

from the time-varying means (i.e. polynomial trend functions) in the NS-HMM output distribu-

tions.

The computation in Eq.26 and that in the related terms by recursive updating formula Eq.31

form the core computation in the MMSE algorithm. Given the time-varying Wiener �lters, the

multiple nested summations in Eq.26 gives a total of M � L � N � P � t summations for each

frame (at time t). To compute all T frames, the total number of summations is M �L�N �P �
T 2=2. Similarly, the total number of summations required in computing the quantities in Eq.31 is

M � L�N � P � T 2=2.

2.4 Training Speech and Noise Models Based on Nonstationary-State

HMM

As described earlier, in our development of the speech enhancement system reported in this work,

we used DFT magnitudes as the speech feature. Since our enhancement system is based on

use of the NS-HMM as the speech model, training is needed to determine the parameters of

the model. This training procedure is independent of the selected feature for the model. A

separate preprocessor produces the required speech feature and training is then performed on the

preprocessed speech data.

Consider the NS-HMM as the speech model with a K-dimensional acoustic feature, a total of

M states and a total of L mixture components, and with the polynomial order R in the trend

functions. The parameters of this model have been described in Section 2.3 in detail. In particular,

the parameters for the trend functions are polynomial coeÆcients: B
4
= fBj;m(r)g, j = 1; 2; : : : ;M ,

m = 1; 2; : : : ; L, r = 0; : : : ; R.

During our training of the model parameters, we �rst perform vector quantization on the

training data to initialize the model parameters. We then use an extended Viterbi algorithm

similar to that described in [15] to iteratively update the model parameters. The training for

the noise HMM is essentially the same as that for conventional, stationary-state HMM. For more

details on the training procedure see [22].
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3 Implementation of the Speech Enhancement Algorithms

Our earlier work [8, 10] has shown signi�cant advantages of the MMSE algorithm over other types

of enhancement algorithms. The advantages arise not only from its superior theoretical motivation

according to estimation theory, but also from practical considerations such as its elimination of

the need for iteration. In this section, we will describe implementation of the MMSE algorithm

in our speech enhancement system. We will also describe an approximate method to the MMSE

algorithm, which has been used in this work in analyzing the enhancement system behavior.

3.1 Implementation of the MMSE Method

A simpli�ed block diagram of the NS-HMM-based enhancement system using the DFT magnitude

as speech features is shown in Figure 1. Theoretically, in the enhancement procedure, all possible

Wiener �lters have to be calculated. The number of possible Wiener �lters for the enhancement

system based on the NS-HMM as the clean speech model is far more than that in the standard

HMM case. Since the mean of the clean speech model for a given state and mixture-component

pair is still a function of the additional parameter | state sojourn time, another dimension is

added to the calculation of the MMSE forward algorithm for �nding the �lter weights. For each

time frame t, a number of t�M �L�N �P Wiener �lters and their corresponding weights have

to be calculated. The weights as shown in Eqn. (27) are functions of the speech and mixture-

component pairs of both clean speech and noise models and the clean speech duration up to time

t. In theory, the possible number of duration values which a speech state may have at time t is

t itself. So the factor t is multiplied by the number of possible Wiener �lters for the standard

HMM-based speech enhancement system.

In parallel with calculation of the Wiener �lters, each frame of time-domain noisy input speech

is preprocessed and transferred to the model feature domain (DFT magnitude ). Then for each

frame of the noisy speech the NS-MMSE forward algorithm (explained in Section 2.3) is performed.

For this, the pdf of the noisy speech has to be calculated. The noisy speech pdf can be speci�ed

with the trend polynomial coeÆcients (B matrix) and the covariance matrix. Since speech and

noise are additive and independent, the polynomial coeÆcients of the noisy speech (B matrix) is

found by adding up the corresponding elements of the B matrix of the clean speech model and

the means of the noise model. For each time frame t, a total of M � L � N � P matrices of

polynomial coeÆcients have to be calculated. These calculations are extremely simple compared

to the calculations necessary for the construction of the noisy pdf in the AR-HMM structure

even after the approximations employed to reduce the computation cost [10]. By using diagonal
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covariance matrices for the NS-HMMs, the problem of high computation cost for the inversion

of the covariance matrix for calculation of the output likelihoods is also avoided. 7 It should be

noted that the AR-HMM is not capable of accommodating nonstationary states due to the lack

of smoothness in AR coeÆcients versus time.

Despite all the simplicity for �nding the pdf of the noisy speech in the NS-HMM framework, the

encoding space is still signi�cantly larger than that in the standard HMM case due to the additional

dimension of the speech state duration. This problem has been solved using the double pruning

algorithm explained in [10]. For the NS-HMM the pruning algorithm is of utmost importance,

because in addition to pruning the calculations for �nding the �lter weights, it is employed to

reduce the number of Wiener �lter transfer functions to be calculated. In the standard HMM

enhancement framework, it is practical to calculate all possible Wiener �lters and save them

before the actual enhancement procedure starts. However, in the NS-HMM framework, due to

the extensive number of possible Wiener �lters, it is better to avoid such calculation. Therefore,

in the NS-HMM enhancement algorithm, the necessary Wiener �lters for a speci�c time frame of

noisy speech are calculated after the calculation of the �lter weights for that speci�c time frame.

After calculating the pdf of the noisy speech, the extended MMSE forward algorithm is used to

�nd the Wiener �lter weights for each time frame. The weights are employed to generate a single

weighted Wiener �lter from the inventory of the previously calculated Wiener �lters. The weighted

�lter is applied to the noisy frame of speech in frequency-domain. The �ltered frequency-domain

speech signal is transformed to time-domain using the original noisy signal phase and the output

enhanced signal is synthesized with the overlap-add method.

3.2 Approximate MMSE Enhancement Method Using the Dominant

Wiener Filter

The MMSE algorithm which employs a soft-decision method for building a weighted-sum �lter can

be approximated by using a single Wiener �lter for each time frame. In the approximate MMSE

(AMMSE) method, the most likely Wiener �lter for each time frame is selected using a modi�ed

version of the extended Viterbi algorithm for the NS-HMM explained in [15]. A block diagram of

this enhancement method for the case of the DFT magnitude as the speech feature is shown in

Figure 2.

In this system, similar to the MMSE method, the noisy signal is preprocessed and transformed

to the autocorrelation or DFT magnitude. Using the selected noise model and the clean model

7In our earlier experiments, we had implemented an expensive version of the system which used full covariance

matrices. Empirically, we found comparable results to the current system with the diagonal covariance matrices.
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NS-HMM, an NS-HMM is built for the noisy speech. With the noisy speech model the extended

Viterbi algorithm is performed on the preprocessed noisy speech data to provide the segmentation

information for the noisy observations. The extended Viterbi algorithm determines the most likely

speech state, speech mixture-component, noise state, and noise mixture-component quadruple

for each frame of the noisy speech signal. For every time-frame, having the most likely state,

mixture component, and state duration for the clean speech and the most likely state and mixture-

component pair for the noise, a single Wiener �lter is built from the model parameters. The noisy

speech data belonging to the frame is �ltered with the constructed Wiener �lter. The resultant

frequency-domain enhanced frame of speech is transformed to time-domain using the noisy speech

phase and the overlap-add method.

In the AMMSE enhancement method, the problem is to �t the clean speech data given the noisy

speech. More accurate data-�tting is equivalent to a more appropriate Wiener �lter and better

noise cancellation as a result. Therefore, this method can be used to analyze the enhancement

system behavior and diagnose probable malfunctioning of the system. The AMMSE enhancement

system is simpler than the MMSE method in that it uses only one Wiener �lter for each frame

and avoids the costly calculation of the �lter weights and the weighted-sum �lter. However, the

AMMSE algorithm relies on the segmentation information which is extracted by the extended

Viterbi algorithm. The extended Viterbi algorithm for the multiple state and mixture noise model

would itself be computationally costly. The algorithm confronts a �ve-dimensional search space

comprising the noise and speech states and mixture components in addition to the speech state

duration. For a single-state noise, however, the AMMSE system is more eÆcient than the MMSE

enhancement method.

The computation of the AMMSE algorithm mainly lies in that of the extended Viterbi algo-

rithm, whose computational complexity for the NS-HMM has been analyzed in detail in [15]. To

summarize, the computation is quadratic in T (as opposed to the conventional Viterbi algorithm

which has the computation linear in T ). However, if the durational properties of speech are taken

into account, the computation can be reduced to that linear in T with the large constant equal to

the maximum duration of the speech unit. This computation reduction has been analyzed in [15]

also.
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4 Speech Enhancement System and Experimental Results

4.1 Speech Enhancement System Overview and Experimentation En-

vironment

The speech data used in the speech enhancement experiments reported in this section were selected

from the sentences in the TIMIT database. One hundred sentences spoken by 13 di�erent speakers

(with sampling rate of 16 kHz) were used for training the clean speech model. One frame of speech

covers 256 speech samples (equivalent to 16 ms). No interframe overlap was used in training the

speech model. The sentences used for enhancement tests were selected such that there were

no common sentences or speakers between the enhancement and training sets. A 50% overlap

between adjacent frames was used in the enhancement procedure. For the standard HMM-based

enhancement systems, the models used for clean speech and noise are both AR-HMMs of di�erent

AR orders. In this work, an AR order of 14 for clean speech and an AR order of 6 for noise are

used. Therefore, in contrast to the stationary-state HMM-based enhancement system where the

preprocessor extracts the AR coeÆcients of the noisy speech, in the NS-HMM based enhancement

systems the preprocessor extracts the DFT magnitude components.

The implemented MMSE enhancement system follows the procedures displayed in Figure 1,

with the block diagram of the noise-model selection component shown in Figure 3. The noise-

model selection method has been described in detail in [10]. Brie
y, the noisy signal during long

periods of non-speech activity is �rst fed into a Viterbi forward algorithm. Then, the likelihood

for each pre-trained noise HMM is calculated and compared with likelihoods for the other noise

HMMs and the model associated with the highest likelihood determines the selected noise model.

Using the selected noise HMM parameters and the clean speech model, the noisy speech model is

arti�cially generated through calculating the pdf of the noisy speech.8

In the meantime, all Wiener �lters for all combinations of the state and mixture-component

pairs in the speech and noise models are calculated. A single weighted �lter is constructed for

each frame of noisy speech using the calculated �lter weights and the pre-trained Wiener �lters.

The �ltering of the noisy signal is carried out using the weighted �lter. This generates the spectral

magnitude of the enhanced speech signal. Using this magnitude and the phase of the noisy speech,

an inverse FFT is performed to obtain the time-domain enhanced speech via the standard overlap-

8The calculation procedures for the pdf of noisy speech are rather di�erent between the standard-HMM and

NS-HMM based systems. The respective procedures have been described in in [10] and in Section 2.3 of this paper.

Brie
y, In the standard-HMM based system, the preprocessed noisy speech is input to the MMSE forward algorithm

which generates the weights for the Wiener �lters. For the NS-HMM based system, the procedure the weights for

the Wiener �lters are calculated according to Eqn.(27).
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add method. For the MMSE enhancement, the noise HMMs we have implemented contained 3

states and 3 mixture components.9

A global measure of signal-to-noise ratio (SNR) was used as the objective evaluation criterion,

which is calculated by

SNR = 10 log

PK
n=1 y

2(n)PK
n=1 [y(n)� ŷ(n)]2

; (32)

where K is the frame-length, and y(n) and ŷ(n) are the n-th components of the time-domain clean

speech and of the time-domain enhanced speech signals, respectively.

For the experimentation with the new speech enhancement system incorporating the NS-HMM,

we carried out the experiments in two phases, the diagnostic experimentation phase and the speech

enhancement experimentation phase, to be described below.

4.2 Diagnostic Experiments

In the diagnostic experiments reported in this subsection, some individual components of the

enhancement system were analyzed. The AMMSE method was used as the enhancement algorithm

since it enables us to analyze detailed data-�tting behaviors in the enhancement process and to

investigate the relation between the observed goodness of �t and the overall performance of the

enhancement system.

In our AMMSE based enhancement system, the extended Viterbi algorithm extracts the pos-

sible segmentation information for the desired clean speech signal using the available noisy speech

signal. To achieve this goal, the noisy speech NS-HMM is arti�cially built from the pre-trained

clean speech model and the noise model. As explained in Section 3, the AMMSE system requires

the extended Viterbi algorithm to search over a �ve-dimensional space. This high cost in com-

putation has limited us to perform the diagnostic experiments only with white noise and with a

single-state noise model.

An utterance comprising a portion (1.1 second) of a sentence from the TIMIT speech database
10 was used for both training and testing. DFT magnitude vectors containing 129 components

with a resolution of 62.5 Hz were used as the speech and noise features. Each frame of the noisy

speech was taken to be 256 samples long corresponding to 16 ms of data. The overlap between

adjacent frames was set to 50%. NS-HMMs with 4 states and 4 mixture components and of orders

0, 1, and 2 were trained with the utterance. Noisy speech was generated by adding Gaussian

9Noise models containing 5 states and 5 mixture components have also been used in a few tests and we found that

they did not result in notable improvements over the noise model comprising 3 states and 3 mixture components.
10The complete sentence was: \Woe betide the interviewee if he answered vaguely."
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white noise to the test utterance with zero-dB SNR. The AMMSE enhancement procedure was

performed on the test utterance and the output SNRs and total likelihoods for varying polynomial

orders of the speech NS-HMM were then calculated. Data-�tting results were obtained during the

segmentation stage where the polynomial functions of time concatenated sequentially according

to the selected HMM state/mixture sequence were used to approximate the data trajectories. To

establish the highest possible performance of the speech enhancement system, the clean speech

spectra were used in the system to construct Wiener �lters instead of using the polynomials

obtained from the output of the extended Viterbi algorithm. The SNR obtained via use of the

clean speech information sets the upper limit of the system performance. The output SNRs and

the associated likelihoods signaling goodness of data-�tting to the models are presented in Table 2.

A direct correlation between the goodness of data-�tting and the speech enhancement performance

measured by the output SNRs is clearly demonstrated by these results. The results in Table 2 also

show that as the polynomial order in the NS-HMM is increased from zero to two, the performance

of enhancement is approaching the theoretical limit determined by using the clean speech spectra

to derive the Wiener �lters.

To examine the detailed behavior in the comparative system performance exhibited in Table

2, we show data-�tting results for modeled DFT feature vectors (polynomials) �tting to real DFT

feature vectors. For illustration purposes, only one representative DFT component (f=187.5 Hz)

is shown in Figure 4 and another representative DFT component (f=1687.5 Hz) shown in Figure 5.

The results in Figures 4 and 5 and our observations on a number of other DFT components show

that the DFT components which are less a�ected by noise have been estimated more accurately

than those a�ected more by noise. This implies that the method of calculating the noisy speech

pdf and that of building a good noisy speech model are crucial in �nding a good estimate of the

clean speech signal. Note that the likelihood obtained from the extended Viterbi algorithm is the

likelihood of the noisy speech observations given the arti�cially generated noisy speech model, and

it is desirable that this likelihood be a reliable indication of the likelihood for the clean speech

data given the clean speech model. The data-�tting observations shown in Figures 4 and 5 are

supportive of a positive correlation between the two likelihoods.

The results in Table 2 discussed earlier showed that use of higher polynomial orders in the NS-

HMM results in both better likelihoods and higher SNRs than use of lower orders (in particular,

order zero). The data-�tting results shown in Figures 4 and 5 have provided some underlying

reasons for this improvement. That is, the NS-HMM is doing its job of smoothly (except when

HMM state transitions occur) following speech spectral variations over time, with a better job done

using higher orders of polynomial trend functions. The consistency of the clean speech data-�tting

results with the associated likelihoods indicates that the parameters of the noisy speech model are
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reasonably accurately estimated. Further, the consistency between goodness of data-�tting and

the output SNRs indicates that the construction of the dominant Wiener �lter and the procedure

of frequency-domain �ltering and reconstruction of time-domain speech signals have been done

correctly.

It may be argued that the smooth trajectories across frames inherent in the NS-HMM could

also be realized by the Gaussian-mixture model if di�erent mixture components could be auto-

matically chosen to �t the smooth trajectories in the speech data. To examine such a possibility,

we conduct speech enhancement experiments by constraining the number of HMM states to be

one and obtaining a Gaussian-mixture model for clean speech. Keeping the same number of Gaus-

sian components (16 in total), we obtained the output SNR which is worse than the HMM |

9.05 dB for the Gaussian-mixture model versus 9.45 dB for the conventional HMM and 11.01 for

the NS-HMM. This suggests that the Gaussian-mixture model appears unable to automatically

choose the \correct" mixture components given only the noisy speech data available. Since the

NS-HMM forces smooth transitions across frames in the model structure itself, it guarantees a

natural �t between the data trajectory and the model component, thereby outperforming both

the Gaussian-mixture model and the conventional HMM.

The next diagnostic experiment has been motivated by the following reasonings. As explained

in Section 3, the AMMSE speech enhancement method employs the extended Viterbi algorithm

to obtain the segmentation information for the clean speech signal. Given a valid segmentation

of the clean speech, proper estimation of the signal is possible using the clean speech model

parameters. However, this estimation is not suÆcient to generate high-quality enhanced speech.

This is due to the fact that the estimated clean speech is the mean of a random process, and

only a single realization of the random process gives rise to the enhanced speech. Since the noisy

version of this realization is available, use of Wiener �ltering is one way of obtaining the clean

speech signal. In other words, a Wiener �lter is constructed using the acquired estimation of the

clean speech and the noise spectrum, and frequency-domain �ltering of the noisy speech spectrum

is performed to obtain the enhanced speech. Now, to illustrate the role of the Wiener �ltering in

speech enhancement, we in this diagnostic experiment deliberately eliminated the Wiener �ltering

stage. In the implementation, we �rst estimated the means of the polynomial trajectories in

the NS-HMM (for the clean speech spectral sequence) using the extended Viterbi algorithm, and

then straightforwardly transformed the estimated means into time domain. (This transformation

does not lose information because the DFT used is a fully reversible feature.) The SNRs of the

reconstructed time-domain speech utterance were calculated, with the results shown in Table 3.

Here, we observe that the qualities of such reconstructed speech signals are signi�cantly lower

than their counterparts obtained with use of Wiener �lters (cf. Table 2), losing SNRs about 3 dB
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or greater. Nevertheless, we also observe from Table 3 that the absolute SNRs still improve as

the polynomial order in the NS-HMM used to �t the speech data increases from zero to two. This

observation is consistent with that seen earlier in Table 2.

The main conclusion drawn from the diagnostic experiments presented in this subsection is that

the superior speech enhancement performance (measured by the output SNRs) achieved by the

NS-HMM, compared to the conventional stationary-state HMM, roots in the superior ability of the

NS-HMM in �tting the speech data. Therefore, the problem of speech enhancement is to a large

extent equivalent to that of correct segmentation of and accurate spectral-mean approximation

(�tting) to the \hidden" clean speech signal given the noisy speech data.

4.3 Speech Enhancement Results

In this section the results of speech enhancement experiments using the NS-HMM are presented.

The MMSE enhancement algorithm described in detail in Section 3 was used throughout the

experiments. The training and enhancement details have been described in Section 4.1. We have

tested polynomial orders of 0, 1, 2, 3, and 4 in the NS-HMM, and have used two types of noise,

white noise and simulated helicopter noise,11 as the additive noise to generate noisy speech data

in all our experiments reported here. All experiments have been carried out using 129 components

of the DFT magnitude as the features for speech and noise data.

We have run experiments on sevarl arbitrarily chosen TIMIT sentences, each consisting of

about two to four seconds of an utterance. The two types of additive noise, each having input

SNRs ranging from 0 dB to 15 dB with an increment of 5 dB, are used in the experiments. The

formal measure of the enhancement performance is the output SNR. The results of the experiments

are shown in Tables 4 and 5, for the use of simulated white noise and simulated helicopter noise,

respectively, in a typical sentence. In the tables, the output SNR as the performance measure is

shown as a function of the input SNR and of the polynomial order in the NS-HMM used in the

MMSE enhancement algorithm.

In analyzing the results for the sentences we have run, we �rst observe general consistencies of

the results across di�erence speech utterances and across the noise type, the latter indicating that

our enhancement algorithm is equally e�ective for stationary and nonstationary noise. Second, the

enhancement algorithm is most e�ective for low input SNRs (0 dB and 5 dB), and for higher input

SNRs, output SNRs are slightly lower than input SNRs indicating some undesirable distortions.

Third, importantly, advantages of the NS-HMM (order greater than zero) over the stationary-state

HMM (i.e. order-zero NS-HMM) have been observed across all sentences, all input SNRs, and

11The helicopter noise is generated by amplitude modulation of white noise with a �xed modulation frequency.
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across both noise types. Fourth, the SNR improvements gained using the NS-HMM with orders

higher than one is marginal but the superiority of the order-one NS-HMM over the order-zero

NS-HMM is considerable. This, again, has been observed to be consistent across all sentences, all

input SNRs, and across both noise types. Some informal listening we ourselves have experienced

has shown a high degree of consistency with the output SNR results shown in Tables 4 and 5.

In particular, informal listening results indicate that the improvement from use of order-zero NS-

HMM to use of order-one NS-HMM is perceptually detectable by listeners, but no perceptual

di�erences are found with use of other varying polynomial orders in the NS-HMM.

5 Summary and Conclusions

The focus of this study has been on the incorporation of the NS-HMM, a more accurate model

for dynamic speech spectral patterns than the benchmark stationary-state HMM, in the speech

enhancement system. The NS-HMM represents \local" speech nonstationarity within a state

in the HMM, and models detailed and relatively smooth variations in the intrinsically dynamic

speech signal. This model is formally related to but di�erent from the model described in [23, 24]

which has also been used in speech enhancement. The NS-HMM used in the current work directly

describes the dynamics for the feature vectors as polynomial functions of time frame. No recursion

(autoregression) is used in de�ning the dynamics. In the model of [23, 24], the dynamics is modeled

at the time-sample level, which requires autoregression in the description of the dynamics. The

coeÆcients in the autoregressive model, rather than the feature vectors, are modeled as polynomial

functions at time-frame level.

In order to incorporate the NS-HMM in the enhancement system, signi�cant modi�cations have

been made to the conventional HMM-based system in this work. One conceptually most important

modi�cation arises from the use of new speech features since the auto-regressive �lter coeÆcients

used in conventional HMM-based systems do not possess the smoothness characteristics required

by the NS-HMM. A set of conventional speech features commonly in use for speech recognition are

reviewed in terms of several key properties (smoothness, additivity, and reversibility) required by

the NS-HMM based speech enhancement algorithm. The DFT magnitudes and the autocorrelation

functions are selected as appropriate features because of their ful�llment of all of the smoothness,

additivity, and reversibility requirements. (In this work, we only implemented and evaluated the

DFT-magnitude features.) Based on use of these desirable speech features, the MMSE formulation

has been derived where the NS-HMM is used as the speech model and the Gaussian-mixture,

stationary-state HMM as the noise model. An approximate MMSE method is also devised and

implemented which makes the enhancement system analysis (reported in Section 4.2 on diagnostic
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experiments) possible.

In the experimental evaluation part of this work, two types of noise | white noise, and simu-

lated helicopter noise | are used to corrupt the speech signals. The experiments are carried out

in two phases, the diagnostic experimentation phase and the speech enhancement experimenta-

tion phase. In the diagnostic experimentation phase, individual components of the enhancement

system are analyzed. The training and the testing utterances are made identical in the experi-

ments so that a detailed study of the system behavior becomes possible. According to the results

from the diagnostic experiments, we identify the problem of speech enhancement as one equivalent

to accurate �tting of the modeled data trajectory to the \hidden" (unobservable) clean speech

data trajectory. Such �tting uses only separate pre-trained speech and noise models, as well as

noisy speech data sequences as the observable information. We �nd in the diagnostic experiments

that reasonably accurate �tting to the \hidden" clean speech can be achieved given noisy speech

data within the framework of the NS-HMM, but not within the framework of the conventional

HMM. Correlated superiority of non-zero polynomial orders for the NS-HMM in data-�tting and

in enhancement performances is demonstrated in the diagnostic experiments. Such results have

provided considerable insights to the functionality of the MMSE algorithm based on the NS-HMM

representation of spectral trajectories of the speech signal.

In the speech enhancement experimentation phase, separate sets of training and testing (en-

hancement) data are used. Experiments are performed for the enhancement system with the

polynomial orders varying from zero to four. The experimental results show consistent superiority

of higher polynomial orders in the NS-HMM over the order-zero counterpart as the benchmark,

consistent with the observations made in the diagnostic experiments.

The contributions of this work lie more in the insights gained to the nature of the speech

enhancement problem than in the practical implementation of our particular system. The most

signi�cant lesson we learned from this work is the importance of a good, analyzable speech model

in speech enhancement applications. Striving for such a model is indeed also the enterprise of

other speech technology areas, notably speech recognition. In fact, the NS-HMM used as the

backbone of the speech enhancement system reported in this paper was originally developed for

speech recognition. Its success motivated us to port this model to the current speech enhancement

application. However, di�erent applications (enhancement versus recognition) do require consid-

erable e�orts in understanding several key issues such as feature selection, formulation of di�erent

optimization criteria, and development of di�erent optimization procedures. All these issues for

the speech enhancement application have been dealt with carefully in this work and been discussed

in this paper.

Finally, we would like to point out the high complexity in implementing the system described
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in this paper. The pruning method we devised has substantially reduced the computational cost

in executing the MMSE algorithm but its tradeo� with the possible performance degradation has

not been studied thoroughly. This and a number of other implementation issues are currently

under investigation. Also, as future work, di�erent noise types with varying input SNRs will need

to be tested on a greater number of testing sentences. Tests on real world noisy data (not made

noisy in the lab) will also need to be carried out with not only objective evaluation (such as

SNR improvement) but also with subjective evaluation. These more rigorous and comprehensive

tests will further re�ne the algorithm developed in the current study and eventually validate the

model-based approach proposed in this paper.

Nevertheless, the results reported in this paper showing superiority of better speech models

in enhancement performance are already encouraging. This is particularly so because we have

developed diagnostic tools, as reported in the diagnostic experiments, which permit us to analyze

the underlying reasons for the superiority of the enhancement performance and thus give us a

sure way to not only avoid pitfall implementations but also monitor performance improvement

with theoretical guidances. This should open a wide door in the future for incorporating even

better speech models, some of which are currently under active development in our laboratory,

into speech enhancement systems as well as into other areas of speech technology applications.
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Feature Smoothness Additivity Reversibility

Waveform
p p p

DFT (STFT)
p p p

MFSC
p

{ {

MFCC
p

{ {

LPC (AR) { {
p

Rxx

p p p

k
p

{
p

LSP { {
p

Table 1: Properties of various speech features.

Order 0 Order 1 Order 2 Clean Data

Output SNR (dB) 9.45 10.53 11.01 11.43

Log-Likelihood -1.6196e+05 -1.5883e+05 -1.5769e+05 {

Table 2: The output SNRs and log-likelihoods from the diagnostic tests with di�erent orders of the

NS-HMM trend polynomial and the output SNR using clean speech information.
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Figure 1: Block diagram of the MMSE enhancement system using the NS-HMM for clean speech.
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Figure 2: Block diagram of the approximate MMSE enhancement system using the NS-HMM for clean

speech.
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Figure 3: Block diagram of the noise-model-selection module in the speech enhancement system

Order 0 Order 1 Order 2

Output SNR (dB) 6.60 7.50 7.81

Table 3: The output SNRs from the diagnostic tests using only the estimated mean trajectories of the

clean speech, with di�erent orders of the NS-HMM trend polynomial.

Input SNR (dB) Order 0 Order 1 Order 2 Order 3 Order 4

0 7.51 7.60 7.62 7.65 7.67

5 8.22 9.10 9.12 9.13 9.15

10 8.97 10.95 10.95 11.02 11.15

15 9.91 12.15 12.33 12.38 12.50

Table 4: The output SNRs for di�erent input SNRs and di�erent orders of NS-HMM. White additive

noise is used.
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Figure 4: HMM �tting with the clean signal using noisy input with varying polynomial orders. DFT

magnitude component 3, frequency=187.5 Hz. a) order 0 and order 1 �tting b) order 0 and order 2 �tting

c) noisy input and clean signal. err0: total �tting error between the original signal and the order-0 model;

err1: error between the original signal and the order-1 model; err2: error between the original signal and

the order-2 model
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Figure 5: HMM �tting with the clean signal using noisy input with varying polynomial orders. DFT

magnitude component 27, frequency=1687.5 Hz. a) order 0 and order 1 �tting b) order 0 and order 2

�tting c) noisy input and clean signal. err0: total �tting error between the original signal and the order-0

model; err1: error between the original signal and the order-1 model; err2: error between the original

signal and the order-2 model
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Input SNR (dB) Order 0 Order 1 Order 2 Order 3 Order 4

0 7.98 8.15 8.21 8.22 8.30

5 8.70 9.62 9.71 9.81 9.88

10 9.15 10.92 10.95 11.12 11.20

15 9.81 12.20 12.32 12.38 12.55

Table 5: The output SNRs for di�erent input SNRs and di�erent orders of Simulated helicopter noise is

used.
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